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Abstract Type-based and PDG-based information flow analysis tech-
niques are currently developed independently in a competing manner,
with different strengths regarding coverage of language features and se-
curity policies. In this article, we study the relationship between these
two approaches. One key insight is that a type-based information flow
analysis need not be less precise than a PDG-based analysis. For proving
this result we establish a formal connection between the two approaches
which can also be used to transfer concepts from one tradition of infor-
mation flow analysis to the other. The adoption of rely-guarantee-style
reasoning from security type systems, for instance, enabled us to develop
a PDG-based information flow analysis for multi-threaded programs.
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1 Introduction

When giving a program access to confidential data one wants to be sure that the
program does not leak any secrets to untrusted sinks, like, e.g., to untrusted
servers on the Internet. Such confidentiality requirements can be characterized by
information flow properties. For verifying that a program satisfies an information
flow property, a variety of program analysis techniques can be employed.

The probably most popular approach to information flow analysis is the use
of security type systems. Starting with [25], type-based information flow analyses
were developed for programs with various language features comprising proce-
dures (e.g., [24]), concurrency (e.g., [23]), and objects (e.g., [16]). Security type
systems were proposed for certifying a variety of information flow properties,
including timing-sensitive and timing-insensitive properties (e.g., [22] and [2])
and properties supporting declassification (e.g., [14]).

Besides type systems, one can also employ other program analysis techniques
for certifying information flow security. For instance, it was proposed in [10] to
use program dependency graphs (PDGs) for information flow analysis. A PDG [4]
is a graph-based program representation that captures dependencies caused by
the data flow and the control flow of a program. PDG-based information flow
analyses recently received new attention, resulting in, e.g., a PDG-based infor-
mation flow analysis for object-oriented programs and a PDG-based information
flow analysis supporting declassification [8,7].

http://www.springerlink.com/
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Type-based and PDG-based information flow analyses are currently devel-
oped independently. The two sub-communities both see potential in their ap-
proach, but the pros and cons of the two techniques have not been compared in
detail. In this article, we compare type-based and PDG-based information flow
analyses with respect to their precision. Outside the realm of information flow
security there already exist results that compare the precision of data-flow ori-
ented and type-based analyses, for instance, for safety properties [18,17]. Here,
we clarify the relation between type-based and PDG-based analyses in the con-
text of information flow security. We investigate whether (a) one approach has
superior precision, (b) both have pros and cons, or (c) both are equally precise.
To be able to establish a precise relation, we consider two prominent analyses
that are both fully formalized for a simple while language, namely the type-based
analysis from Hunt and Sands [11] and the PDG-based analysis from Wasserrab,
Lohner, and Snelting [27].

Our main result is that the two analyses have exactly the same precision.
This result was surprising for us, because one motivation for using PDGs in an
information flow analysis was their precision [8]. We derive our main result based
on a formal connection between the two kinds of security analyses, which we in-
troduce in this article. It turned out that this connection is also interesting in
its own right, because it can be used for transferring ideas from type-based to
PDG-based information flow analyses and vice versa. In this article, we illus-
trate this possibility in one direction, showing how to derive a novel PDG-based
information flow analysis that is suitable for multi-threaded programs by ex-
ploiting our recently proposed solution for rely-guarantee-style reasoning in a
type-based security analysis [15]. The resulting analysis is compositional and,
thereby, enables a modular security analysis. This is an improvement over the
analysis from [5], the only provably sound PDG-based information flow analysis
for multi-threaded programs developed so far. Moreover, in contrast to [5] our
novel analysis supports programs with nondeterministic public output.

In summary, the main contributions of this article are

1. the formal comparison of the precision of a type-based and a PDG-based
information flow analysis, showing that they have the same precision;

2. the demonstration that our formal connection between the type-based and the
PDG-based analysis can be used to transfer concepts from one approach to the
other (by transferring rely-guarantee-style reasoning as mentioned above); and

3. a provably sound PDG-based information flow analysis for multi-threaded pro-
grams that is compositional with respect to the parallel composition of threads
and compatible with nondeterministic public output.

We believe that the connection between type- and PDG-based information flow
analysis can serve as a basis for further mutual improvements of the analysis tech-
niques. Such a transfer is desirable because there are other relevant aspects than
an analysis’ precision like, e.g., efficiency and availability of tools. Moreover, we
hope that the connection between the two approaches to information flow analy-
sis fosters mutual understanding and interaction between the two communities.
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2 Type-based Information Flow Analyses

If one grants a program access to secret information, one wants to be sure that the
program does not leak secrets to untrusted sinks like, e.g., untrusted servers in a
network. A secure program should not only refrain from directly copying secrets
to untrusted sinks (as, e.g., with an assignment “sink :=secret”), but also should
not reveal secrets indirectly (as, e.g., by executing “if (secret > 0) then sink :=1”).

It is popular to formalize information flow security by the property that val-
ues written to public sinks do not depend on secrets, the probably best known
such property being Noninterference [6,13]. In the following, we define informa-
tion flow security for programs by such a property, and we present a security
type system for certifying programs with respect to this property.

2.1 Execution Model and Security Property

We consider a set of commands Com that is defined by the grammar

c ::= skip | x :=e | c; c | if (e) then c else c fi | while (e) do c od,

where x ∈Var is a variable and e ∈Exp is an expression. Expressions are terms
built from variables and from operators that we do not specify further. The set of
free variables in expression e ∈Exp is denoted with fv(e). A memory is a function
mem : Var→Val that models a snapshot of a program’s memory, where Val is
a set of values and mem(x ) is the value of x . Judgments of the form 〈c,mem〉 ⇓
mem ′ model program execution, with the interpretation that command c, if
executed with initial memory mem, terminates with memory mem ′. The rules
for deriving the judgments are as usual for big-step semantics.1

To define the security property, we consider a security lattice D = {l , h} with
two security domains where l v h and h 6v l . This models the requirement that
no information flows from domain h to domain l . This is the simplest policy
capturing information flow security.2 A domain assignment is a function dom :
Var → D that associates a security domain with each program variable. We
say that variables in the set L = {x ∈ Var | dom(x ) = l} are public or low,
and that variables in the set H = {x ∈ Var | dom(x ) = h} are secret or high.
The resulting security requirement is that the final values of low variables do not
depend on the initial values of high variables. This requirement captures security
with respect to an attacker who sees the initial and final values of low variables,
but cannot access values of high variables (i.e., access control works correctly).

Definition 1. Two memories mem and mem ′ are low-equal (written mem =L

mem ′) if and only if mem(x ) = mem ′(x ) for all x ∈ L.
A command c is noninterferent if whenever mem1 =L mem2 and 〈c,mem1〉 ⇓

mem ′1 and 〈c,mem2〉 ⇓ mem ′2 are derivable then mem ′1 =L mem ′2.

1 The rules and detailed proofs of theorems in this article are available on the authors’
website (http://www.mais.informatik.tu-darmstadt.de/Publications).

2 The results in this article can be lifted to other security lattices.

http://www.mais.informatik.tu-darmstadt.de/Publications
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[exp]
Γ ` e :

⊔
x∈fv(e) Γ (x )

[if]
Γ ` e : t pc t t ` Γ {c1} Γ ′

1 pc t t ` Γ {c2} Γ ′
2

pc ` Γ {if (e) then c1 else c2 fi} Γ ′
1 t Γ ′

2

[assign] Γ ` e : t
pc ` Γ {x :=e} Γ [x 7→ pc t t]

[seq]
pc ` Γ {c1} Γ ′ pc ` Γ ′ {c2} Γ ′′

pc ` Γ {c1; c2} Γ ′′

[skip]
pc ` Γ {skip} Γ

[while]

Γ ′
i ` e : ti pc t ti ` Γ ′

i {c} Γ ′′
i 0 ≤ i ≤ k

Γ ′
0 = Γ Γ ′

i+1 = Γ ′′
i t Γ Γ ′

k+1 = Γ ′
k

pc ` Γ {while (e) do c od} Γ ′
k

Figure 1. Type system from [11]

Example 1. Consider command c to the right and
assume that dom(x ) = dom(y) = l and dom(z ) = h.
Consider furthermore low-equal memories mem1

and mem2 with mem1(x ) = mem2(x ) = mem1(y) =
mem2(y) = 1, mem1(z ) = −1, and mem2(z ) = 1.

1. if (z < 0) then
2. while (y > 0) do
3. y :=y + z od else
4. skip fi;
5. x :=y

Then 〈c,mem1〉 ⇓ mem ′1 and 〈c,mem2〉 ⇓ mem ′2 are derivable with mem ′1(x ) =
0 and mem ′2(x ) = 1. Since mem ′1 6=L mem ′2 command c is not noninterferent.

2.2 The Type-based Information Flow Analysis by Hunt and Sands

A type-based analysis uses a collection of typing rules to inductively define a
subset of programs. The intention is that every program in the subset satis-
fies an information flow property like, e.g., the one from Definition 1. Starting
with [25], many type-based information flow analyses were developed (see [21]
for an overview). Here, we recall the type system from Hunt and Sands [11]
which is, unlike many other type-based security analyses, flow-sensitive (i.e., it
takes the order of program statements into account to improve precision).

In [11], typing judgments have the form pc ` Γ {c}Γ ′, where c is a command,
Γ, Γ ′ : Var → D are environments, and pc is a security domain. The interpre-
tation of the judgment is as follows: For each variable y ∈ Var , Γ ′(y) is a valid
upper bound on the security level of the value of y after command c has been
run if (a) for each x ∈ Var , Γ (x ) is an upper bound on the security level of the
value of x before c has been run and (b) pc is an upper bound on the security
level of all information on which it might depend whether c is run.

The typing rules from [11] are displayed in Figure 1, where t denotes the least
upper bound operator on D, which is extended to environments by (ΓtΓ ′)(x ) :=
Γ (x )tΓ ′(x ). The typing rules ensure that for any given c, Γ , and pc there is an
environment Γ ′ such that pc ` Γ {c}Γ ′ is derivable. Moreover, this environment
is uniquely determined by c, Γ , and pc [11, Theorem 4.1].

Definition 2. Let c ∈ Com, Γ (x ) = dom(x ) for all x ∈ Var, and Γ ′ be the
unique environment such that l ` Γ {c}Γ ′ is derivable. Command c is accepted
by the type-based analysis if Γ ′(x ) v dom(x ) for all x ∈ Var.
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Example 2. Consider command c and domain assignment dom from Example 1.
Let Γ (x ) = dom(x ) for all x ∈ Var . Then the judgment l ` Γ {c}Γ ′ is derivable
if and only if Γ ′(x ) =Γ ′(y) =Γ ′(z ) = h and Γ ′(x ′) = Γ (x ′) for all other x ′ ∈ Var .
Since Γ ′(x ) 6v dom(x ) command c is not accepted by the type-based analysis.

Theorem 1. Commands accepted by the type-based analysis are noninterferent.

The theorem follows from Theorem 3.3 in [11].

3 PDG-based Information Flow Analyses

PDG-based information flow analyses, firstly proposed in [10], exploit that the
absence of certain paths in a program dependency graph (PDG) [4] is a sufficient
condition for the information flow security of a program. In this section, we
recall the PDG-based analysis from [27] which is sound with respect to the
property from Definition 1. In order to make the article self-contained, we recall
the construction of control flow graphs (CFGs) and PDGs in Sections 3.1 and 3.2.

3.1 Control Flow Graphs

Definition 3. A directed graph is a pair (N , E) where N is a set of nodes and
E ⊆ N×N is a set of edges. A path p from node n1 to node nk is a non-empty se-
quence of nodes 〈n1, . . . ,nk〉 ∈ N + where (ni,ni+1) ∈ E for all i ∈ {1, . . . , k−1}.
We call a path trivial if it is of the form 〈n〉 (i.e., a sequence of length 1), and
non-trivial otherwise. Moreover, we say that node n is on the path 〈n1, . . . ,nk〉
if n = ni for some i ∈ {1, . . . , k}.

Definition 4. A control flow graph with def and use sets is a tuple (N, E,def,use)
where (N , E) is a directed graph, N contains two distinguished nodes start and
stop, and def , use : N → P(Var) are functions returning the def and use set,
respectively, for a node. (The set P(Var) denotes the powerset of the set Var.)

Nodes start and stop represent program start and termination, respectively, and
the remaining nodes represent program statements and control conditions. An
edge (n,n ′)∈E models that n ′ might immediately follow n in a program run.
Finally, the sets def (n) and use(n) contain all variables that are defined and
used, respectively, at a node n. In the remainder of this article we simply write
“CFG” instead of “CFG with def and use sets.”

We recall the construction of the CFG for a command following [26], where
statements and control conditions are represented by numbered nodes.

Definition 5. We denote with |c| the number of statements and control condi-
tions of c ∈ Com, and define |c| recursively by |skip|= 1, |x :=e|= 1, |c1; c2| =
|c1|+ |c2|, |if (e) then c1 else c2 fi| = 1 + |c1|+ |c2|, and |while (e) do c od| = 1 + |c|.
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Definition 6. For c ∈ Com and 1 ≤ i ≤ |c| we denote with c[i] the ith statement
or control condition in c, which we define recursively as follows: If c = skip or
c = x :=e then c[1] = c. If c = c1; c2 then c[i] = c1[i] for 1 ≤ i ≤ |c1| and
c[i] = c2[i − |c1|] for |c1| < i ≤ |c|. If c = if (e) then c1 else c2 fi then c[1] = e,
c[i] = c1[i−1] for 1 < i ≤ 1 + |c1|, and c[i] = c2[i−1− |c1|] for 1 + |c1| < i ≤ |c|.
If c = while (e) do c1 od then c[1] = e and c[i] = c1[i−1] for 1 < i ≤ |c|.

Note that the ith statement or control condition, i.e., c[i], is either an ex-
pression, an assignment, or a skip-statement.

Definition 7. For c ∈ Com, Nc = {1, . . . , |c|} ∪ {start , stop}.

We define an operator 	 : (N ∪ {start , stop}) × N → Z ∪ {start , stop} by
n 	 z = n − z if n ∈ N and n 	 z = n if n ∈ {start , stop}.

Definition 8. For c ∈ Com the set Ec ⊆ Nc ×Nc is defined recursively by:
– Eskip = Ex :=e = {(start , 1), (1, stop), (start , stop)},
– Eif (e) then c1 else c2 fi = {(start , 1), (start , stop)} ∪
{(1,n ′) | (start ,n ′	 1) ∈ Ec1 ∧ n ′ 6= stop} ∪
{(1,n ′) | (start ,n ′	(1+ |c1|)) ∈ Ec2 ∧ n ′ 6= stop} ∪
{(n,n ′) | (n 	 1,n ′	 1) ∈ Ec1 ∧ n 6= start} ∪
{(n,n ′) | (n 	(1+ |c1|),n ′	(1+ |c1|))∈Ec2 ∧ n 6= start},

– Ec1;c2 = {(start , stop)} ∪
{(n,n ′) | (n,n ′) ∈ Ec1 ∧ n ′ 6= stop} ∪
{(n,n ′) | (n 	 |c1|,n ′	 |c1|) ∈ Ec2 ∧ n 6= start} ∪
{(n,n ′) | (n, stop)∈Ec1 ∧ (start ,n ′	 |c1|)∈Ec2 ∧ n 6= start ∧ n ′ 6= stop}, and

– Ewhile (e) do c od = {(start , 1), (start , stop)} ∪
{(1,n ′) | (start ,n ′	 1) ∈ Ec} ∪
{(n ′, 1) | (n ′	 1, stop) ∈ Ec} ∪
{(n,n ′) | (n 	 1,n ′	 1)∈Ec ∧ n 6= start ∧ n ′ 6= stop}.

Definition 9. For c ∈ Com we define defc : Nc→P(Var) by defc(n) = {x} if
n ∈ {1, . . . , |c|} and c[n] = x :=e, and by defc(n) = {} otherwise. Moreover, we
define usec : Nc→P(Var) by usec(n) = fv(e) if n ∈ {1, . . . , |c|} and c[n] = x :=e
or c[n] = e, and by usec(n) = {} otherwise.

Definition 10. The control flow graph of c is CFGc = (Nc , Ec , defc , usec).

Note that, by definition, an edge from start to stop is contained in Ec . This
edge models the possibility that c is not executed.

We now augment CFGs with def and use sets by two nodes in and out to
capture the program’s interaction with its environment. Two sets of variables
I,O ⊆ Var , respectively, specify which variables may be initialized by the envi-
ronment before program execution and which variables may be read by the envi-
ronment after program execution. This results in the following variant of CFGs:

Definition 11. Let CFG = (N , E, def , use) and I,O ⊆ Var. Then CFGI,O =
(N ′, E′, def ′, use ′) where N ′ = N ∪ {in, out}, E′ = {(start , stop), (start , in),
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Figure 2. The CFG and the PDG for the command from Example 1

(out , stop)}∪{(in,n ′) | (start ,n ′)∈E∧n ′ 6= stop}∪{(n, out) | (n, stop)∈E∧n 6=
start} ∪ {(n,n ′)∈E | n 6∈ {start , stop} ∧ n ′ 6∈ {start , stop}}, def ′(in) = I,
use ′(in) = def ′(out) = {}, use ′(out) = O, and def ′(n) = def (n) and use ′(n) =
use(n) for n ∈ N .

Definitions 10 and 11 both augment the usual notion of control flow graphs
(see Definition 4). In the remainder of this article, we use the abbreviation CFG
for arbitrary control flow graphs (including those that satisfy Definition 10 or 11).

We use a graphical representation for displaying CFGs where we depict nodes
with ellipses and edges with solid arrows. For each node n we label the corre-
sponding ellipse with nX

Y where X = def (n) and Y = use(n).

Example 3. Command c in Example 1 contains three statements and two control
conditions (i.e., |c|= 5). Hence, Nc = {1, . . . , 5, start , stop}. Nodes 1–5 represent
the statements and control conditions in Lines 1–5 of the program, respectively.
The control flow graph CFG{z},{x ,y}c is displayed at the left hand side of Figure 2.

3.2 The PDG-based Information Flow Analysis by Wasserrab et al

PDGs are directed graphs that represent dependencies in imperative programs [4].
PDGs were extended to programs with various languages features like procedures
(e.g., [9]), concurrency (e.g., [3]), and objects (e.g., [8]). We recall the construc-
tion of PDGs from CFGs for the language from Section 2 based on the following
notions of data dependency and control dependency.

Definition 12. Let (N , E, def , use) be a CFG and n,n ′ ∈N . If x ∈ def (n) we
say that the definition of x at n reaches n ′ if there is a non-trivial path p from n
to n ′ such that x 6∈ def (n ′′) for every node n ′′ on p with n ′′ 6= n and n ′′ 6= n ′.

Node n ′ is data dependent on node n if there exists x ∈ Var such that
x ∈ def (n), x ∈ use(n ′), and the definition of x at n reaches n ′.

Intuitively, a node n ′ is data dependent on a node n if n ′ uses a variable that
has not been overwritten since being defined at n.

Example 4. Consider the CFG on the left hand side of Figure 2. The definition
of y at Node 3 reaches Node 5 because 〈3, 2, 5〉 is a non-trivial path and y 6∈
def (2). Hence, Node 5 is data dependent on Node 3 because y ∈ def (3), y 6∈
def (2), and y ∈ use(5). Note that Node 2 is also data dependent on Node 3, and
that Node 3 is data dependent on itself.
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Definition 13. Let (N , E, def , use) be a CFG. Node n ′ postdominates node n
if n 6= n ′ and every path from n to stop contains n ′.

Node n ′ is control dependent on node n if there is a non-trivial path p from n
to n ′ such that n ′ postdominates all nodes n ′′ 6∈ {n,n ′} on p and n ′ does not
postdominate n.

Intuitively, a node n ′ is control dependent on a node n if n represents the
innermost control condition that guards the execution of n ′.

Example 5. Consider again the CFG in Figure 2. Node 5 postdominates Node 1
because Node 5 is on all paths from Node 1 to Node stop. Hence, Node 5 is not
control dependent on Node 1. Nodes 2, 3, and 4 do not postdominate Node 1.
Node 3 is not control dependent on Node 1 because Node 3 does not postdom-
inate Node 2 and all paths from Node 1 to Node 3 contain Node 2. However,
Node 3 is control dependent on Node 2. Moreover, Nodes 2 and 4 are control
dependent on Node 1 because 〈1, 2〉 and 〈1, 4〉 are non-trivial paths in the CFG.

Definition 14. Let CFG =(N , E, def , use) be a control flow graph. The directed
graph (N ′, E′) is the PDG of CFG (denoted with PDG(CFG)) if N ′ = N and
(n,n ′) ∈ E′ if and only if n ′ is data dependent or control dependent on n in CFG.

We use the usual graphical representation for displaying PDGs, depicting
Node n with an ellipse labeled with n, edges that reflect control dependency
with solid arrows, and edges that reflect data dependency with dashed arrows.
Moreover, we do not display nodes that have neither in- nor outgoing edges.

Example 6. The PDG of the CFG at the left of Figure 2 is displayed right of the
CFG. Node stop is not displayed because it has neither in- nor outgoing edges.

The PDG-based information flow analysis from Wasserrab et al [27] for a
command c is based on the PDG of CFGH,L

c (cf. Definition 11).

Definition 15. The command c ∈ Com is accepted by the PDG-based analysis
if and only if there is no path from in to out in PDG(CFGH ,L

c ).

Example 7. For command c and domain assignment dom from Example 1 the
graph PDG(CFGH ,L

c ) is displayed at the right of Figure 2. It contains a path
from Node in to Node out , (e.g., the path 〈in, 3, out〉). In consequence, c is not
accepted by the PDG-based analysis.

Theorem 2. Commands accepted by the PDG-based analysis are noninterferent.

The theorem follows from [27, Theorem 8].

4 Comparing the Type- and the PDG-based Analysis

While both the type-based analysis from Section 2 and the PDG-based analy-
sis from Section 3 are sound, both analyses are also incomplete. I.e., for both
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analyses there are programs that are noninterferent (according to Definition 1),
but that are not accepted by the analysis. A complete analysis is impossible,
because the noninterference property is undecidable (this can be proved in a
standard way by showing that the decidability of the property would imply the
decidability of the halting problem for the language under consideration [21]).
This raises the question if one of the two analyses is more precise than the other.
In this section, we answer this question. As an intermediate step, we establish a
relation between the two analyses:

Lemma 1. Let c ∈ Com, y ∈ Var, and Γ be an environment. Let Γ ′ be the
unique environment such that l ` Γ {c} Γ ′ is derivable in the type system from
Section 2. Moreover, let X be the set of all x ∈ Var such that there exists a path
from in to out in PDG(CFG{x},{y}c ). Then Γ ′(y) =

⊔
x∈X Γ (x ) holds.

Proof sketch. We argue that the following more general statement holds: If the
judgment pc ` Γ {c}Γ ′ is derivable, then the equality Γ ′(y) =

⊔
x∈X Γ (x ) holds

if there is no path from start to out in PDG(CFG{},{y}c ) that contains a node
n 6∈ {start , out}, and the equality Γ ′(y) = pc t

(⊔
x∈X Γ (x )

)
holds if there is

such a path. Intuitively, the absence of a path from start to out with more than
two nodes guarantees that y is not changed during any execution of c, while y
might be changed during an execution of c if a path from start to out with
more than two nodes exists. Hence, the security domain pc (determined by the
type-based analysis as an upper bound on the security level of all information on
which it depends whether c is executed) is included in the formula for Γ ′(y) only
if such a path exists in the PDG. Formally, the more general statement is proven
by induction on the structure of the command c. A detailed proof is available
on the authors’ website. Lemma 1 follows from this more general statement by
instantiating pc with the security level l . ut

Lemma 1 is the key to establishing the following theorem that relates the pre-
cision of the type-based analysis to the precision of the PDG-based analysis,
showing that the analyses have exactly the same precision.

Theorem 3. A command c ∈ Com is accepted by the type-based analysis if and
only if it is accepted by the PDG-based analysis.

Proof. Our proof is by contraposition. Let Γ (x ) = dom(x ) for all x ∈ Var , and
let Γ ′ be the unique environment such that l ` Γ {c} Γ ′ is derivable in the
type system from Section 2. If c is not accepted by the type-based analysis then
dom(y) = l and Γ ′(y) = h for some y ∈Var . Hence, by Lemma 1 there exists

x ∈Var with dom(x ) = h and a path 〈in, . . . , out〉 in PDG(CFG{x},{y}c ). Hence,
there is a path 〈in, . . . , out〉 in PDG(CFGH ,L

c ). Thus, c is not accepted by
the PDG-based analysis. If c is not accepted by the PDG-based analysis then
there is a path 〈in, . . . , out〉 in PDG(CFGH ,L

c ). But then there exist variables
x , y with dom(x ) = h and dom(y) = l such that there is a path 〈in, . . . , out〉 in

PDG(CFG{x},{y}c ). Hence, by Lemma 1, Γ ′(y) = h. Since dom(y) = l it follows
that Γ ′(y) 6v dom(y). Thus, c is not accepted by the type-based analysis. ut
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Theorem 3 shows that the information flow analyses from [11] and [27] have
exactly the same precision. More generally this means that, despite their con-
ceptual simplicity, type-based information flow analyses need not be less precise
than PDG-based information flow analyses.

Given that both analyses have equal precision, the choice of an information
flow analysis should be motivated by other aspects. For instance, if a program’s
environment is subject to modifications, one might desire a compositional anal-
ysis, and, hence, choose a type-based analysis. On the other hand, if a program
is not accepted by the analyses one could use the PDG-based analysis to localize
the source of potential information leakage by inspecting the path in the PDG
that leads to the rejection of the program.

Beyond clarifying the connection between type-based and PDG-based in-
formation flow analyses, Theorem 3 also provides a bridge that can be used
to transfer concepts from the one tradition of information flow analysis to the
other. In the following section, we exploit this bridge to transfer the concept of
rely-guarantee-style reasoning for the analysis of multi-threaded programs from
type-based to PDG-based information flow analysis.

5 Information Flow Analysis of Multi-threaded Programs

Multi-threaded programs may exhibit subtle information leaks that do not occur
in single-threaded programs. Such a leak is illustrated by the following example.

Example 8. Consider two threads with shared memory that execute commands
c1 = if (x) then skip; skip else skip fi; y :=True and c2 = skip; skip; y :=False, respec-
tively, and that are run under a Round-Robin scheduler that selects them al-
ternately starting with the first thread and rescheduling after each execution
step. If initially x = True then c1 assigns True to y after c2 assigns False to y .
Otherwise, c1 assigns True to y prior to the assignment to y in c2. I.e., the initial
value of x is copied into y . Such leaks are also known as internal timing leaks.

Many type-based analyses detect such leaks (for instance, [23,22,28,15]). Re-
garding PDG-based analyses, this is only the case for a recently proposed anal-
ysis [5]. However, this analysis has serious limitations: It forbids publicly ob-
servable nondeterminism, and it is not compositional (cf. Section 6 for a more
detailed comparison). This motivated us to choose this domain for illustrating
how the connection between type-based and PDG-based information flow anal-
ysis (from Section 4) can be exploited to transfer ideas from the one analysis
style to the other. More concretely, we show how rely-guarantee-style reasoning
can be transferred from a type-based to a PDG-based information flow analysis.
The outcome is a sound PDG-based information flow analysis for multi-threaded
programs that is superior to the one in [5] in the sense that it supports publicly
observable nondeterminism.
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5.1 A Type-based Analysis for Multi-threaded Programs

We consider multi-threaded programs executing a fixed number of threads that
interact via shared memory, i.e., configurations have the form 〈(c1, . . . , ck),mem〉
where the commands ci model the threads and mem models the shared memory.

In the following, we recall the type-based analysis from [15] that exploits
rely-guarantee-style reasoning, where typing rules for single threads exploit as-
sumptions about when and how variables might be accessed by other threads. As-
sumptions are modeled by modes in the set Mod = {asm-noread , asm-nowrite},
where asm-noread and asm-nowrite are interpreted as the assumption that no
other thread reads and writes a given variable, respectively.3 The language for
commands from Section 2 is extended as follows with a notation for specifying
when one starts and stops making assumptions for a thread, respectively:

ann ::= acq(m, x )
∣∣ rel(m, x ) c ::= . . .

∣∣ //ann// c,

where m ∈ Mod and x ∈ Var . The annotations //acq(m, x )// and //rel(m, x )//,
respectively, indicate that an assumption for x is acquired or released.

Typing judgments for commands have the form ` Λ {c} Λ′ where Λ,Λ′ :
Var ⇀ D are partial environments. Partial environments provide an upper bound
on the security level only for low variables for which a no-read and for high vari-
ables for which a no-write assumption is made, respectively. For other variables,
the typing rules ensure that dom(x ) is an upper bound on the security level of the
value of x . We write Λ〈x 〉 for the resulting upper bound (defined by Λ〈x 〉 = Λ(x )
if Λ is defined for x and by Λ〈x 〉 = dom(x ) otherwise). This reflects that (a) low
variables that might be read by other threads must not store secrets because the
secrets might be leaked in other threads (i.e., the upper bound for low variables
without no-read assumption must be l), and that (b) other threads might write
secrets into high variables without no-write assumption (and, hence, the upper
bound for high variables without no-write assumption cannot be l).

The security type system contains two typing rules for assignments:

Λ(x ) is defined
Λ′ = Λ[x 7→ (

⊔
y∈fv(e) Λ〈y〉)]

` Λ {x :=e} Λ′

(
⊔

y∈fv(e) Λ〈y〉) v dom(x )

Λ(x ) is not defined Λ′ = Λ

` Λ {x :=e} Λ′

The left typing rule is like in the type system from Section 2. The rule applies
if Λ is defined for the assigned variable. The right typing rule reflects that if Λ
is not defined for the assigned variable x then dom(x ) must remain an upper
bound on the security level of the value of x , and, hence, only expressions that
do not contain secret information may be assigned to x if dom(x ) = l .

A slightly simplified4 variant of the typing rule for conditionals is as follows:

` Λ {c1} Λ′ ` Λ {c2} Λ′ l =
⊔

x∈fv(e) Λ〈x 〉
` Λ {if (e) then c1 else c2 fi} Λ′

3 We omit the modes guar -noread and guar -nowrite representing guarantees from [15],
because they are irrelevant for the security type system.

4 The original rule from [15] permits that guards depend on secrets (i.e., h =⊔
x∈fv(e) Λ〈x 〉) if the branches are in a certain sense indistinguishable.
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In contrast to the corresponding typing rule in Section 2, the guard is required to
be low. This ensures that programs with leaks like in Example 8 are not typable.

For the complete set of typing rules we refer to [15].

Remark 1. In contrast to the type system in Section 2 the security level pc is
not considered here, because the typing rules ensure that control flow does not
depend on secrets (permitting some exceptions as indicated in Footnote 4).

Definition 16. A multi-threaded program consisting of commands c1, . . . , ck is
accepted by the type-based analysis for multi-threaded programs if the judgment
` Λ0 {ci} Λ′i is derivable for each i ∈ {1, . . . , k} for some Λ′i (where Λ0 is
undefined for all x ∈ Var) and the assumptions made are valid for the program.

Validity of assumptions is formalized in [15] by sound usage of modes, a
notion capturing that the assumptions made for single threads are satisfied in
any execution of the multi-threaded program. Theorem 6 in [15] ensures that
the type-based analysis for multi-threaded programs is sound with respect to
SIFUM-security, an information flow security property for multi-threaded pro-
grams. We refer the interested reader to [15] for the definitions of sound usage
of modes and of SIFUM-security.

5.2 A Novel PDG-based Analysis for Multi-threaded Programs

We define a PDG-based analysis for multi-threaded programs by transferring
rely-guarantee-style reasoning from the type-based analysis (Definition 16) to
PDGs. To this end, we augment the set of edges of the program dependency graph
PDG(CFGH,L

c ), obtaining a novel program dependency graph PDG ||(CFGH,L
c ).

Using this graph, the resulting analysis for multi-threaded programs is as follows:

Definition 17. A multi-threaded program consisting of commands c1, . . . , ck
is accepted by the PDG-based analysis for multi-threaded programs if there
is no path from in to out in PDG ||(CFGH,L

ci ) for each i ∈ {1, . . . , k} and the
assumptions made are valid for the program.

It follows from Definition 17 that the analysis is compositional with respect
to the parallel composition of threads.

We now define the graph PDG ||(CFGH,L
c ), where the additional edges in

PDG ||(CFGH,L
c ) model dependencies for nodes in and out that result from the

concurrent execution of threads that respect the assumptions made for c.

Definition 18. If command c is not of the form //ann//c′ we say that c does
not acquire m ∈ Mod for x ∈ Var and that c does not release m ∈ Mod for
x ∈ Var. Moreover, if an arbitrary command c does not release m for x then
the command //acq(x ,m)//c acquires m for x , and if c does not acquire m for x
then the command //rel(x ,m)//c releases m for x .

For c ∈ Com we define the function modesc : (Nc × Mod) → P(Var) by
x ∈modesc(n,m) if and only if for all paths p =〈start , . . . ,n〉 in CFGc there is
a node n ′ on p such that c[n ′] acquires m for x , and if n ′′ follows n ′ on p then
c[n ′′] does not release m for x .
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Definition 19. Let c ∈Com. Then PDG ||(CFGH,L
c ) = (N , E∪E′) for (N , E) =

PDG(CFGH,L
c ) and (n,n ′)∈E′ if and only if one of the following holds:

1. n = in and there exist a variable x ∈ H ∩ usec(n ′), a node n ′′ ∈ N with
x 6∈ modesc(n ′′, asm-nowrite), and a path p from n ′′ to n ′ in CFGH,L

c with
x 6∈ defc(n ′′′) for every node n ′′′ on p with n ′′′ 6= n ′′ and n ′′′ 6= n ′,

2. n ′ = out and there exist a variable x ∈ L ∩ defc(n), a node n ′′ ∈ N with
x 6∈ modesc(n ′′, asm-noread), and a path p from n to n ′′ in CFGH,L

c such
that x 6∈ defc(n ′′′) for every node n ′′′ on p with n ′′′ 6= n and n ′′′ 6= n ′′, or

3. n ∈ {1, . . . , |c|}, c[n] ∈ Exp, and n ′ = out.

The edges defined in Items 1 and 2 are derived from the typing rules for assign-
ments: The edge (in,n) in Item 1, where n uses a high variable whose value might
have been written by another thread, captures that the high variable might con-
tain secrets when being used at n. The edge (n, out) in Item 2, where n defines
a low variable whose value might be eventually read by another thread, ensures
that the command is rejected if the definition at n might depend on secret input
(because then there is a path from in to n). The edges defined in Item 3 are
derived from the typing rule for conditionals: If the guard represented by Node
n depends on secrets (i.e., there is a path from in to n) then the command is
rejected because together with the edge (n, out) there is a path from in to out .

Example 9. Consider the following command c where the security domains of
variables are dom(x ) = l and dom(y) = h:

//acq(asm-noread , x )//; x :=y ; x :=0; //rel(asm-noread , x )//

Then PDG ||(CFGH,L
c ) = PDG(CFGH,L

c ), and c is accepted by the PDG-
based analysis for multi-threaded programs. Let furthermore c′ = x :=y ; x :=0.
Then PDG ||(CFGH,L

c′ ) 6= PDG(CFGH,L
c ), because the graph PDG ||(CFGH,L

c′ )
contains an edge from the node representing x :=y to Node out (due to Item 2

in Definition 19). Hence, c′ is not accepted, because PDG ||(CFGH,L
c′ ) contains a

path from Node in to Node out via the node representing the assignment x :=y .
Not accepting c′ is crucial for soundness because another thread executing

x ′:=x could copy the intermediate secret value of x into a public variable x ′.

Theorem 4. If a multi-threaded program is accepted by the PDG-based analy-
sis for multi-threaded programs then the program is accepted by the type-based
analysis for multi-threaded programs.

The proof is by contradiction; it exploits the connection between PDG-based
and type-based analysis stated in Lemma 1. A detailed proof is available on the
authors’ website.5

Soundness of the PDG-based analysis follows directly from Theorem 4 and
the soundness of the type-based analysis (see [15, Theorem 6]).

5 The reverse direction of Theorem 4 does not hold, because the type-based analysis
for multi-threaded programs classifies some programs with secret control conditions
as secure that are not classified as secure by our PDG-based analysis.



Types vs. PDGs in Information Flow Analysis 119

6 Related Work

We focus on related work covering flow-sensitive type-based analysis, PDG-based
analysis for concurrent programs, and connections between analysis techniques.
For an overview on language-based information flow security we refer to [21].

Flow-sensitivity of type-based analyses. In contrast to PDG-based information
flow analyses, many type-based information flow analyses are not flow-sensitive.
The first flow-sensitive type-based information flow analysis is due to Hunt and
Sands [11]. Based on the idea of flow-sensitive security types from [11], Man-
tel, Sands, and Sudbrock developed the first sound flow-sensitive security type
system for concurrent programs [15].

PDG-based analyses for concurrent programs. Hammer [7] presents a PDG-based
analysis for concurrent Java programs, where edges between the PDGs of the
individual threads are added following the extension of PDGs to concurrent
programs from [12]. However, there is no soundness result. In fact, since the
construction of PDGs from [12] does not capture dependencies between nodes in
the PDG that result from internal timing (cf. Example 8), the resulting PDG-
based information flow analysis fails to detect some information leaks.

Giffhorn and Snelting [5] present a PDG-based information flow analysis for
multi-threaded programs that does not accept programs with internal timing
leaks. The analysis enforces an information flow property defined in the tradi-
tion of observational determinism [20,28], and, therefore, does not accept any
programs that have nondeterministic public output. Hence, the analysis forbids
useful nondeterminism, which occurs, for instance, when multiple threads ap-
pend entries to the same log file. Our novel analysis (from Section 5) permits
concurrent writes to public variables and, hence, accepts secure programs that
are not accepted by the analysis from [5]. Moreover, in contrast to the analysis
from [5] our novel analysis is compositional with respect to the parallel compo-
sition of threads.

Connections between different analysis techniques. Hunt and Sands show in [11]
that the program logic from [1] is in fact equivalent to the type-based analysis
from [11]. Rehof and Fähndrich [19] exploit concepts from PDGs (the computa-
tion of so-called summary edges for programs with procedures) in a type-based
flow analysis. In this article, we go a step further by establishing and exploiting
a formal connection between a type-based and a PDG-based analysis.

7 Conclusion

While security type systems are established as analysis technique for information
flow security, information flow analyses based on program dependency graphs
(PDGs) have only recently received increased attention. In this article, we in-
vestigated the relationship between these two alternative approaches.

As a main result, we showed that the precision of a prominent type-based in-
formation flow analysis is not only roughly similar to the precision of a prominent
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PDG-based analysis, but that the precision is in fact exactly the same. More-
over, our result provides a bridge for transferring techniques and ideas from one
tradition of information flow analysis to the other. This is an interesting possibil-
ity because there are other relevant attributes than the precision of an analysis
(e.g., efficiency and the availability of tools). We showed at the example of rely-
guarantee-style information flow analysis for multi-threaded programs that this
bridge is suitable to facilitate learning by one sub-community from the other.

We hope that our results clarify the relationship between the two approaches.
The established relationship could be used as a basis for communication between
the sub-communities to learn from each other and to pursue joint efforts to make
semantically justified information flow analysis more practical. For instance, our
results give hope that results on controlling declassification with security type
systems can be used to develop semantic foundations for PDG-based analyses
that permit declassification. Though there are PDG-based analyses that permit
declassification (e.g., [8]), all of them yet lack a soundness result, and, hence, it
is unclear which noninterference-like property they certify.
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