
Choosing a Formalism for
Secure Coding: FSM vs. LTL
Technical Report TUD-CS-2013-0180
June 2013

Markus Aderhold
Alexander Gebhardt
Heiko Mantel

Modeling and Analysis of
Information Systems

1 Introduction

Many secure coding guidelines give advice on how to avoid certain code patterns that may lead to
vulnerabilities [Sea08, LMS+11]. Since the informal description of patterns as well as the given advices
differ in their level of abstraction and precision, the process of recognizing the pattern and following the
corresponding advice is usually not straightforward and thus error-prone.

In order to get reference points for secure coding that are more precise than informal descriptions
of guidelines, formal descriptions in Linear Temporal Logic (LTL) were proposed in [ACMS10]. For-
malizations in LTL specify the required causal and temporal relations between program actions that are
relevant to secure coding guidelines. For the analysis of C code, finite state machines (FSM) were used
in [CDW04, TYHD09] as a formalism to capture temporal safety properties.

In this report, we consider the choice of an appropriate formalism for secure coding. On the one hand,
the chosen formalism shall be sufficiently expressive so that it can capture the property that is described
by a given secure coding guideline. On the other hand, the formalism shall be easy to understand so that
formalized secure coding guidelines reach a large audience (e.g., software auditors, software develop-
ers, and developers of analysis tools). For instance, formulas in LTL can express both safety properties
and liveness properties, while FSMs as used in [CDW04, TYHD09] only capture safety properties. How-
ever, FSMs have the advantage of a convenient graphical notation that visualizes the respective safety
properties.

The purpose of this report is to provide some help in choosing a formalism for secure coding. Specif-
ically, we present formalizations of five secure coding guidelines from [ACMS10] as FSMs and contrast
them with the existing formalizations in LTL. Furthermore, we present formalizations of four secure cod-
ing guidelines from [Sea08] as FSMs and in LTL. All of these formalizations serve as examples in order
to identify advantages and disadvantages of the formalisms in the context of secure coding.

In Section 2, we define FSMs as a formalism for specifying secure coding guidelines. Section 3 presents
formalizations of secure coding guidelines from [ACMS10] as FSMs. In Section 4, we describe formaliza-
tions of secure coding guidelines from [Sea08] as FSMs and in LTL. Section 5 discusses some advantages
and disadvantages of the formalisms based on the exemplary formalizations.

1

2 Formalism

This section describes our system model, the use of nondeterministic finite state machines (FSMs) to
specify temporal safety properties, and a graphical notation for FSMs.

2.1 Modeling the Execution of Programs

As in [ACMS10], we describe the possible program executions via a so-called Labeled Transition System.
Labels are expressions which describe the execution steps that occur during a program run. Each execu-
tion step is associated with one label describing the command that is executed (the concrete label) and
may additionally be associated with one or more labels describing the execution step on a more abstract
level (the abstract labels). The following definitions coincide with those from [ACMS10]:

Definition 2.1 (Labeled transition systems). A labeled transition system (LTS) is a tuple (S, S0, L,→)
consisting of a set of program states S, a set of initial program states S0 ⊆ S, a set of labels L, and a labeled
transition relation → ⊆ S × (P (L) \ {;})× S (where P (L) denotes the powerset of L and ; denotes the
empty set).

Intuitively, program states describe the current execution state of a program (e.g., the current heap,
the current frame stack, and the pointer to the next program instruction for a Java program), and initial
program states describe those execution states in which program executions may start. The labels are
expressions that provide information about execution steps either on a concrete or on a more abstract
level. The transition relation → describes the possible execution steps. If (s, L′, s′) ∈ →, this means
that there is an execution step from program state s to program state s′, and that this execution step is
described by the labels in L′. Note that L′ ⊆ L is a nonempty set of labels, because each execution step is
annotated with at least one label, but it can also be annotated with more than one label (one concrete
label and zero or more abstract labels).

Labeled transition systems describe all possible execution sequences in the following sense:

Definition 2.2 (Execution sequences). An execution sequence of the labeled transition system (S, S0,→, L)
is a pair σ =

�

(si)i∈N, (Li)i∈N
�

of infinite sequences, written as

s0
L0−→ s1

L1−→ . . .

in the following, where s0, s1, . . . ∈ S are program states and L0, L1, . . . ∈ P (L) are sets of labels such that
the following two conditions are satisfied:

1. For each i ∈ {0,1, . . .},
(i) either (si, Li, si+1) ∈ → (note that Li 6= ; holds in this case)

(ii) or Li = ;, si+1 = si, and there do not exist L′i ∈ P (L) \ {;} and s′i ∈ S such that (si, L′i , s′i) ∈ →.

2. For each i ∈ {0,1, . . .}, if Li = ;, then L j = ; for each j > i.

Execution sequences either represent non-terminating program executions or terminating program ex-
ecutions. For non-terminating program executions, all the label sets Li are nonempty and each transition

si
Li−→ si+1 is specified by the transition relation of the labeled transition system (compare condition 1.i).

For terminating program executions, there is some index i such that the transition relation → does not
specify any possible transition from the state si. In this case, all subsequent states in the execution
sequence are equal to si, and all subsequent label sets are empty (compare conditions 1.ii and 2).

2

2.2 Specification of Temporal Safety Properties with FSMs

Before using nondeterministic finite state machines (FSMs) to specify temporal safety properties, we
briefly recapitulate the standard definition of nondeterministic finite state machines [HU79]:

Definition 2.3 (FSM). A nondeterministic finite state machine (FSM) is a 5-tuple M = (Q,Σ,δ, q0, F)
where Q is a finite set of states, Σ is a finite set of input symbols, δ : Q×Σ→P (Q) is a so-called transition
function, q0 ∈Q is the initial state, and F ⊆Q the set of final states.

The transition function δ is extended to sets of states and strings (i.e., finite sequences) of input symbols
with ε being the empty string by:

bδ :P (Q)×Σ∗→P (Q)
bδ(Q′,ε) :=Q′

bδ(Q′, wa) := {q ∈Q | ∃q′ ∈ bδ(Q′, w). q ∈ δ(q′, a)}

The set L (M) of strings w ∈ Σ∗ that are accepted by M is defined as

L (M) :=
�

w ∈ Σ∗ | bδ({q0}, w)∩ F 6= ;
	

.

In addition to the standard definition, we require the transition function δ to specify at least one
possible successor state q′ ∈Q for each q ∈Q and for each s ∈ Σ:

∀q ∈Q. ∀s ∈ Σ. ∃q′ ∈Q. q′ ∈ δ(q, s)

In order to specify a temporal safety property with an FSM, we will use the labels from the labeled
transition system that describes the possible program executions as input symbols of the FSM: Σ := L.
The set F of final states will represent the states where the temporal safety property has been violated,
so F can be considered as the set of error states.

Intuitively, a labeled transition system satisfies the temporal safety property given by an FSM if it is
impossible to reach an error state with any execution sequence.

Definition 2.4 (Satisfaction of temporal safety properties). Let σ = s0
L0−→ s1

L1−→ . . . be an execution
sequence of some labeled transition system (S, S0, L,→). Furthermore, let M = (Q,Σ,δ, q0, F) an FSM such
that Σ = L. We say that the execution sequence σ satisfies the temporal safety property given by M if
and only if ε /∈ L (M) and for each n ∈ N and for each w = w0 . . . wn ∈ Σ∗: If wi ∈ Li for each i ∈
{0, . . . , n}, then w /∈ L (M).

2.3 Graphical Notation

In this section, we explain the relation between a graphical notation of an FSM with the elements from
the tuple (Q,Σ,δ, q0, F).

As in the exemplary FSM depicted in Figure 2.1, we represent states with nodes in the graphical
notation (depicted as circles). The nodes are labeled with elements from Q. For each state in Q, there
exists one node in the graph. All and only the final states are double-circled. Directed edges between
circles, denoted by lines, are labeled with s() for elements s ∈ Σ and represent transitions from δ: Each
edge (with one exception), starts at some node and ends with arrowhead at either the same or at another
node. For each edge in the graph labeled with s(), starting at a node labeled with q, and ending at a node
labeled with q′, it holds that δ(q, s) = q′. An edge without a label and without a start node is directed at
the initial node.

In the following, we introduce three abbreviations to the graphical notation concerning the edges.

3

s0 Err
a()

a()

Figure 2.1: Standard notation

Implicit self-loops
The first abbreviation is the omission of edges for transitions that retain the state, i.e., self-loops. Omit-

ting self-loops is a common technique for minimizing the graphical representation of an FSM. Formally,
if δ(q, s) = {q}, then the self-loop on state q for input symbol s is omitted in the graphical notation.
Conversely, if for some state q and some input symbol s there is no outgoing edge from q labeled with s,
then δ(q, s) = {q}. For example, in Figure 2.2 all self-loops of the FSM in Figure 2.1 are made implicit.

s0 Err
a()

Figure 2.2: Notation that omits implicit self-loops

Parameterized labels
The second abbreviation is the use of parameterized labels. A parameterized label can be instantiated

by replacing all parameter positions in the label with actual values. An instance of a parameterized
label can either be an abstract or a concrete label, while neither abstract nor concrete labels can be
parameterized. An FSM using parameterized labels is called a parametric FSM and is depicted as in
Figure 2.3.

s0 Err
a(x)

Figure 2.3: Labels parametric in variable x

Given a mapping that associates each parameter x with a value v x , an instance of a parametric FSM is
obtained from the parametric FSM by replacing each occurrence of a parameter x with the corresponding
value v x . For example, the FSM in Figure 2.4 is an instance of the parametric FSM in Figure 2.3. A
temporal safety property expressed by a parametric FSM is satisfied if and only if for each mapping from
parameters to values the property is satisfied by the corresponding instance of the FSM.

Grouped labels
The third and last abbreviation are grouped labels. Where multiple edges e1 to em in the graph have

the same start node q and end node q′, these edges can be grouped by using a single edge. This edge
starts at node q, ends at node q′, and is labeled with a comma separated list of all and only the labels

4

s0 Err
a(1)

Figure 2.4: Instantiated labels

from the edges e1 to en. For instance, the FSM in Figure 2.5 differs from the FSM in Figure 2.2 in that
there is an additional edge from s0 to Err labeled with b().

s0 Err
a(), b()

Figure 2.5: Grouped labels

5

3 Secure Coding Guidelines for Java

This section presents formalizations for five secure coding guidelines as FSMs. For each guideline, we
select the same secure coding aspect from the guideline as in [ACMS10].

3.1 Validate User Input

The validation of user input shall help to prevent that user input influences the behavior of a program in
an unintended manner. The following aspect addresses the validation in the security critical context of
system commands.

Selected secure coding aspect (as in [ACMS10, p. 12]):
“Validate every input thoroughly before passing it to system commands.”

Precise formulation of the selected secure coding aspect (as in [ACMS10, p. 12]):
Whenever program input is passed to a system command or used for the computation of values that

are passed to a system command, this program input must be validated before passing it to a system
command or using it in computations.

Formalization of the selected secure coding aspect:
The labeled transition system (S, S0,→, L) satisfies the selected secure coding aspect, if and only if it

satisfies the temporal safety property given by the FSM in Figure 3.1 for each v ∈Mem.

s0 s1 Err

validate(v)

inputForSysCmd(v)

useInComputation(v),
passToSysCmd(v)

(S, S0, L,→) |=�(inputForSysCmd(v)−→
((¬useInComputation(v)∧¬passToSysCmd(v)) U validate(v)))

Figure 3.1: Validate User Input

The FSM uses the same labels as the LTL formula from [ACMS10, p. 12 f], which is given for compar-
ison purposes below the FSM in Figure 3.1. The labels are parametric in an element v from the set Mem
that denotes locations in the main memory. A description of all labels used in this formalization is given
in Table 3.1.

The FSM represents the selected aspect as follows: It has an initial state s0, where no input has been
processed yet. As soon as input for a system command is written into memory location v , a transition
is made into state s1, where a validation of v is required before its use in a computation or before it
is passed to a system command. A validation makes v safe to be processed, which is modeled by a
transition into the initial state. Using v in a computation or passing v to a system command is allowed
in the initial state unless further input for system commands is written into v . Whenever v is used in a

6

Label Description
inputForSysCmd(v) Label indicating that input data is written into memory location v that

(later on) will be directly passed to a system command or will be used
for the computation of a parameter passed to a system command

useInComputation(v) Label indicating that memory location v is used in a computation, except
for computations that are performed to validate v

passToSysCmd(v) Label indicating that the value in memory location v is passed as a pa-
rameter to a system command

validate(v) Label indicating that the value of memory location v is validated suc-
cessfully

Table 3.1: Labels used in the formalization of the secure coding aspect (as in [ACMS10])

computation or passed to system command before validation, a transition is made into a state Err, which
models a violation of the secure coding aspect.

3.2 Sanitize the Output

Whereas the validation of user input prevents certain attacks against the program or host, the sanitization
of output shall help to prevent malicious users from attacking benign users via malformed browser
output, for example.

Selected secure coding aspect (as in [ACMS10, p. 17 f]):
“Whenever possible sanitize all output data of untrusted sources (i.e., user input) before it is sent to

the browser.”

Precise formulation of the selected secure coding aspect:
Values that contain data from untrusted sources (i.e., user input) or that have been computed based

on such data must be sanitized before they are sent to the browser.

Formalization of the selected secure coding aspect:
The labeled transition system (S, S0,→, L) satisfies the selected secure coding aspect, if and only if it

satisfies the temporal safety property given by the FSM in Figure 3.2 for each v ∈Mem.

s0 s1 Err

sanitize(v), overwrite(v)

writeUntrustedDataTo(v)

sendToBrowser(v)

(S, S0, L,→) |=�(writeUntrustedDataTo(v)−→
((¬sendToBrowser(v)) U (sanitize(v)∨ overwrite(v))))

Figure 3.2: Sanitize the Output

7

Label Description
writeUntrustedDataTo(v) Label indicating that the value of memory location v is changed, such

that the new value depends on untrusted data (except when storing the
result of a sanitization method in v)

sendToBrowser(v) Label indicating that the value of the memory location v is sent to the
browser

sanitize(v) Label indicating that the sanitization of the value in memory location v
has completed

overwrite(v) Label indicating that a value not depending on data from untrusted
sources is written into the memory location v

Table 3.2: Labels used in the formalization of the secure coding aspect (as in [ACMS10])

The FSM uses the same labels as the LTL formula from [ACMS10, p. 17 f] which is given for comparison
purposes below the FSM. The labels are parametric in an element v from the set Mem, that denotes
locations in the main memory. A description of the labels is given in Table 3.2.

The structure of the FSM in Figure 3.2 is similar to the FSM in Figure 3.1. In the initial state s0, the
content of a memory location v is assumed to be safe to be sent to a browser. As soon as untrusted data
is written into v , a transition is made into an intermediate state s1, where v must not be sent anymore
to a browser. If the content of v is sanitized, i.e., modified such that it fits the syntactical security
requirements of the browser, or overwritten with trusted data in this state, the FSM transits back into its
initial state. Sending the untrusted content of v in the intermediate state to a browser is regarded as a
violation of the secure coding aspect and thus leads into the state Err.

3.3 Secure the Internal Flow

SQL injection attacks exploit the construction of SQL queries with user data that is not being validated
or sanitized. Stored procedures shall prevent SQL injection attacks, if used properly; assigning the
untrusted input to parameters in a stored procedure or prepared statement does not affect the logic of
the query directly unless the procedure or statement itself parses its parameters as SQL. The guideline
“Secure the internal Flow” focuses on the direct effects.

Selected secure coding aspect:
“Make sure that user input is only bound to parameters in the prepared statement. It must not affect

the logic of the query.” [ACMS10, p. 22 f]

Precise formulation of the selected secure coding aspect (as in [ACMS10, p. 22 f]):
User input or data that has been derived from user input must never be used in the construction of

Prepared Statements. Such data may only be bound to parameters in Prepared Statements.

Formalization of the selected secure coding aspect:
The labeled transition system (S, S0,→, L) satisfies the selected secure coding aspect, if and only if it

satisfies the temporal safety property given by the FSM in Figure 3.3 for each v ∈Mem.

The FSM uses the same labels as the LTL formula from [ACMS10, p. 22 f], which is given for compar-
ison purposes below the FSM. The labels are parametric in an element v from the set Mem that denotes
locations in the main memory. A description of the labels is given in Table 3.3.

8

s0 s1 Err

overwrite(v)

writeInputTo(v)

constructPreparedStatementWith(v)

(S, S0, L,→) |=�(writeInputTo(v)−→
((¬constructPreparedStatementWith(v)) U overwrite(v)))

Figure 3.3: Secure the Internal Flow

Label Description
writeInputTo(v) Label indicating that the value of memory location v is

changed and now depends on input data
constructPreparedStatementWith(v) Label indicating that memory location v is used as parame-

ter for a method constructing a Prepared Statement
overwrite(v) Label indicating that the value of the memory location v is

changed and now does not depend on input data

Table 3.3: Labels used in the formalization of the secure coding aspect (as in [ACMS10])

Again, the depicted FSM in Figure 3.3 is similar to the preceding ones. In the initial state s0, memory
location v contains non-input data. As input is written into v , a transition is made into state s1, where
the content of v is not safe to be used in the construction of a prepared statement. Overwriting the
content of v with non-input data leads the FSM back into its initial state, where a statement may be
constructed using v . If a prepared statement is constructed in state s1, however, the state Err is reached,
which constitutes a violation of the guideline.

3.4 Secure the Login and Authentication Procedures

Almost all modern password policies limit the number of failed login attempts to a system in order to
prevent brute force attacks or guessing of passwords. The following guideline aims to enforce such a
policy while paying attention to the problem of denial of service attacks enabled by the policy itself.

Selected secure coding aspect (as in [ACMS10, p. 27 f]):
“Limit login attempts to 5 tries per account. After 5 failed login attempts lock the account for at least

10 min. If this happens again, lock the account for longer periods of time. Do not use a sleep or delay
method (after the unsuccessful login attempts) to “lock” the account, this will provide DoS vulnerability.”

Precise formulation of the selected secure coding aspect (as in [ACMS10, p. 27 f]):
When five failed login attempts have been performed for an account, then that account must be locked

for at least ten minutes. Whenever another five failed login attempts have been performed for the same
account, it must be locked for a longer period of time than the last time it had been locked. When
counting the failed login attempts, do not consider those login attempts that fail just because the account
is currently locked.

9

Formalization of the selected secure coding aspect:
The labeled transition system (S, S0,→, L) satisfies the selected secure coding aspect, if and only if it

satisfies the temporal safety property given by the FSM in Figure 3.4 for each a ∈ Accounts.

s5 s4 s3 s2 s1 s0 Err
fail(a) fail(a) fail(a) fail(a) fail(a) fail(a),

other(a)

lock(a)

(S, S0, L,→) |= P(a, 5)∧�(lock(a)−→©P(a, 5))

where P(a, 0) = lock(a)
and P(a, n) = ((¬fail(a)) U ©P(a, n− 1)) for n> 0

Figure 3.4: Secure the Login and Authentication Procedures

The labels for both the FSM and the LTL formula are parametric in an element a from the set Accounts
denoting accounts in the system. A description of the labels is given in Table 3.4.

In the initial state s5 of the FSM, five login attempts are left for account a. Whenever a login attempt
for account a fails, the number of left login attempts for this account is decreased by one, which is
modeled by a transition into a state with an index decreased by one, thus equaling the new number
of left login attempts. After five failed login attempts, the state s0 is reached, where any action not
locking the account immediately leads into the accepting state denoting a violation of the secure coding
guideline. If in s0 account a is being locked, the number of login attempts is reset to five and the internal
lock time is increased for the next round.

Note that the graphical notation of the FSM omits the implicit self-loops for actions lock(a) and other(a)
in states s1, . . . , s5; e.g., locking the account in any of these states is permitted and would leave the
number of remaining login attempts unchanged. In state s0, however, the transition with label other(a)
into state Err ensures that there is no implicit self-loop for action other(a); thus the next execution step
must lock the account in order to satisfy the secure coding guideline.

The LTL formula P(a, n) specifies that after n failed login attempts for account a, a will be locked. For
n = 0 this is expressed by requiring the event lock(a) to occur. For n > 0 either no login attempt for a
fails anymore or a login attempt for a fails and the amount of left login attempts is decreased by one,
which is specified by P(a, n−1). The right part of the conjunction in the first line of the formula ensures
that whenever an account a is locked after 5 failed login attempts, the number of left login attempts is
reset to five. From the definition of the label lock(a), P(a, n) also specifies that the lock time for account
a is increased with every execution of the steps corresponding to the label.

Comparing these two formalizations, we observe that the LTL formalization succinctly describes the
decreasing number of login attempts via the recursive definition. The FSM is relatively large and less

10

Label Description
fail(a) Label indicating a failed login attempt for account a that is not caused

by the account being locked.
lock(a) Label indicating that the account a is being locked for some time asso-

ciated with a, which initially is 10 minutes and is increased with every
further lock event. Sleep or delay methods must not be annotated with
this label.

other(a) Label indicating an action that does not lock the account a and that is
no failed login attempt for account a

Table 3.4: Labels used in the formalization of the secure coding aspect

succinct, but still manageable due to the obvious regularity in the transitions from s5 to s0 via s4, s3, s2,
and s1.

Omitting the self-loops for states s1, . . . , s5 reduces the size of the graphical representation of the FSM,
but it is important to keep the existence of implicit self-loops in mind. For example, in state s0 no
self-loop is desirable, because the secure coding aspect requires the account to be locked after the fifth
failed login attempt. Thus it is important to specify the transitions labeled with fail(a) and other(a) from
state s0 to Err. We suspect that the convention of leaving self-loops implicit (though customary as also
in [CDW04, TYHD09], for example), might lead to errors in FSM formalizations, because one might
forget to keep the existence of self-loops in mind.

Difference to the original formalization:
The original formalization in [ACMS10, p. 27 f] includes the lock time constraint in the form of an

additional parameter k in a label lock(a, k). The introduction of this parameter enables reasoning about
the lock time, e.g., that it is actually increased with every lock or that it initially is ten minutes for
an account. However the corresponding LTL formula for the aspect makes use of first order constructs
in terms of quantification over parameters of the propositional formulae, which to our knowledge is
unsupported yet by available tools for program analysis. For readability reasons we left the parameter k
out of our formalization. An additional dedicated FSM using labels for initialization and increment of
the value of k could be specified to reason about the time constraints.

Possible modification of the original aspect:
Locking an account after a fixed amount of failed login attempts, no matter how many attempts

succeeded in between, might be a suitable behavior for some scenarios; e.g., for authentication attempts
with electronic cash cards. In some other application scenarios, however, it might be desirable to let
a successful login reset the number of left failed login attempts; for example, this concerns scenarios
where authentication credentials are frequently mixed up. Such a scenario is not covered by the current
formulation of the aspect. In the following part, the corresponding idea from [ACMS10] is adapted and
applied to the FSM in Figure 3.4.

Precise formulation of the modified secure coding aspect (as in [ACMS10, p. 27 f]):
When five failed login attempts have been performed for an account and no successful login attempt

has been performed for that account between those failed attempts, then that account must be locked for
at least ten minutes. Whenever five failed login attempts occur again without an intermediate successful
login attempt for that account, the account must be locked for a longer period of time than the last time
it had been locked. When counting the failed login attempts, do not consider those login attempts that
fail just because the account is currently locked.

11

Label Description
fail(a) Label indicating a failed login attempt for account a that is not caused

by the account being locked.
lock(a) Label indicating that the account a is being locked for some time associ-

ated with a, which is 10 minutes for the first lock and is increased with
every further lock. Sleep or delay methods must not be annotated with
this label.

succ(a) Label indicating a successful login attempt for account a. The method
annotated with this label shall reset the lock time for account a to 10
minutes.

other(a) Label indicating an action that does not lock the account a and is neither
a failed nor a successful login attempt for account a.

Table 3.5: Labels used in the formalization of the secure coding aspect

Formalization of the modified secure coding aspect:
The labeled transition system (S, S0,→, L) satisfies the modified secure coding aspect, if and only if it

satisfies the temporal safety property given by the FSM in Figure 3.5 for each a ∈ Accounts.

s5 s4 s3 s2 s1 s0 Err
fail(a) fail(a) fail(a) fail(a) fail(a) other(a),

fail(a),
succ(a)

succ(a) succ(a) succ(a) succ(a) lock(a)

(S, S0, L,→) |= P ′(a, 5)∧�((lock(a)∨ succ(a))−→©P ′(a, 5))

where P ′(a, 0) = lock(a)
and P ′(a, n) = ((¬fail(a)) U ((©P ′(a, n− 1))∨ succ(a))) for n> 0

Figure 3.5: Secure the Login and Authentication Procedures

In the formalization of the modified secure coding aspect, we introduce the label succ(a) that describes
the execution steps corresponding to a successful login attempt. All labels utilized in this formalization
and their description are given in Table 3.5.

Like in Figure 3.4, for the FSM in Figure 3.5 a sequence of five failed login attempts will be counted
down and leads from state s5 to state s0. In state s0 locking the account will reset the number of left login
tries to 5 and lead back to state s5. Successful logins in states s5 to s1 now reset the number of login tries
for an account, which is modeled by transitions into the initial state s5 labeled with succ(a). As before,
if any execution step not associated with locking account a is made in state s0, a transition is made into
the final state Err and a violation of the secure coding guideline is detected.

12

Further modification of the original aspect:
While the original secure coding aspect emphasizes the importance of early locking and increasing

lock times to limit the success of password guessing or brute force attacks on the authentication, it does
not specify when not to lock. A system that locks an account after each failed or successful login satisfies
the original secure coding aspect, as does a system that keeps all accounts locked continuously. Both
these systems are secure regarding their login policy, but their usability is questionable.

In order to improve the secure coding aspect in this respect, we add the following requirement to the
precise formulation: “Do not lock account a before five login attempts for a failed since its creation or
since the last lock.” The corresponding formalization in Figure 3.6 introduces five new edges into the
FSM: From each of the states s5 to s1 an edge labeled with lock(a) now leads into the error state in order
to forbid early locking.

s5 s4 s3 s2 s1 s0 Err
fail(a) fail(a) fail(a) fail(a) fail(a)

succ(a) succ(a) succ(a) succ(a) lock(a)

lock(a) lock(a) lock(a) lock(a) lock(a) other(a),
fail(a),
succ(a)

(S, S0, L,→) |= P ′′(a, 5)∧�((lock(a)∨ succ(a))−→©P ′′(a, 5))

where P ′′(a, 0) = lock(a) and
P ′′(a, n) = (¬(fail(a)∨ lock(a))) U ((fail(a)∧©P ′′(a, n− 1))∨ succ(a)) for n> 0

Figure 3.6: Secure the Login and Authentication Procedures

3.5 Maintain Session Control

This guideline addresses the common problem of impersonation through session hijacking in communi-
cations between servers and clients.

Selected secure coding aspect (as in [ACMS10, p. 32 f]):
“All user-related session IDs must be immediately invalidated on the server side in the following
situations:

• Logout

• Timeout

• Occurrence of a condition that indicates that the user is misbehaving (e.g., trying to access
information by suspicious input, or trying to enter a script, etc)”

Precise formulation of the selected secure coding aspect (as in [ACMS10, p. 32 f]):
Session IDs must be invalidated immediately under the following circumstances:

• Whenever the user logs out, the session IDs related to that user must be immediately invalidated.

13

• Whenever the session of a user ID has timed out, the session IDs related to that user ID must be
immediately invalidated.

• If a condition indicates that a user with a certain user ID misbehaves, the session IDs related to
that user ID must be immediately invalidated.

Formalization of the selected secure coding aspect:
The labeled transition system (S, S0,→, L) satisfies the selected secure coding aspect, if and only if it

satisfies the temporal safety property given by the FSM in Figure 3.7 for each u ∈ UserIDs.

s0 s1 Err

invalidate(u)

logout(u), timeout(u),
suspicious(u)

other(u)

(S, S0, L,→) |=�((logout(u)∨ timeout(u)∨ suspicious(u))−→©invalidate(u))

Figure 3.7: Maintain Session Control

The FSM uses the same labels as the LTL formula from [ACMS10, p. 32 f], which is given for com-
parison purposes below the FSM. The labels are parametric in an element u from the set UserIDs that
denotes user IDs in a system. A description of the labels is given in Table 3.6.

In the initial state s0 of the FSM in Figure 3.7, a user u may have valid session IDs and may obtain new
ones. Whenever the user logs out or a timeout occurs or suspicious behavior by the user is detected, the
state changes to s1. In this state, all session IDs of user u must be invalidated. The invalidation of user u’s
session IDs satisfies the requirement of the secure coding aspect, thus a transition is made into state s0
where the user with ID u may again log in and obtain new session IDs. However, since the invalidation in
state s1 must occur immediately, all other actions taken before a possible invalidation violate the secure
coding aspect and lead into the final state Err.

Note that the transition labeled with other(u) ensures that there is no implicit self-loop for action
other(u) in state s1 (cf. the analogous construction in Figure 3.4); i.e., the next execution step after a
logout, timeout, or detection of suspicious behavior must invalidate the session IDs of user u in order to
satisfy the secure coding aspect.

In [ACMS10] it is argued that the requirement of immediate invalidation is too strict, because it is
often necessary to perform some operations such as disconnection from bound services or databases
before invalidating the session ID. This point will be discussed in the following part with an improved
formulation of the aspect.

Improved precise formulation of the selected secure coding aspect (as in [ACMS10, p. 32 f]):
Provide specific methods for handling the logout of a user, the timeout of a session, and the detection

of suspicious behavior of a user. These methods shall be called when a user logs out, when a session
times out, or when suspicious user behavior is detected, respectively. Within these methods, the session
IDs of the corresponding user ID must be invalidated.

14

Label Description
logout(u) Label indicating that the user with ID u has logged out
timeout(u) Label indicating that the user with ID u has timed out
suspicious(u) Label indicating that suspicious behavior of the user with ID u has been

detected
invalidate(u) Label indicating that all session IDs for user ID u are being invalidated
other(u) Label indicating an event that is not related to invalidating session IDs

for user ID u

Table 3.6: Labels used in the formalization of the secure coding aspect (as in [ACMS10])

Improved formalization of the selected secure coding aspect:
The labeled transition system (S, S0,→, L) satisfies the selected secure coding aspect, if and only if it

satisfies the temporal safety property given by the FSM in Figure 3.8 for each u ∈ UserIDs.

s0 s2

s1

s3

Err

logout(u)

invalidate(u)

timeout(u)

invalidate(u)

suspicious(u)

invalidate(u)

logoutDone(u)

timeoutDone(u)

suspiciousDone(u)

(S, S0, L,→) |= �(logout(u)−→ ((¬logoutDone(u)) U invalidate(u)))∧
�(timeout(u)−→ ((¬timeoutDone(u)) U invalidate(u)))∧
�(suspicious(u)−→ ((¬suspiciousDone(u)) U invalidate(u)))

Figure 3.8: Maintain Session Control

The invalidation of session IDs shall occur within the method handling logout, timeout and the detec-
tion of suspicious behavior, thus it is necessary to introduce additional labels that mark the end of each
procedure. A description of the additional labels is given in Table 3.7.

In the initial state s0 of the FSM in Figure 3.8, an action that requires the session IDs to be invalidated
leads into one of the states s1, s2, or s3. Each of these states shows the system during the execution
of a logout-, a timeout- or a suspicious behavior handler. If in such a state the session IDs are being

15

Label Description
logoutDone(u) Label indicating that the method handling user u’s logout returned from

execution
timeoutDone(u) Label indicating that the method handling user u’s timeout returned

from execution
suspiciousDone(u) Label indicating that the method detecting user u’s suspicious behavior

returned from execution

Table 3.7: Labels used in the formalization of the secure coding aspect

invalidated, a transition is taken back into the initial state where the handler continues its tasks and the
secure coding guideline has not been violated for the user in question. If however a handler returns in
the states s1 to s3, the session IDs have not been invalidated within the handler and the secure coding
guideline is violated, leading to the state Err.

Difference to the original formalization:
If one of the handlers takes a possibly infinite amount of time to process the detected behavior, our

formalization may not detect a violation of the secure coding guideline. The FSM could reside in one
of the states s1 to s3 for an infinite amount of time, so the state Err would never be reached even if the
session ID is never invalidated.

Requiring the handlers to terminate is a liveness property, i.e., a property that states that “something
good will happen”, and cannot be expressed in the FSM formalism. Our formalization focuses on the part
of the secure coding aspect that constitutes a safety property: If a handler returns before the concerning
session IDs have been invalidated, this will be detected. We leave out the liveness part that states:
Whenever a handler is called, it will take only finite time until it returns. The LTL formula in [ACMS10,
p. 35] formalizes both the safety and the liveness property by requiring the execution steps associated
with the label invalidate(u) to be eventually executed, while our LTL formalization does not require this.

16

4 Secure Coding Guidelines for C

This section presents formalizations for four secure coding guidelines from [Sea08] as FSMs and in LTL.

4.1 CERT C STR31-C

This guideline shall help to prevent certain kinds of buffer overflows in C code.

Secure coding guideline (as in [Sea08, STR31-C]):
“Guarantee that storage for strings has sufficient space for character data and the null termina-

tor.”
“Copying data to a buffer that is not large enough to hold that data results in a buffer overflow. While

not limited to null-terminated byte strings (NTBS), buffer overflows often occur when manipulating
NTBS data. To prevent such errors, limit copies either through truncation or, preferably, ensure that
the destination is of sufficient size to hold the character data to be copied and the null-termination
character.”

Selected secure coding aspect:
“Limit copies either through truncation or, preferably, ensure that the destination is of sufficient size

to hold the byte string to be copied and the null-termination character.”

Precise formulation of the selected secure coding aspect:
Whenever a string of bytes is to be written into a buffer in memory, either truncate the string or adjust

the buffer size such that the string and a null-terminator fit into the buffer.

Formalization of the selected secure coding aspect:
The labeled transition system (S, S0,→, L) satisfies the selected secure coding aspect, if and only if it

satisfies the temporal safety property given by the FSM in Figure 4.1 for each s, b ∈Mem.

The selected aspect displays the core property formulated by the guideline. We distinguish two pos-
sibilities to limit copies: firstly, ensuring that the string and a null-terminator fit into the fixed size
destination buffer (which involves a check and possibly a truncation), and secondly, ensuring that the
buffer is large enough for the fixed-size string and a null-terminator (which involves a check and possibly
an increment of the buffer size).

The labels for both the FSM and the LTL formula are parametric in elements b and s from the set Mem
denoting locations in the main memory. The location s shall point to a null-terminated byte string. A
description of the labels is given in Table 4.1.

The FSM in Figure 4.1 formalizes the selected secure coding aspect as follows: In the initial state s0
two buffers b and s are accessible, where s contains a null-terminated byte string. In this state no checks
have been performed and it is unclear if the string in s fits into b. If in this state the string in s is copied
into b as described by the label writeStringToBuffer(s, b), the string might be truncated unintentionally or
might cause an overflow of buffer b, thus a potential violation of the secure coding guideline STR31-C is
signaled with a transition into the state Err. Whenever in state s0 the size of buffer b is checked, the size
of the string in s is checked, and the presence of enough space is ensured either by intentional truncation
of the string (ensureStringSize(s, b)) or by resizing the buffer (ensureBufferSize(s, b)), a transition is made
into state s1. In state s1, copying the string is allowed. If s is overwritten with an arbitrary null-terminated

17

s0

s1

Err

ensureBufferSize(s, b),
ensureStringSize(s, b)

overwrite(s),
resizeBuffer(b)

writeStringToBuffer(s, b)

(S, S0, L,→) |= P(s, b)∧�((overwrite(s)∨ resizeBuffer(b))−→ P(s, b))

where P(s, b) = ((¬writeStringToBuffer(s, b)) U (ensureBufferSize(s, b)∨ ensureStringSize(s, b)))

Figure 4.1: STR31-C

byte string or if b is resized, then copying the string is forbidden again, which is formalized by a transition
into state s0.

The LTL formula P(s, b) states that the string in buffer s must not be written into buffer b unless it
ensured that b is large enough to hold the string and a null-terminator or that the string to be written
is short enough to fit into b including a null-terminator. Thus the whole formula for the aspect states
that from the beginning on, no string must be written into a buffer without ensuring that the size of the
buffer suffices; the size of the buffer needs to be checked again before writing the string into b whenever
the string or the size of the buffer has changed.

Application scenario:
Consider the compliant code example attached to the secure coding guideline in Listing 4.1. The proce-

dure main copies the program name from its argument array using the strcpy() function. This function
copies a string including its null-terminator into a target buffer regardless of the target buffer’s size.

Label Description
ensureBufferSize(s, b) Label indicating that buffer b’s size is compared to byte string s’s size

and adjusted, if necessary, in order to be large enough to hold s and
a null-terminator

ensureStringSize(s, b) Label indicating that byte string s’s size is compared to buffer b’s size
and that s is trimmed, if necessary, in order to be small enough to fit
into b together with a null-terminator

overwrite(s) Label indicating that s is overwritten, unless this modification of s is
done to trim s, cf. ensureStringSize(s, b)

resizeBuffer(b) Label indicating that buffer b is being resized without changing its
memory location, unless resizing is done to accommodate string s,
cf. ensureBufferSize(s, b)

writeStringToBuffer(s, b) Label indicating that s is written into buffer b

Table 4.1: Labels used in the formalization of the secure coding aspect

18

1 in t main(in t argc , char * argv []) {
2 const char* const name = argv [0] ? argv [0] : " " ;
3 char *prog_name = (char *) malloc (s t r l e n (name) + 1) ;
4 i f (prog_name != NULL) {
5 s t r c p y (prog_name , name) ;
6 }
7 else {
8 /* F a i l e d to a l l o c a t e memory − r e c o v e r */
9 }

10 /* . . . */
11 }

Listing 4.1: Code example for STR31-C (as in [Sea08])

The target buffer *prog_name is allocated with enough space for the byte string in argv[0] and a null-
terminator in line 3. When in line 5 strcpy() is called, neither a buffer overflow nor an unintentional
truncation of the string occurs.

In line 3, the buffer is sized appropriately for the string, which would be associated with the label
ensureBufferSize(argv[0], prog_name). Line 5 is the copy process and thus associated with the label
writeStringToBuffer(argv[0], prog_name). Regarding the FSM in Figure 4.1, during lines 1 and 2, the
system resides in state s0. As soon as line 3 is executed, a transition is made into state s1, and further
copying of the string from argv[0] to prog_name is allowed. Thus the example code complies with the
property formalized by the FSM.

4.2 CERT C STR32-C

Strings in C can be regarded as a special case of arrays in memory. The previous guideline focuses on
writing beyond the buffer’s bounds, whereas STR32-C focuses on reading beyond the bounds of a string,
which might cause an error or an information leak.

Secure coding guideline (as in [Sea08, STR32-C]):
“Null-terminate byte strings as required”

“Null-terminated byte strings (NTBS) must contain a null-termination character at or before the ad-
dress of the last element of the array before they can be safely passed as arguments to standard string-
handling functions, such as strcpy() or strlen(). This is because these functions, as well as other string-
handling functions defined by C99 [ISO/IEC 9899:1999], depend on the existence of a null-termination
character to determine the length of a string. Similarly, NTBS must be null-terminated before iterat-
ing on a character array where the termination condition of the loop depends on the existence of a
null-termination character within the memory allocated for the string.”

Selected secure coding aspect:
“Null-terminated byte strings (NTBS) must contain a null-termination character at or before the ad-

dress of the last element of the array before they can be safely passed as arguments to standard string-
handling functions, such as strcpy() or strlen().”

Precise formulation of the selected secure coding aspect:
A reference to a buffer must not be passed to a string-handling function that relies on the content

of this buffer to be a null-terminated byte string, unless it is ensured that the content of the buffer is
null-terminated within the buffer’s bounds.

19

Formalization of the selected secure coding aspect:
The labeled transition system (S, S0,→, L) satisfies the selected secure coding aspect, if and only if it

satisfies the temporal safety property given by the FSM in Figure 4.2 for each b ∈Mem.

s0

s1

Err

checkNullTermination(b)overwrite(b)

passToNTBSFunction(b)

(S, S0, L,→) |= P(b)∧�(overwrite(b)−→ P(b))

where P(b) = ((¬passToNTBSFunction(b)) U checkNullTermination(b))

Figure 4.2: STR32-C

The labels for both the FSM and the LTL formula are parametric in an element b from the set Mem
denoting a location in the main memory. The buffer b may contain arbitrary character data and is not
known to be null-terminated. A description of the labels is given in Table 4.2.

The FSM in Figure 4.2 describes the secure coding aspect formally. In the initial state s0, a buffer b
for byte strings is accessible. When b’s content is ensured to be null-terminated, a transition is taken
to state s1, where passing b to a string-handling function is allowed. If the content of b is at least
partially overwritten, a transition is taken to state s0. If b is passed to a string-handling function without
ensuring that b is null-terminated beforehand, a transition is taken to state Err, because the secure
coding guideline is violated in this case.

The LTL formula P(b) describes that a reference to the buffer b must not be passed to a string-handling
function that relies on its parameter to be null-terminated unless it is ensured that the string in b is actu-
ally null-terminated within the buffer’s bounds. The whole formula for the aspect states that whenever
the content of buffer b is at least partially overwritten, its null-termination has to be ensured before b to
a string-handling function that relies on the null-termination.

Application scenario:
Consider the compliant code example attached to the secure coding guideline in Listing 4.2. The given

code copies the string from buffer source into buffer ntbs using the function strcpy(). In line 1, a string
is written into newly allocated memory. Such an assignment ensures the null-termination of the character
sequence within the array bounds and thus can be annotated with the label checkNullTermination(source).
In line 4 a check occurs if the allocation proceeded without errors. A comparison between the size of
the string in buffer source and the size of the target buffer is done using the function strlen() to
calculate the string-length. The behavior of this call depends on the null-termination property of its
argument, i.e., source and thus can be labeled with passToNTBSFunction(source). The call to strcpy()

20

Label Description
checkNullTermination(b) Label indicating that the byte string in buffer b is verified to be null-

terminated within the buffer bounds
passToNTBSFunction(b) Label indicating that a reference to buffer b is passed to a string han-

dling function that relies on the buffer to contain a null-terminated
byte string

overwrite(b) Label indicating that the content of buffer b is at least partially over-
written, possibly affecting the null-termination property of the con-
tent

Table 4.2: Labels used in the formalization of the secure coding aspect

1 char * source = " 0123456789 abcdef " ;
2 char ntbs [NTBS_SIZE] ;
3 /* . . . */
4 i f (source) {
5 i f (s t r l e n (source) < s izeof (ntbs)) {
6 s t r c p y (ntbs , source) ;
7 }
8 else {
9 /* handle s t r i n g too l a r g e c o n d i t i o n */

10 }
11 }
12 else {
13 /* handle NULL s t r i n g c o n d i t i o n */
14 }

Listing 4.2: Code example for STR32-C (as in [Sea08])

in line 6 depends on the null-termination of its second parameter and thus can also be labeled with
passToNTBSFunction(source).

If the FSM is in the initial state s0 before executing line 1, line 1 then triggers a transition into state s1.
The call to strlen() in line 5 as well as the possibly following call to strcpy() are allowed. However,
the left-out code in line 3 (denoted by /* ... */ could possibly contain steps that could be labeled with
overwrite(source), which would then trigger a transition back into state s0 prior to line 5. In this case,
the execution of line 5 would violate the secure coding aspect. We regard this example as conditionally
compliant, depending on what is abstracted by the placeholder in line 3.

4.3 CERT C ENV31-C

The guideline ENV31-C addresses a problem specific to pointers in C. The process environment (contain-
ing variables and assigned values) is accessible through pointers. Since pointers point to static addresses
in memory and on some platforms the process environment is suspect to relocation, these pointers need
to be validated before the environment is accessed through them.

Secure coding guideline (as in [Sea08, ENV31-C]):
“Do not rely on an environment pointer following an operation that may invalidate it.”

“Some environments provide environment pointers that are valid when main() is called, but may be
invalided by operations that modify the environment. [. . .] modifying the environment by any means
may cause the environment memory to be reallocated with the result that [certain environment pointers]
now reference an incorrect location. ”

21

Selected secure coding aspect:
“Do not rely on an environment pointer following an operation that may invalidate it. [. . .] modifying

the environment by any means may cause the environment memory to be reallocated with the result that
[certain environment pointers] now reference an incorrect location.”

Precise formulation of the selected secure coding aspect:
Whenever the process environment has been modified, verify that a pointer that so far directly refer-

enced the environment still points to the current environment before accessing the environment via the
pointer.

Formalization of the selected secure coding aspect:
The labeled transition system (S, S0,→, L) satisfies the selected secure coding aspect, if and only if it

satisfies the temporal safety property given by the FSM in Figure 4.3 for each direct environment pointer
envp ∈Mem.

s0 s1 Err

modifyEnvironment

verifyPointer(envp)

accessEnvironment(envp)

(S, S0, L,→) |=�(modifyEnvironment−→
(¬accessEnvironment(envp) U verifyPointer(envp)))

Figure 4.3: ENV31-C

The labels for both the FSM and the LTL formula are parametric in an element envp from the set Mem
denoting locations in the main memory, where envp is a direct pointer to the process environment. A
description of the labels is given in Table 4.3.

The FSM in Figure 4.3 formalizes the selected secure coding aspect as follows: When in state s0 the
environment is modified, the FSM changes to state s1. In state s1 a direct environment pointer envp must
be verified to point to the current environment prior to accessing the environment through it. An access
to the environment in state s1 constitutes a violation of the secure coding guideline, thus the state is
changed to state Err. If in state s1 the pointer envp is verified as described, a transition is taken back into
state s1, where accessing the environment through envp is allowed.

The LTL formula states that whenever the environment is modified, it must not be accessed using
pointer envp unless envp is verified to point to the current environment.

Application scenario:
Consider the code example in Listing 4.3. In line 1 a pointer is directed to the current environment via

a call to getenv(). After checking the pointer in line 2, in line 6 the value of the variable is changed with
a call to setenv(). Depending on the size of the former value, this call may have caused the environment
to be relocated. In line 10 the old environment is accessed using a pointer acquired before the change
and thus possibly referencing invalid memory.

According to our definitions of the labels, lines 1 and 10 have to be annotated with the label
accessEnvironment(envp). Line 6 may cause a modification of the environment and thus is labeled
with modifyEnvironment. The modification in line 6 is done without providing an explicit pointer, so

22

Label Description
modifyEnvironment Label indicating that the environment is modified and thus possibly

relocated
accessEnvironment(envp) Label indicating that the environment copy referenced by envp is ac-

cessed.
verifyPointer(envp) Label indicating that envp is determined to point to the current envi-

ronment.

Table 4.3: Labels used in the formalization of the secure coding aspect

1 char* envp = getenv (varname) ;
2 i f (! envp){
3 /* Handle e r r o r */
4 }
5 /* . . . */
6 i f (se tenv (varname , " new_value " , 1) != 0) {
7 /* Handle e r r o r */
8 }
9 i f (envp){

10 p r i n t f ("new value i s : %s " , envp) ;
11 }

Listing 4.3: Code example for CERT C ENV31-C

line 6 need not be annotated with the label accessEnvironment(envp). In order to make the code comply
to the guideline, the reference could be updated using getenv(varname) right before line 9.

4.4 CERT C MEM32-C

During a program run, memory gets allocated and deallocated. Since memory allocation may fail,
guideline MEM32-C addresses two common errors in memory allocation: null-pointer dereference and
memory-leaks.

Secure coding guideline (as in [Sea08, MEM32-C]):
“Detect and handle memory allocation errors.”
“The return values for memory allocation routines indicate the failure or success of the allocation. Ac-

cording to C99, calloc(), malloc(), and realloc() return null pointers if the requested memory allocation
fails. [. . .] Failure to detect and properly handle memory allocation errors can lead to unpredictable
and unintended program behavior. As a result, it is necessary to check the final status of memory
management routines and handle errors appropriately [. . .].”

Selected secure coding aspect:
“Detect and handle memory allocation errors from calloc(), malloc(), and realloc().”

Precise formulation of the selected secure coding aspect:
When allocating memory with calloc(), malloc(), or realloc(), ensure that the pointer returned

by the functions is not null before dereferencing it.

Formalization of the selected secure coding aspect:
The labeled transition system (S, S0,→, L) satisfies the selected secure coding aspect, if and only if it

satisfies the temporal safety property given by the FSM in Figure 4.4 for each pointer p ∈Mem.

23

s0 s1 Err

allocateMemory(p)

checkNull(p)

usePointer(p)

(S, S0, L,→) |=�(allocateMemory(p)−→ (¬usePointer(p) U checkNull(p)))

Figure 4.4: MEM32-C

Label Description
allocateMemory(p) Label indicating that a memory allocation function is called and its

result is assigned to pointer p
usePointer(p) Label indicating that the pointer p is used; for example, in an address

calculation or by dereferencing it. Null-pointer checks for p must not
be annotated with this label.

checkNull(p) Label indicating that p is checked and found not to be a null-pointer.

Table 4.4: Labels used in the formalization of the secure coding aspect

The labels for both the FSM and the LTL formula in Figure 4.4 are parametric in an element p from
the set Mem denoting locations in the main memory, where p is a pointer. A description of the labels is
given in Table 4.4.

The FSM in Figure 4.4 formalizes the selected secure coding aspect as follows: When in state s0 a call
to a memory allocation function occurs, a transition is made into state s1. If in this state the returned
pointer is used (e.g., dereferenced), a transition is made into the state Err, because the secure coding
guideline is violated in this case. If in state s1 a null-check is performed on the pointer finding that the
allocation has been successful, a transition back into state s0 is triggered, where using the pointer is
allowed.

The LTL formula states that whenever a memory allocation function is called which can return a
null-pointer, the return value has to be checked before use.

Application scenario:
Consider the “Noncompliant Solution (malloc())” attached to the secure coding guideline in List-

ing 4.4. The function f() copies a string provided as a parameter into a newly allocated buffer in
memory. In line 2 the size of the target buffer is calculated and the buffer memory is allocated in line 3.
Line 3 needs to be labeled with allocateMemory(str). In line 4, the returned pointer is checked against
null, so line 4 needs to be labeled with checkNull(str). If the allocation has been successful, the control
flow will reach line 8, a call to strcpy(), to which label usePointer(str) applies. The same label applies
to the call of free() in line 10.

If the FSM is in the initial state s0 when reaching line 1, line 3 will trigger a transition into state s1.
Line 4 is labeled with checkNull(str) and thus triggers a transition back into state s0, where the call to
strcpy() in line 8 as well as the subsequent call to free() in line 10 are allowed. Depending on what
happens in line 9, this code example can be regarded as complying to the guideline. If in line 9 str is
assigned the return value of a realloc() call, for example, line 10 will be executed in state s1, which
leads to a transition to state Err.

24

1 in t f (char * i n p u t _ s t r i n g) {
2 s i z e _ t s i z e = s t r l e n (i n p u t _ s t r i n g) + 1;
3 char * s t r = (char *) malloc (s i z e) ;
4 i f (s t r == NULL) {
5 /* Handle a l l o c a t i o n f a i l u r e and r e tu rn e r r o r s t a t u s */
6 return −1;
7 }
8 s t r c p y (s t r , i n p u t _ s t r i n g) ;
9 /* . . . */

10 f r e e (s t r) ;
11 return 0;
12 }

Listing 4.4: Code example for CERT C MEM32-C (as in [Sea08])

25

5 Conclusion

In the preceding sections, we presented formalizations of secure coding guidelines both as finite state
machines (FSMs) and in Linear Temporal Logic (LTL). In the first three formalizations (Validate User
Input, Sanitize the Output, and Secure the Internal Flow), both the FSMs and the LTL formulas are quite
small; in particular, each of the FSMs has only three states. Thus the formalizations should be relatively
easy to grasp.

In the fourth formalization (Secure the Login and Authentication Procedures), the FSM has seven
states. While we believe that this size is still manageable, it already costs more effort to grasp the
FSM compared to the small FSMs from the first three formalizations. In particular, the size of the
FSM increases linearly with the number of login attempts that is permitted by the guideline, which is a
drawback of this formalization. The corresponding LTL formula is defined recursively with the advantage
that this leads to a constant size of the LTL formalization, i.e., the size of the formalization is independent
of the number of permitted login attempts. Moreover, the original formalization in LTL from [ACMS10]
has the advantage of also including concrete values how long an account shall be locked; these values are
missing in our FSM formalization, because the values may increase arbitrarily, which cannot be captured
concretely with finitely many states.

In the fifth formalization (Maintain Session Control), the formalization as an FSM only expresses the
safety part of the property, while in LTL, it is also possible to express the liveness part (termination of
methods). It is debatable whether the restriction to a safety property is significant in this case: For server
applications that handle requests from clients, it may be worthwhile to prove termination of all handlers
anyway, so formalizing termination for the specific handlers in this guideline might not be necessary.

The formalizations of the guidelines for C are of a similar nature as the first three formalizations for
Java: All of them are relatively small (three states in the FSM, and one or two lines for the LTL formulas),
and the properties captured by the FSMs are equivalent to the properties captured by the respective LTL
formulas.

Our subjective impression is that formalizations as FSMs are generally easier to grasp if there are only
few states. This is because the required temporal relation between program actions can be inferred by
just following the arrows in the graphical notation. For the LTL formula, knowledge about the temporal
operators is required to understand the formula. If the FSM has many states with a regular structure,
however, then LTL formulas become at least competitive, because the regular structure can be exhibited
by standard techniques from mathematics (e.g., recursion), whereas the FSMs might become unwieldy
due to an increasing number of states.

Overall, we did not find strong reasons that would favor one of the formalisms over the other one
in the context of secure coding. Subjectively, FSMs seem more convenient if the properties are safety
properties and can be expressed with few states. If one chooses FSMs as formalism with the convention of
leaving self-loops implicit, we strongly encourage checking for each state whether self-loops are justified
or whether they need to be excluded for some states. In the latter case, explicit transitions (typically to
an error state) need to be added as in our formalizations in Sections 3.4 and 3.5.

In order to make formalizations in FSMs more amenable, our examples suggest that an extended
notion of states would be desirable. For instance, in addition to the finite number of states, it would
be helpful to maintain additional state information such as the number of left login attempts or the
(arbitrarily large) number of time units that an account needs to remain locked. This would help to
reduce the number of states in FSMs and it would increase the expressiveness of the formalism.

26

Acknowledgments

This work was partially funded by the DFG (German Research Foundation) within the Computer Science
Action Program in the project FM-SecEng (MA 3326/1-2 and MA 3326/1-3).

27

Bibliography

[ACMS10] M. Aderhold, J. Cuéllar, H. Mantel, and H. Sudbrock. Exemplary Formalization of Secure
Coding Guidelines. Technical report TUD-CS-2010-0060, Technische Universität Darmstadt,
Germany, 2010.

[CDW04] Hao Chen, Drew Dean, and David Wagner. Model Checking One Million Lines of C Code. In
NDSS, 2004.

[HU79] John E. Hopcroft and Jeffry D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

[ISO99] ISO. ISO C Standard 1999. Technical report, 1999. ISO/IEC 9899:1999 draft.

[LMS+11] Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland, and David Svoboda. The
CERT Oracle Secure Coding Standard for Java. Addison-Wesley, 2011.

[Sea08] R. C. Seacord. The CERT C Secure Coding Standard. SEI Series in Software Engineering.
Addison-Wesley, 2008.

[TYHD09] Syrine Tlili, Xiaochun Yang, Rachid Hadjidj, and Mourad Debbabi. Verification of CERT
Secure Coding Rules: Case Studies. In OTM Conferences (2), pages 913–930, 2009.

28

	1 Introduction
	2 Formalism
	2.1 Modeling the Execution of Programs
	2.2 Specification of Temporal Safety Properties with FSMs
	2.3 Graphical Notation

	3 Secure Coding Guidelines for Java
	3.1 Validate User Input
	3.2 Sanitize the Output
	3.3 Secure the Internal Flow
	3.4 Secure the Login and Authentication Procedures
	3.5 Maintain Session Control

	4 Secure Coding Guidelines for C
	4.1 CERT C STR31-C
	4.2 CERT C STR32-C
	4.3 CERT C ENV31-C
	4.4 CERT C MEM32-C

	5 Conclusion

