
Poster: Security in Web-Based Workflows

Thomas Bauereiß∗, Abhishek Bichhawat†, Iulia Boloşteanu‡, Peter Faymonville†, Bernd Finkbeiner†, Deepak Garg‡,
Richard Gay¶, Sergey Grebenshchikov§, Christian Hammer†, Dieter Hutter∗, Ondřej Kunčar§, Peter Lammich§,

Heiko Mantel¶, Christian Müller§, Andrei Popescu§,‖, Markus Rabe†, Vineet Rajani‡,
Helmut Seidl§, Markus Tasch¶ and Leander Tentrup†

∗German Research Center for Artificial Intelligence (DFKI), Bremen, Germany, Email: {firstname.lastname}@dfki.de
†Saarland University, Germany, Email: {lastname}@cs.uni-saarland.de

‡MPI-SWS, Saarbrücken, Germany, Email: {iulia mb, dg, vrajani}@mpi-sws.org
§Technische Universität München, Germany, Email: {lastname}@in.tum.de

¶Technische Universität Darmstadt, Germany, Email: {lastname}@mais.informatik.tu-darmstadt.de
‖Dept. of Computer Science, School of Science and Technology, Middlesex University, UK, Email: a.popescu@mdx.ac.uk

I. MOTIVATION

Modern day web consists of a variety of complex workflow
applications (e.g., Amazon, Facebook, EasyChair, Microsoft
HealthVault, etc.), which involve processing of sensitive data
on both the server and the browser (client) side. These sys-
tems often deal with confidential information like credit card
details, medical and health-related data, location information
and sensitive documents. This makes them interesting targets
for a variety of attacks [1]–[6].

A main characteristic of the mentioned workflow/document
management systems are the complex requirements on their
flow of information: on the one hand, information is supposed
to flow quite intensively; on the other hand, certain information
needs to be restricted from various parties under various
circumstances. Even assuming the absence of “malicious”
parties, there is an intrinsic concern about the prevention or
detection of programming errors that can lead to exposure
of confidential information. For example, a conference’s
program committee members would surely sleep better if the
following type of behavior (exhibited by an older version
of the HotCRP conference management system) did not occur:

At Reliably Secure Software Systems (RS3) [7], we de-
velop semantically justified information-flow analysis and ver-
ification. The research landscape of information-flow system
security is divided between theoretical work proposing elab-
orate security notions and proof methods, and practical im-
plementations usually focusing on enforcing simpler, tractable
properties. As part of the RS3 reference scenarios, we aim to
bridge this gap between theory and practice. Here we present
our work on one of the three reference scenarios (whose
name gives this abstract’s title). We outline the techniques
we develop to a large extent independently within different
projects and our efforts to integrate these techniques into a
realistic end product: CoCon, a conference management sys-
tem with formally verified confidentiality guarantees. CoCon
was successfully used at a workshop [8] and is currently
evaluated for being used at a full-fledged conference [9].
Along with CoCon, we propose a reusable methodology for the
holistic (server and client) verification of web-based systems.

We highlight the need for server-client communication to
prevent illicit information flows on the client side, which might
otherwise leak sensitive data.

II. APPROACH

A typical web application broadly consists of two parts:
one that runs on the server and one that executes in a web
browser. Our approach to achieve holistic security guarantees
is the following (Figure 1):

A We develop the application logic of the server part (a
RESTful API) inside a theorem prover, mechanically
verify its information-flow security properties, and use
the code extraction feature of the theorem prover to
obtain executable code with the same properties.

B On the client side, a runtime monitor in the browser,
covering the JavaScript (JS) interpreter, the document
object model (DOM) and the event handling mech-
anism, provably enforces a variant of reactive non-
interference: secret data does not influence publicly
observable data during JS code execution.

C The client-side monitor needs to be aware of which
data flows are (il)legal. To this end, a security policy is
transmitted from the server along with HTML content.

Fig. 1: Overview of the approach



III. RESULTS AND ONGOING WORK

A. Server Verification

A conference management system has complex confiden-
tiality requirements, such as: “authors learn nothing about their
paper’s reviewer assignment beyond the number of reviewers,
and only in the notification phase.” We have designed a
parameterized security notion called Bounded Deducibility
(BD) security to capture such properties [6]: its parameters
are the sources, the sinks, a declassification bound (“beyond”
which information should not flow) and a declassification
trigger (“unless” which information should not flow)—the
last two expressed as arbitrary formulas in higher-order logic
(HOL). We have formalized both BD security and the core
of CoCon in the Isabelle interactive theorem prover [10] and
verified the desired confidentiality properties for the relevant
information sources: papers, reviews, reviewer assignment, etc.
Executable code in Scala was extracted automatically from the
verified specification. Together with a thin, stateless REST API
wrapper, this comprises the server side of CoCon. The user
interface is rendered in the browser using JS.

BD security is very general; e.g., it can capture the se-
curity properties expressible in MAKS [11]. This generality
copes seamlessly with complex information flow specifica-
tions, but of course comes with a price. First, allowing
policies parameterized by arbitrary HOL formulas is not a
priori compositional—finding correct (and manageable) com-
positionality conditions a la MAKS is ongoing work.

Second, generality is an impediment to automation: the
CoCon confidentiality properties were verified in Isabelle in
two person-months! Ongoing work focuses on streamlining
automation of BD-security proofs along the following route:
abstraction of an infinite system (unbounded in the number
of users and documents) into a finite system, followed by
model checking using HyperCTL* [12], a temporal logic able
to express a large subclass of BD security. To provide a
sound notion of abstraction (suitable for CoCon and for other
role-based document management systems) we investigate
property-specific cut-off results, which reduce the infinite-state
model-checking to a finite-state verification problem with a
fixed number of documents and users representing various
roles: e.g., one paper, one PC member, two authors. This would
allow us to decide BD-security of the original unbounded
system by model-checking the system of cut-off size.

B. Client Runtime Enforcement

On the client side, we provide monitored semantics for
the JS language obtained by instrumenting WebKit’s JS inter-
preter [13], which has been extended to cover the shared state
(DOM) and the event handling mechanism of the browser [14].
We have built and proved sound a formal model of the JS
interpreter, the DOM and the event handling loop of the
browser enhanced with checks for information flow control.
Currently, the security levels are produced based on the domain
from which the script is loaded and confidentiality guarantees
are provided in accordance with a reactive-noninterference-
like property for a termination insensitive attacker. Our mon-
itor is implemented in a fully functional real-world browser
(WebKit/Safari).

C. Server-Client Integration

As we have seen, server-side security is expressed by com-
plex policies involving declassification under certain conditions
and within certain bounds. The client side needs to preserve
these conditions and bounds, that is, act as a non-leaking
intermediary between the server and the end user. For instance,
the verified server ensures that the content of a paper’s review
is only delivered to users with suitable credentials. The client-
code monitor only needs to be aware of the specific sources
and sinks associated to the action of outputting the review
content, and make sure that nothing interferes on this route.
Fortunately, this property is BD-security agnostic, and in fact
can be captured by the notion of noninterference supported
by our client-side monitoring tool. Hence, the JS monitor
will know nothing about the specific properties enforced by
the server, but will receive from the server the source-sink
information in a special format along with the HTML content.

In summary, we advocate the loose integration of server-
side verification with client-side monitoring: the monitor only
receives from the server the information needed to preserve se-
curity. We hope our work is a first step towards a methodology
for end-to-end verification of web applications.

Acknowledgment. Work funded by the DFG under the
projects IFC4BC, MORES, SecDed, and SpAGAT in the pri-
ority program Reliably Secure Software Systems (SPP 1496).

REFERENCES

[1] D. Guarini, “Experts Say Facebook Leak Of 6 Million Users’
Data Might Be Bigger Than We Thought,” in The Huffington
Post, 2013, www.huffingtonpost.com/2013/06/27/facebook-leak-data
n 3510100.html.

[2] D. Jang, R. Jhala, S. Lerner, and H. Shacham, “An empirical study of
privacy-violating information flows in JavaScript web applications,” in
CCS, 2010, pp. 270–283.

[3] J. R. Mayer and J. C. Mitchell, “Third-party web tracking: Policy and
technology,” in Security and Privacy, 2012, pp. 413–427.

[4] R. C. Phan and H. Ling, “On the insecurity of the Microsoft Research
conference management tool (MSRCMT) system,” in CITA, 2005, pp.
75–79.

[5] M. Arapinis, S. Bursuc, and M. Ryan, “Privacy supporting cloud
computing: Confichair, a case study,” in POST, 2012, pp. 89–108.

[6] S. Kanav, P. Lammich, and A. Popescu, “A Conference Management
System with Verified Document Confidentiality,” in CAV, 2014, pp.
167–183.

[7] “Reliably Secure Software Systems (RS3),” 2014. [Online]. Available:
http://www.spp-rs3.de/

[8] “The Isabelle’14 Workshop (part of the Vienna Summer of Logic),”
2014, www.easychair.org/smart-program/VSL2014/Isabelle-index.html.

[9] “The 24th International Conference on Automated Reasoning with
Analytic Tableaux and Related Methods (TABLEAUX),” 2015, http:
//tableaux2015.ii.uni.wroc.pl/.

[10] T. Nipkow, M. Wenzel, and L. C. Paulson, Isabelle/HOL: A Proof
Assistant for Higher-order Logic. Springer-Verlag, 2002.

[11] H. Mantel, “On the composition of secure systems,” in Security and
Privacy, 2002, pp. 88 – 101.

[12] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe,
and C. Sánchez, “Temporal logics for hyperproperties,” in POST, 2014.

[13] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer, “Information flow
control in WebKit’s JavaScript bytecode,” in POST, 2014, pp. 159–178.

[14] V. Rajani, A. Bichhawat, D. Garg, and C. Hammer, “Fine-Grained
Information Flow Control for Event Handling and the DOM,” in CSF,
2015, To appear.

www.huffingtonpost.com/2013/06/27/facebook-leak-data_n_3510100.html
www.huffingtonpost.com/2013/06/27/facebook-leak-data_n_3510100.html
http://www.spp-rs3.de/
www.easychair.org/smart-program/VSL2014/Isabelle-index.html
http://tableaux2015.ii.uni.wroc.pl/
http://tableaux2015.ii.uni.wroc.pl/

	I Motivation
	II Approach
	III Results and Ongoing Work
	III-A Server Verification
	III-B Client Runtime Enforcement
	III-C Server-Client Integration

	References

