
Bounding the cache-side-channel leakage of
lattice-based signature schemes

using program semantics

Nina Bindel, Johannes Buchmann, Juliane Krämer,
Heiko Mantel, Johannes Schickel, and Alexandra Weber
Computer Science Department, TU Darmstadt, Germany

{nbindel, buchmann, jkraemer}@cdc.informatik.tu-darmstadt.de,
{mantel, schickel, weber}@mais.informatik.tu-darmstadt.de

Abstract. In contrast to classical signature schemes, such as RSA or
ECDSA signatures, the lattice-based signature scheme ring-TESLA is
expected to be resistant even against quantum adversaries. Due to a re-
cent key recovery from a lattice-based implementation, it becomes clear
that cache side channels are a serious threat for lattice-based implemen-
tations. In this article, we analyze an existing implementation of ring-
TESLA against cache side channels. To reduce the effort for manual code
inspection, we selectively employ automated program analysis. The leak-
age bounds we compute with program analysis are sound overapproxi-
mations of cache-side-channel leakage. We detect four cache-side-channel
vulnerabilities in the implementation of ring-TESLA. Since two vulnera-
bilities occur in implementations of techniques common to lattice-based
schemes, they are also interesting beyond ring-TESLA. Finally, we show
how the detected vulnerabilities can be mitigated effectively.

1 Introduction

The threat posed by quantum computers to current public-key cryptography is
known since Shor presented a quantum algorithm to solve the factorization and
the discrete logarithm problem in polynomial time [31]. How serious this threat
is taken became clear, e.g., when NIST announced to start a standardization
process for quantum-resistant schemes beginning in fall 2017 [23].

A promising quantum-resistant, also called post-quantum, candidate to sub-
stitute current public-key cryptography is lattice-based cryptography that en-
joys, among other things, strong security guarantees. However, security guaran-
tees can be undermined by side-channel vulnerabilities at the implementation
level. So far, this has happened mostly for implementations of classical cryptog-
raphy, e.g., [2,8,26,34]. However, first approaches to analyze lattice-based cryp-
tography with respect to side-channel attacks are already made, e.g., [25,27–29].
Recently, Groot Bruinderink et al. presented the first attack against a lattice-
based signature scheme and broke the scheme BLISS [15] using cache side chan-
nels of the Gaussian sampling during the signature generation [17]. Although
none of the existing lattice-based signature schemes (or their implementations)
claim to be secure against side channels, the attack in [17] raises the question how
lattice-based signature schemes can be implemented without cache-side-channel

Published in:
A. Imine et al. (Eds.): FPS 2017, LNCS 10723, pp. 225–241, 2018.
c© Springer International Publishing AG 2018
The final publication is available at Springer via
https://dx.doi.org/10.1007/978-3-319-75650-9_15

https://dx.doi.org/10.1007/978-3-319-75650-9_15

leakage. Furthermore, in the light of NIST’s standardization process, it is impor-
tant to analyze lattice-based implementations against cache side channels. The
scheme ring-TESLA [3], which is one of the most efficient lattice-based signa-
ture schemes, seems to be a good candidate to be implemented without cache
side channels: During signature generation, ring-TESLA does not use Gaussian
sampling, the sampling method that was exploited in the attack on BLISS in [17].

In this work, we use program analysis to compute upper bounds on the
cache-side-channel leakage of lattice-based implementations at the example of
the signature generation in ring-TESLA1. More concretely, we follow an ap-
proach based on information theory and reachability analysis, which is imple-
mented in CacheAudit [13]. Variants of CacheAudit were used to analyze mul-
tiple cryptographic implementations. CacheAudit 0.2 [13] was used to analyze
PolarSSL AES and the eSTREAM Profile 1 portfolio (HC-128, Rabbit, Salsa20,
and Sosemanuk). CacheAudit 0.2b was used in a systematic study of AES im-
plementations [21]. Another extension of CacheAudit 0.2 was used on modular
exponentiation from the libraries libgcrypt and OpenSSL [12]. In this article, we
extend CacheAudit 0.2b to CacheAudit 0.2c and apply it to ring-TESLA. This
is the first analysis of a post-quantum scheme using CacheAudit.

With CacheAudit 0.2c, we determine upper bounds on the leakage of a ring-
TESLA implementation for four attacker models. The bounds are sound, i.e.,
conservative with respect to the attacker models. We obtain upper bounds be-
tween 2.6bit and 51.6bit of potential cache-side-channel leakage. By inspecting
the code manually, we then identify vulnerable subroutines. We implement coun-
termeasures in the vulnerable subroutines to mitigate the cache-side-channel
leakage. Finally, we argue for the effectiveness of the mitigations. For two sub-
routines, the argument is completely automated by an analysis with CacheAudit
0.2c that reports 0bit leakage. According to our code inspection, a potential for
leakage in the signature computation remains, which is intrinsic to a method
called rejection sampling. Rejection sampling is used by design in the most ef-
ficient lattice-based signature schemes, such as [3, 6, 7, 15]. We argue that the
attacker cannot exploit this potential leakage to get information about the se-
cret key. Therefore, we consider our resulting implementation of ring-TESLA to
be resistant to the four types of cache-side-channel attacks we consider.

In summary, the contributions of this article are the following.
- We detect four cache-side-channel vulnerabilities in an existing implementa-
tion of ring-TESLA by code inspection, selectively supported by automatic
program analysis.

- To mitigate the detected vulnerabilities, we augment the ring-TESLA imple-
mentation by side-channel countermeasures. We argue for the effectiveness
of the countermeasures, again supported by selective program analysis.

1 We analyze an implementation of ring-TESLA despite an error that was detected
in its security reduction, since we expect that reductions given for its predecessor
TESLA [4, 6] will be applicable to ring-TESLA as well. Hence, we consider it to be
a good candidate for practical applications that require post-quantum signatures.

2

- To automate parts of our analysis of the unmitigated and mitigated ring-
TESLA implementation, we extend the analysis tool CacheAudit 0.2b to
CacheAudit 0.2c. More concretely, we implement support for ten additional
x86 instructions. The support can be used to analyze occurrences of these
instructions in x86 binaries and is not limited to ring-TESLA.

The detection and mitigation of vulnerabilities not only hardens the ring-TESLA
implementation against side-channel attacks. Multiple lattice-based primitives,
such as key exchange protocols, encryption, and signature schemes, use tech-
niques similar to the ones we analyze in ring-TESLA. In particular, rejection
sampling and sparse multiplication, where we find two of the potential vulnera-
bilities, occur in ring-TESLA, as well as in other lattice-based primitives. Hence,
our results also pave the way to make other lattice-based implementations more
trustworthy using program analysis.

2 Preliminaries

2.1 Notation
For an integer n ∈ N, we define q ∈ N to be a prime with q = 1 (mod 2n). We
denote the finite field Z/qZ with representatives in [−q/2, q/2]∩Z by Zq. Further-
more, we defineRq = Zq[x]/〈xn+1〉 andRq,[B] = {

∑n−1
i=0 aix

i | ai ∈ [−B,B]∩Z}
for B ∈ [0, q/2] ∩ Z and Bn,ω = {

∑n−1
i=0 aix

i | ai ∈ {−1, 0, 1},
∑n−1
i=0 |ai| = ω} for

ω ∈ [0, n]∩Z. All logarithms are in base 2. Let σ ∈ R>0. Let v be a polynomial,
then v ←σ R means sampling each coefficient of v with discrete Gaussian distri-
bution with standard deviation σ and mean 0 over Z. For a finite set S, we write
s←$ S to indicate that an element s is sampled uniformly at random from S.

2.2 Description of ring-TESLA
The signature scheme ring-TESLA is parametrized by n, ω, d, B, q, U , L, κ,
σ, by the hash function H : {0, 1}∗ → {0, 1}κ, and by the encoding function
F : {0, 1}κ → Bn,ω, see Figure 1. For detailed information about the system
parameters and the encoding function F , we refer to the original work [3]. For c ∈
Z, we denote by [c]L the unique representative of c in (−2d−1, 2d−1]∩Z such that
c = [c]L modulo 2d and define [·]M : Z→ Z, c 7→ (c− [c]L)/2

d. The operators [·]L
and [·]M correspond to the least or most significant bits, respectively. We extend
the definitions to polynomials by applying [·]L and [·]M to each coefficient.

The secret key sk is a tuple of three polynomials s, e1, e2 ←σ R, where the
entries of e1 and e2 have to be small enough for the scheme to be correct; the
public key pk consists of the polynomials a1, a2 ←$ Rq, b1 = a1s+ e1 (mod q),
and b2 = a2s + e2 (mod q). We depict the algorithm to generate a signature
(c′, z) for message µ in Figure 1. For verification of the signature (c′, z), it is
checked that z ∈ Rq,[B−U] and that c′ equals H([a1z − b1c]M , [a2z − b2c]M , µ),
with c = F (c′). The parameters proposed for ring-TESLA [3] are currently not
supported by a security reduction, since in November 2016 an error was detected
in the existing reduction. However, we expect that existing security reductions
for ring-TESLA’s predecessor TESLA [4, 6] are applicable to ring-TESLA as

3

Sign(µ; a1, a2, s, e1, e2) :

1 y ←$ Rq,[B]

2 v1 ← a1y (mod q)
3 v2 ← a2y (mod q)
4 c′ ← H

(
[v1]M , [v2]M , µ

)
5 c← F (c′)
6 z ← y + sc

7 w1 ← v1 − e1c (mod q)
8 w2 ← v2 − e2c (mod q)
9 If [w1]L , [w2]L /∈ Rq,[2d−L] ∨z 6∈ Rq,[B−U]:

10 Restart
11 Return (z, c′)

Fig. 1. Specification of the scheme ring-TESLA [3].

well2. Our modifications described in Section 3.1 and 4 do not depend on the
values of the parameters. Hence, our results can be applied to other parameter
sets of ring-TESLA as long as all values can be represented by the data type int.

2.3 Cache side channels

A cache is a small piece of memory that stores selected entries from main memory
for quick access by the Central Processing Unit (CPU). If the CPU accesses a
memory entry, the access can lead to a cache hit (if the entry is stored in the
cache) or to a cache miss (if the entry is not stored in the cache). Inside the
cache, the memory entries are stored in sections called cache lines. The sequence
of cache lines in a cache is partitioned into cache sets. In a k-way set-associative
cache, each cache set consists of k cache lines. A cache has a strategy for replacing
entries if the cache is full. A popular strategy is to replace the least recently used
entry (LRU strategy). Variants of LRU are used, e.g., in Intel processors [1].

A cache-side-channel vulnerability exists if the interaction between a program
and the cache depends on secret information, e.g., on a cryptographic key. In
this case, an attacker, observing aspects of this interaction, might learn secret
information. Attacks on cryptographic implementations have exploited secret-
dependence in the trace of cache hits and misses [2], the time taken for cache
hits and misses [8], and the final cache state of an execution [26].

2.4 Leakage bounds on cache side channels

In this article, we follow an approach based on information theory and reach-
ability analysis to compute upper bounds on the cache-side-channel leakage of
ring-TESLA (compiled to an x86 binary). Let Obsa be the set of possible ob-
servations an attacker a can make about a single run of an x86 binary. Then
log2 |Obsa| is an upper bound on the leakage of the binary with respect to min-
entropy [32] and Shannon entropy [30] by [19, Theorem 1] and [5, Theorem 5.3].

We consider the following attacker models a ∈ {acc, accd, trace, time} [13]:
2 Security properties of schemes over standard lattices (like TESLA) often hold for cor-
responding schemes over ideal lattices (like ring-TESLA), e.g., the security reduction
from [15] holds for the standard-lattice variant and for the ideal-lattice variant.

4

accd generalizes techniques like Evict+Time and Prime+Probe [26]. More
concretely, it captures attackers who can determine the number of memory
blocks in each cache set in the final cache state after a program execution.

acc captures attackers who can determine the position of each memory block in
the final cache state, inspired by techniques like Flush+Reload [33].

trace captures trace-based attackers who can determine the trace of cache hits
and misses that occur during one program execution. For instance, the trace-
based attack in [2] uses such traces of hits and misses.

time models time-based attackers who can observe the running time of one
program execution. Actual running times, as used in attacks like [8], are
modeled by the amount of cache hits and cache misses that occur.

The possible observations under an attacker model can be computed by reach-
ability analysis [13]. Let D be the set of the possible states during an execution
and let updD : D → D model the concrete semantics of x86 instructions, i.e.,
how the execution of instructions updates the state. The possible attacker ob-
servations depend on the states that an execution can reach according to updD.

Instead of implementing a reachability analysis from scratch, we extend the
existing tool CacheAudit 0.2b [21] – a version of CacheAudit [13]. CacheAudit
performs a reachability analysis using abstract interpretation [10].

For an abstract reachability analysis, an abstract domain D is defined, which
abstracts from details of the concrete execution that are not relevant for the
analysis. An abstraction function and a concretization function are defined to
convert states between D and D. To represent executions in the abstract domain
D, an abstract semantics updD : D → D is defined. To allow a transfer of
analysis results from the abstract domain to the concrete domain, the abstract
semantics updD should be sound with respect to the concrete semantics updD,
i.e., it should overapproximate the set of reachable states in an execution.

CacheAudit uses multiple abstract domains [13]. The position of a memory
block in the cache is abstracted by a set of possible positions. The values of
registers and memory entries are abstracted by sets of possible values.

3 Enabling the automatic analysis of ring-TESLA

3.1 Integer implementation of ring-TESLA

We obtained the implementation of ring-TESLA [3] from the authors. The orig-
inal implementation makes use of floating point operations. CacheAudit 0.2b,
however, cannot analyze floating point operations and can therefore not be used
to analyze the original implementation directly. An extension of CacheAudit
0.2b to support floating point instructions is out of scope for this article. Chang-
ing from floating point to integer operations does not affect the security of the
signature scheme, since all operations during the signature generation (cf. Fig-
ure 1) are over Zq. Moreover, it is a step towards a ring-TESLA implementation
for devices without floating point unit, e.g., embedded devices. We replaced all

5

Listing 3.1. Signature generation in crypto_sign
1 [...]
2 while (1) {
3 sample_y(vec_y);
4 poly_mul_fixed(vec_v1 , vec_y , poly_a1);
5 poly_mul_fixed(vec_v2 , vec_y , poly_a2);
6 random_oracle(c, vec_v1 , vec_v2 , m, mlen);
7 generate_c(pos_list , c);
8
9 computeEc(E1c , sk+sizeof(int)*PARAM_N , pos_list);

10 poly_sub(vec_v1 ,vec_v1 , E1c);
11 if (test_w(vec_v1) != 0){ continue; }
12
13 computeEc(E2c , sk+sizeof(int)*PARAM_N*2, pos_list);
14 poly_sub(vec_v2 ,vec_v2 , E2c);
15 if (test_w(vec_v2) != 0){ continue; }
16
17 computeEc(Sc, sk , pos_list);
18 poly_add(vec_y , vec_y , Sc);
19 if (test_rejection(vec_y) != 0){ continue; }
20
21 for(i=0; i<mlen; i++){ sm[i]=m[i]; }
22 *smlen = CRYPTO_BYTES + mlen;
23 compress_sig(sm+mlen , c, vec_y);
24 return 0; }

floating point instructions by integer instructions. The resulting implementation
can be analyzed with CacheAudit 0.2c (our extension of CacheAudit 0.2b).

Listing 3.1 shows the parts of the signature generation function crypto_sign
that are most important for our analysis, leaving out variable declarations.

3.2 Extension of CacheAudit 0.2b

The implementation of the scheme ring-TESLA is the first implementation of
post-quantum cryptography (and of lattice-based cryptography) that is analyzed
with CacheAudit. The implementation of ring-TESLA contains x86 instructions
that are not supported by CacheAudit 0.2b. We extended CacheAudit 0.2b to
CacheAudit 0.2c by adding support for these instructions.

To add support for additional x86 instructions to CacheAudit 0.2b, the un-
derlying abstract semantics updD must be extended. We implemented abstract
semantics for the instructions in the ring-TESLA binary that are unsupported in
CacheAudit 0.2b. Table 1 lists the opcodes (unique identifiers) and mnemonics
(human-readable descriptions) of the instructions that we added.3

We illustrate the process of extending updD at the example of the instruction
Bsr (Bit scan reverse), which takes the operands dst and src. The concrete
semantics updD of Bsr dst src is to compute the index of the most significant
bit that is set, i.e., non-zero, in src [11]. If such a bit exists in src, its index is
written to dst and the zero flag is set to 0. Otherwise, the zero flag is set to 1.

3 The instructions 0xF7/3 and 0x99 were integrated independently but concurrently
into a different version of CacheAudit by Doychev [14].

6

Type Opcodes (and mnemonics) of additional instructions

Arithmetic 13 (Adc), 1B (Sbb), 6B (Imul), F7/3 (Neg), F7/4 (Mul), F7/5 (Imul)
Bit string 0FBD (Bsr), 99 (Cdq)
Move 0F9C (Setl), 0F9F (Setg)

Table 1. Additional instructions for ring-TESLA in CacheAudit 0.2c

To support Bsr, we extended the parser, the internal instruction represen-
tation, and the abstract semantics in CacheAudit 0.2b. We extended the parser
to create a Bsr instruction in the internal representation when it encounters the
opcode 0FBD. We implemented the abstract semantics of Bsr by a function bsr
in the module valAD. The function consists of roughly 100 lines of OCaml code.

The function bsr operates on sets of potential values for dst and src and
returns a map from possible resulting status flag combinations to the resulting
values of registers and memory entries, for which the flag combinations can occur.
For each possible value of src, we proceed according to the formalization of Bsr
by Degenbaev [11]. We check whether the value consists only of zeros. In this
case, we add a binding (mapping a flag combination to register and memory
values) to the resulting map, in which the zero flag is 1 and the value of dst is
unchanged. Otherwise, we first compute the number of leading zeros by divide
and conquer, where we check recursively whether the first half of each non-zero
prefix contains bits that are set to 1. The index of the most significant set bit
is 64 minus the number of leading zeros. In this case, we add a binding to the
resulting map, in which the zero flag is 0 and dst contains the computed index.

Our implementation for the other instructions follows the same pattern of
parsing and abstract semantics, reusing existing support for similar instructions
(e.g., with the same mnemonic) in CacheAudit 0.2b when possible.

4 Detection of potential leakage
We use CacheAudit 0.2c to analyze the signature generation in ring-TESLA for
potential leakage of the secret key. We assume that the random number generator
is secure and analyze the remaining computation with a few adaptations that
allow a meaningful analysis with CacheAudit 0.2c. In the following, we provide
details on the configurations of CacheAudit and ring-TESLA, details of our
adaptations, and the results of our analysis.

Configuration of CacheAudit. We configure CacheAudit to use a 32kByte, 8-way
set-associative data cache with a cache line size of 64Byte. This cache configu-
ration is, e.g., used in the first level cache of the Intel Skylake architecture [18].
As the replacement strategy, we fix LRU.4

Configuration of ring-TESLA. We set the parameters of the ring-TESLA scheme
to PARAM_N = n = 512, PARAM_SIGMA = σ = 48, PARAM_Q = q = 33550337,
4 We also investigated FIFO (first in first out) replacement. The leakage bounds (on
the unmitigated implementation) are less than 10bit lower than under LRU.

7

Listing 4.1. Code of the subroutine generate_c
1 void generate_c(uint32_t *pos_list , unsigned char *c_bin){
2 int32_t c[PARAM_N]; int cnt =0; int pos; [...]
3 crypto_stream(r, R_LENGTH , nonce , c_bin);
4
5 for(i=0; i<PARAM_N; i++){ c[i] = 0;}
6 i=0;
7 while(i<PARAM_W){
8 pos = 0;
9 pos = (r[cnt]<<8) | (r[cnt +1]);

10 pos &= PARAM_N -1;
11 cnt += 2;
12 if (c[pos] == 0) { pos_list[i] = pos; c[pos]=1; i++; cnt++; } } }

Listing 4.2. Implementation of sample_y
1 // original
2 do {[...] if(val <0 x7fffff) mat_y[i++] = val -PARAM_B; [...]} while(i<PARAM_N);
3
4 // adapted
5 for (i = 0; i < PARAM_N; ++i) { mat_y[i] = *(int *)(0x4) - PARAM_B; }

PARAM_B = B = 4194303, PARAM_W = ω = 19, PARAM_D = d = 23, and PARAM_U
= U = 2848. We analyze the function crypto_sign from the file sign.c in
a 32-bit x86 binary of the ring-TESLA implementation. To this end, we use
a wrapper function that calls crypto_sign with an uninitialized secret key,
uninitialized message, uninitialized signature buffer, the message size 59 (as in
the ring-TESLA test suite), and a pointer to smlen to store the length of the
signed message including the signature. By leaving the secret key and message
uninitialized, we treat them as secret input in our analysis.5

We compiled the ring-TESLA sources and our wrapper with gcc version 4.8.4,
using -static for static linking, -m32 to target an Intel i386 CPU architecture,
and -fno-stack-protector to avoid insertion of code for overflow protection.

Adaptation of ring-TESLA. CacheAudit 0.2c does not support memory accesses
that could refer to any possible address, e.g., in the analysis of loop counters that
are advanced only under certain conditions and used to index array accesses. This
occurs in the ring-TESLA routines generate_c and sample_y.

Listing 4.1 shows the implementation of the function generate_c. It uses
rejection sampling to generate random values for the parameter array pos_list.
The loop counter is only increased if the generated value is not rejected. To allow
a meaningful analysis, we remove the check that rejects if the same value would
occur twice in pos_list (highlighted in gray). That is, we overapproximate the
possible values of pos_list. This manual overapproximation of the semantics
preserves the validity of analysis results because it cannot decrease the number
of possible attacker observations.
5 Treating the message as secret is overly conservative in a signature scenario. We
investigated the effect of fixing the message to all ’0’s and obtained the same leakage
bounds as for an uninitialized message in the unmitigated implementation.

8

Attacker model acc accd trace time

Leakage in bit 12.9 2.6 51.6 9.5
Table 2. Upper bounds on the leakage of the signature generation

Listing 4.2 shows our adaptation of a loop in sample_y. Again, the loop
counter advances only if the random number generated in the current iteration
satisfies certain criteria. To allow a meaningful analysis with CacheAudit 0.2c,
we remove the check of the random number and assign an uninitialized value that
overapproximates the possible range to each entry in mat_y. With this adapta-
tion, our analysis uses a safe overapproximation of the values that sample_y can
return, but assumes that sample_y itself, i.e., the random number generator,
does not have any cache-side-channel leakage.

The function crypto_sign contains a potentially infinite while loop, on which
CacheAudit 0.2b does not terminate within reasonable time. To make the analy-
sis of this loop feasible, we fix the number of iterations while keeping the source
code in the loop body unchanged. More concretely, we fixed the number of iter-
ations to two to account for the effect of more than one iteration.

Note that we use the modifications described in this section only for the
initial automatic analysis of ring-TESLA. In the detailed manual inspection in
Section 5, we use the unmodified integer implementation.

Analysis Results. We obtain the leakage bounds listed in Table 2.6 The bounds
lie between 2.6bit and 51.6bit for the different attacker models. One run of the
adapted ring-TESLA leaks at most 2.6bit to attackers under accd, at most 9.5bit
to attackers under time, at most 12.9bit to attackers under acc, and at most
51.6bit to attackers under trace. In the remainder of this article we investigate
whether these non-zero leakage bounds are substantiated by concrete threats
and how the leakage bounds can be reduced by mitigating concrete threats.

5 Manual analysis of the potential leakage

We manually analyze the signature generation crypto_sign to check if the po-
tential leakage detected by program analysis corresponds to an actual concern.
We identify substantiated threats of leakage to cache side channels (CSCs) in
the routines generate_c, test_w, test_rejection, and computeEc.7. The fol-
lowing variables have to be kept secret during the execution of crypto_sign:
the secret key sk, the randomness vec_y, the polynomials vec_v1 and vec_v2
to compute the hash value, and the polynomials E1c, E2c, and Sc. Furthermore,
the hash value c and the representation of the corresponding encoded polyno-
mial pos_list have to be kept secret until line 19 in Listing 3.1. In line 19, it
6 Throughout the article, we round bounds up to one decimal place and truncate the
bounds to 3 ∗ PARAM_N ∗ 32bit = 49152bit, i.e., the maximum size of the key.

7 The analysis of the other subroutines of crypto_sign can be found in the corre-
sponding technical report under http://eprint.iacr.org/2017/951.

9

http://eprint.iacr.org/2017/951

Listing 5.1. Code of the subroutine computeEc
1 static void computeEc(poly Ec , const unsigned char *sk, const
2 uint32_t pos_list[PARAM_W]) {
3 int i,j, pos , * e;
4 e = (int*)sk;
5 for(i=0;i<PARAM_N;i++){ Ec[i] = 0;}
6
7 for(i=0;i<PARAM_W;i++){
8 pos = pos_list[i];
9 for(j=0;j<pos;j++){ Ec[j] += e[j+PARAM_N - pos];}

10 for(j=pos;j<PARAM_N;j++){ Ec[j] -= e[j-pos];} } }

Listing 5.2. Code of the subroutine test_rejection
1 static int test_rejection(poly poly_z) {
2 int i;
3 for(i=0; i<PARAM_N; i++){
4 if(poly_z[i]<-(PARAM_B -PARAM_U)|| poly_z[i]>(PARAM_B -PARAM_U)){return 1;}}
5 return 0; }

is decided whether the potential signature (computed in line 18) and c are re-
turned and, hence, whether c and pos_list become public information (via the
encoding function F , the values can be computed from each other), or whether
all computed values are discarded. An attacker should not learn the values of
the discarded polynomials, e.g., c or pos_list. If the attacker learns values of
pos_list or c, there exists a potential attack as described below.

Analysis of the subroutine compute_Ec. The implementation of the subroutine
compute_Ec is given in Listing 5.1. The values that have to be kept secret dur-
ing this computation are sk, e, pos_list, and pos. Most loops and branchings
do not depend on any of the secret values. However, there might be a possi-
ble leakage of pos (and hence of the values in the secret pos_list) because
of the cache hits/misses depending on e. In both loop bodies values are read
from e (namely, either e[j+PARAM_N-pos] or e[j-pos]) such that in both loops
together all entries of e are read. However, leakage arises from the chronologi-
cal order of cache hits and misses. We illustrate the leakage using an example:
The array e consists of PARAM_N many entries of type int, i.e., each entry of e is
represented in 32bit. Since one cache line is 64Byte (cf. Section 4), 16 entries (de-
pending on the alignment in the memory) of e fit into one cache line. Let pos=14.
Then, under the trace-driven attacker model, an attacker sees one cache miss
(on element e[PARAM_N-14]) and 13 cache hits (on elements e[PARAM_N-13],...,
e[PARAM_N-1]) during the loop in line 9.8 However, two more entries of e are also
already loaded in the cache, namely e[PARAM_N-16] and e[PARAM_N-15]. Thus,
in the second loop in line 10, the attacker sees cache hits on those two elements.
He might, hence, be able to determine the value of pos from the distribution of
the hits for the considered cache line over the loops.

8 To simplify our explanation we assume that the corresponding cache line starts with
e[PARAM_N-16] and ends with e[PARAM_N-1].

10

Analysis of the subroutine test_rejection. The implementation of the subrou-
tine test_rejection is given in Listing 5.2. The variable poly_z in Listing 5.2
has to be kept secret. The subroutine test_rejection consists of a for-loop that
loops independently of the secret over i=0,...,PARAM_N. Within the for-loop,
there is a secret-dependent if-condition. This leads to a CSC vulnerability.

Assume a strong trace-driven attacker model, i.e., the attacker has a sequence
of occurred cache hits and misses. Assume furthermore that poly_z is already
loaded in the cache before the if-condition is evaluated.9 When the if-condition
in line 4, Listing 5.2, is never true, then the value 0 is returned and the attacker
gets a sequence of PARAM_N (or 2·PARAM_N — depending on the compilation)
hits. This essentially means that all coefficients of poly_z are in the interval
[−B + U,B − U] and, hence, the corresponding signature is compressed and
returned (cf. Listing 3.1). Next, we consider the other case, i.e., the absolute
value of at least one of the coefficients of poly_z is larger than B − U . That
means that the if-condition in Listing 5.2 holds true for some i∈ {0, ...,PARAM_N}.
Hence, 1 is returned in the i-th iteration and the attacker gets a sequence of only
PARAM_N−i hits. Hence, the attacker knows the exact index of the coefficient that
violated the if-condition. Assume the attacker also knows the values in the array
pos_list (which corresponds to the polynomial c = F (H ([v1]M , [v2]M , µ)) in
Figure 1) from another cache-side-channel vulnerability. Then the attacker might
know which coefficients of the secret s contributed to the i-th, large coefficient
of poly_z. If an attacker learns the exact position i and the corresponding
pos_list for many different values to the same secret key s then the attacker
might receive enough information about the size of the entries in s to successfully
break the scheme via a learning-the-parallelepiped-attack [16,24].

Analysis of the subroutine test_w. The implementation of the routine test_w is
given in Listing 5.3. The values poly_w, val, and left in Listing 5.3 have to be
kept secret. The CSC vulnerability is similar to the channel described previously
for test_rejection. In the subroutine test_w, the CSC vulnerability comes
from the early abortion depending on left in line 12 of Listing 5.3. When the
if-condition in line 12 holds for some i and the corresponding abs(left), -1 is
immediately returned and a trace-driven attacker might learn the exact index i.

Analysis of the subroutine generate_c. The implementation of the subroutine
generate_c is given in Listing 4.1. The values pos_list, c, and pos in Listing 4.1
have to be kept secret. There are no branchings or loops depending on the secret
value, except for one if-condition on c[pos] in line 12 of Listing 4.1. If a cache
with no-write-allocate policy is used, the values c[i] are not cached in line 5.
Hence, an attacker might be able to find out which elements c[i] are cached
in line 12 and to learn information about the values of pos. Together with the
vulnerability in test_rejection, an attacker might be able to successfully break
the scheme via a learning-the-parallelepiped-attack [16,24].

9 Our arguments hold also true if we assume that poly_z is not loaded in the cache.
In the ring-TESLA implementation, it is already loaded in line 18 in Listing 3.1.

11

Listing 5.3. Code of the subroutine test_w
1 static int test_w(poly poly_w)
2 { int i; int64_t left , right , val;
3 for(i=0; i<PARAM_N; i++){
4 val = (int64_t) poly_w[i];
5 val = val % PARAM_Q;
6 if (val < 0){ val = val + PARAM_Q ;}
7 left = val;
8 left = left % (1<<(PARAM_D));
9 left -= (1<<PARAM_D)/2;

10 left ++;
11 right = (1<<(PARAM_D -1))-PARAM_REJECTION;
12 if (abs(left) > right){ return -1; } }
13 return 0; }

Combined analysis of the overall signature generation. The most important parts
of the implementation of crypto_sign are depicted in Listing 3.1. In the sig-
nature generation, most operations, branchings, or loops are independent of the
value of the secret. Exceptions are the branchings in lines 11, 15, and 19 in List-
ing 3.1: They depend on secret values and, hence, the length of the observed trace
of cache hits and misses depends on the branches that are taken. What does this
mean from a cryptographic viewpoint? Assuming the subroutine test_w does
not leak any bit, then the attacker does not learn more information about the
secret if he knows whether or not the condition in line 11 holds. The attacker
would just learn that vec_v1 does not fulfill the conditions needed for a valid
signature. However, the attacker does not learn why exactly the condition was
not fulfilled (the attacker does not learn the index on which the if-condition
failed). Furthermore, since the value vec_v1 depends on vec_y and the value
vec_y is discarded if the if-condition in line 11 does not hold, the attacker does
not get any additional information about the secret he did not know before. The
same explanation also holds for the branchings in line 15 and line 19.

In summary, this means that there exists a potential leakage that we probably
cannot get rid of, but it does not affect the security of the signature scheme as
long as we do not have leakages in test_w and test_rejection or generate_c.

6 Mitigation of the vulnerabilities

6.1 Adaptation of vulnerable routines

In Section 5, we identified substantiated threats of CSC leakage in the rou-
tines test_w, test_rejection, computeEc, and generate_c. Since the leakage
in generate_c is only a concern in combination with the leakage in test_w
and test_rejection, it suffices to analyze and mitigate the leakage in test_w,
test_rejection, and computeEc. We analyze test_w, test_rejection, and
computeEc individually with CacheAudit 0.2c to obtain leakage bounds on the
unmitigated implementations. The leakage bounds are listed in Table 3. There
are, indeed, non-zero bounds for all three unmitigated routines.

12

Unmitigated routines Mitigated routines
acc accd trace time acc accd trace time

test_w 31 31 49152 19.3 0 0 0 0
test_rejection 31 31 10.1 10.1 0 0 0 0
computeEc 0 0 20 5.9 0 0 19 4.4

crypto_sign 12.9 2.6 51.6 9.5 8.1 1.6 48.6 9.0
Table 3. Leakage bounds [bit]

1 int test_rejection(poly poly_z) {
2 int i; int res; res = 0;
3 for(i=0; i<PARAM_N; i++){
4 res |= (poly_z[i] < -(PARAM_B-PARAM_U));

5 res |= (poly_z[i] > (PARAM_B-PARAM_U)); }
6 return res; }
7
8 int test_w(poly poly_w) { [...]
9 for(i=0; i<PARAM_N; i++) {

10 val = poly_w[i]; val = val % PARAM_Q;
11 val += (((unsigned int)val & 0x80000000) » 31)*PARAM_Q;
12 left = val; left = left % (1<<(PARAM_D));
13 left -= (1<<PARAM_D)/2; left ++;
14 right = (1<<(PARAM_D -1))-PARAM_REJECTION;
15 res |= (abs(left) - right > 0); }
16 return -res; }
17
18 void computeEc ([...]) { [...]
19 for(i=0;i<PARAM_N;i++) Ec[i] = 0;
20 for(i=0;i<PARAM_N;i++) tmp = e[i];
21 for(i=0;i<PARAM_W;i++) {
22 pos = pos_list[i];
23 for(j=0;j<pos;j++) { Ec[j] += e[j+PARAM_N - pos]; }
24 for(j=pos;j<PARAM_N;j++) { Ec[j] -= e[j-pos]; } } }

We adapt the routines, as shown in the above listing, to mitigate the leakage.
In test_rejection, we collect the result, i.e., whether 0 or 1 is returned, in an
auxiliary variable res and return it after PARAM_N iterations, instead of returning
early in case of a failed test. In test_w, we also collect the result, i.e., whether
0 or 1 is returned, in an auxiliary variable res, instead of returning early in
case of failure. Furthermore, we replace the branching on val by an assignment
that masks the value by the branching condition. The idea to mask assignments
by branching conditions comes from conditional assignment [22] - a program
transformation to mitigate timing side channels, which performs rather well in
practical evaluation [20]. In computeEc, we add preloading of the variable e to
ensure that the sequence of cache hits and misses does not depend on the secret-
dependent order of accesses (under the assumption that no process interferes
with the cache during the ring-TESLA execution).

By code inspection, the modifications should remove the CSC leakage in the
three routines. In the following, we investigate this with CacheAudit.

13

6.2 Analysis of the effectiveness of the mitigations

We analyze the mitigated routines test_w, test_rejection, and computeEc
using CacheAudit 0.2c and obtain the leakage bounds listed in Table 3. For
test_w and test_rejection, we obtain the leakage bound 0bit for all attacker
models. Thus, we effectively removed the potential leakage. For computeEc, we
obtain 0bit leakage bounds for acc and accd and non-zero leakage bounds, namely
19bit and 4.4bit, for trace and time, respectively. The bounds computed with
CacheAudit are provable upper bounds, but not necessarily tight. The preloading
of e should remove the leakage from computeEc, because it makes the caching
of e independent of secrets. Since CacheAudit was able to recognize preloading
as effective in other cases [13,21], it is interesting why CacheAudit 0.2c does not
yield a 0bit leakage bound in this case. The investigation and fine-tuning of the
analysis precision is an interesting direction for future work.

Table 3 lists also the leakage bounds we obtain on crypto_sign with and
without our countermeasures. All four leakage bounds are reduced by our coun-
termeasures. The highest reduction is achieved for the acc leakage bound. The
acc leakage bound is reduced by 4.8bit to 8.1bit.

Based on our manual inspection of the individual routines in ring-TESLA,
there are two possible sources for the remaining potential leakage reported by
CacheAudit 0.2c. One source is generate_c, where, as discussed above, the
remaining leakage is harmless. The second source is the rejection sampling in
crypto_sign. This matches the fact that the leakage bounds are non-zero. Note
that, since we compute upper bounds on the leakage based on overapproximation,
the actual leakage of the implementation could be even lower than the reported
leakage bounds. We expect in particular the leakage bounds for trace and time
to be quite conservative because CacheAudit 0.2c was not able to recognize the
preloading countermeasure in the implementation of computeEc and the results
of computeEc are propagated further through the implementation. Nevertheless,
the bounds show that the CSC leakage of ring-TESLA to acc, accd, trace, and
time is rather low. For acc, accd, and time, it even lies below 10bit.

Note that, the leakage bounds refer to information about the secret key, i.e.,
about the three polynomials that all together are saved in roughly 38,400bit.
By construction of the learning with errors problem (LWE) — the underlying
hardness assumption of ring-TESLA— the potential leakage of at most 49bit of
the secret key does not immediately translate to the bit-hardness of LWE (resp.,
the bit-security of ring-TESLA).

7 Conclusion

In this article, we analyzed an implementation of the lattice-based signature
scheme ring-TESLA for cache-side-channel vulnerabilities. We identified four
routines in the implementation that are vulnerable through cache side channels.
Two of these routines, a rejection sampling and a signature validity check, use
a secret-dependent number of iterations. One routine is a sparse polynomial
multiplication that traverses one polynomial in a secret-dependent order. We

14

modified these functions to ensure a constant number of iterations and secret-
independent caching of the polynomial. By modifying these functions, we also
eliminated the possibility to exploit the fourth vulnerability. For the modified
ring-TESLA implementation, we obtained low upper bounds on the leakage to
four attacker models, using program analysis.

Our results show that implementations of rejection sampling and sparse mul-
tiplication should be inspected for side channels with particular care. While these
techniques are not very common in classical cryptography like RSA, they play
a significant role in post-quantum cryptography. Rejection sampling occurs, for
instance, in multiple lattice-based signature schemes [6, 7, 15] and in key ex-
change protocols [35]. Sparse multiplication also occurs in many lattice-based
schemes [7, 9, 15]. Overall, the implementation and analysis of post-quantum
cryptography poses additional challenges compared to classical cryptography.

Acknowledgements We thank the anonymous reviewers for their helpful sugges-
tions and Sedat Akleylek for contributing to our modifications of the original
ring-TESLA implementation. This work has been partially funded by the DFG
as part of projects P1 and E3 within the CRC 1119 CROSSING.

References

1. Abel, A., Reineke, J.: Reverse engineering of cache replacement policies in Intel
microprocessors and their evaluation. In: ISPASS. pp. 141–142 (2014)

2. Acıiçmez, O., Ç. K. Koç: Trace-driven cache attacks on AES. Cryptology ePrint
Archive, Report 2006/138

3. Akleylek, S., Bindel, N., Buchmann, J., Krämer, J., Marson, G.A.: An Effi-
cient Lattice-Based Signature Scheme with Provably Secure Instantiation. In:
AFRICACRYPT. pp. 44–60 (2016)

4. Alkim, E., Bindel, N., Buchmann, J., Dagdelen, Ö., Eaton, E., Gutoski, G.,
Krämer, J., Pawlega, F.: Revisiting TESLA in the quantum random oracle model.
In: PQCrypto. pp. 143–162 (2017)

5. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring Informa-
tion Leakage using Generalized Gain Functions. In: CSF. pp. 265–279 (2012)

6. Bai, S., Galbraith, S.D.: An Improved Compression Technique for Signatures Based
on Learning with Errors. In: CT-RSA. pp. 28–47 (2014)

7. Barreto, P.S.L.M., Longa, P., Naehrig, M., Ricardini, J.E., Zanon, G.: Sharper
Ring-LWE Signatures. Cryptology ePrint Archive, Report 2016/1026

8. Bernstein, D.J.: Cache-timing attacks on AES. Tech. rep., University of Illinois at
Chicago (2005)

9. Buchmann, J., Göpfert, F., Güneysu, T., Oder, T., Pöppelmann, T.: High-
Performance and Lightweight Lattice-Based Public-Key Encryption. In: IoTPTS.
pp. 2–9 (2016)

10. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: POPL.
pp. 238–252 (1977)

11. Degenbaev, U.: Formal Specification of the x86 Instruction Set Architecture. Ph.D.
thesis, Universität des Saarlandes (2012)

12. Doychev, G., Köpf, B.: Rigorous Analysis of Software Countermeasures against
Cache Attacks. In: PLDI. pp. 406–421 (2017)

15

13. Doychev, G., Köpf, B., Mauborgne, L., Reineke, J.: CacheAudit: A Tool for the
Static Analysis of Cache Side Channels. ACM TISSEC 18(1), 4:1–4:32 (2015)

14. Doychev, G.: Commit f063813faa548da9bfb11dea9ff6fe39c0f11626: Adding support
for CDQ and NEG instructions. https://github.com/cacheaudit/cacheaudit/
commit/f063813faa548da9bfb11dea9ff6fe39c0f11626 (2016), [Online; accessed
05/23/2017]

15. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice Signatures and
Bimodal Gaussians. In: CRYPTO. pp. 40–56 (2013)

16. Ducas, L., Nguyen, P.Q.: Learning a Zonotope and More: Cryptanalysis of
NTRUSign Countermeasures. In: ASIACRYPT. pp. 433–450 (2012)

17. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, Gauss, and
Reload – A Cache Attack on the BLISS Lattice-Based Signature Scheme. In: CHES.
pp. 323–345 (2016)

18. Intel Corporation: IntelR© 64 and IA-32 Architectures Optimization Reference Man-
ual. Order Number: 248966-032 (2016)

19. Köpf, B., Smith, G.: Vulnerability Bounds and Leakage Resilience of Blinded Cryp-
tography under Timing Attacks. In: CSF. pp. 44–56 (2010)

20. Mantel, H., Starostin, A.: Transforming Out Timing Leaks, More or Less. In: ES-
ORICS. pp. 447–467 (2015)

21. Mantel, H., Weber, A., Köpf, B.: A Systematic Study of Cache Side Channels
across AES Implementations. In: ESSoS. pp. 213–230 (2017)

22. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The Program Counter Se-
curity Model: Automatic Detection and Removal of Control-Flow Side Channel
Attacks. In: ICISC. pp. 156–168 (2005)

23. National Institute of Standards and Technology (NIST): Post-quantum project.
https://pqcrypto2016.jp/data/pqc2016_nist_announcement.pdf (2016), [On-
line; accessed 05/23/2017]

24. Nguyen, P.Q., Regev, O.: Learning a Parallelepiped: Cryptanalysis of GGH and
NTRU Signatures. In: EUROCRYPT. pp. 271–288 (2006)

25. Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical CCA2-Secure and
Masked Ring-LWE Implementation. Cryptology ePrint Archive, Report 2016/1109

26. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: The
Case of AES. In: CT-RSA. pp. 1–20 (2006)

27. Pessl, P.: Analyzing the Shuffling Side-Channel Countermeasure for Lattice-Based
Signatures. Cryptology ePrint Archive, Report 2017/033

28. Reparaz, O., Roy, S.S., Vercauteren, F., Verbauwhede, I.: A masked ring-LWE
implementation. Cryptology ePrint Archive, Report 2015/724

29. Saarinen, M.J.O.: Arithmetic coding and blinding countermeasures for lattice sig-
natures. Cryptology ePrint Archive, Report 2016/276

30. Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical
Journal 27(3), 379–423, 623–656 (1948)

31. Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

32. Smith, G.: On the Foundations of Quantitative Information Flow. In: FOSSACS.
pp. 288–302 (2009)

33. Yarom, Y., Falkner, K.: FLUSH+RELOAD: A High Resolution, Low Noise, L3
Cache Side-Channel Attack. In: USENIX Security. pp. 719–732 (2014)

34. Yarom, Y., Genkin, D., Heninger, N.: CacheBleed: A Timing Attack on OpenSSL
Constant Time RSA. In: CHES. pp. 346–367 (2016)

35. Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated key ex-
change from ideal lattices. In: EUROCRYPT. pp. 719–751 (2015)

16

https://github.com/cacheaudit/cacheaudit/commit/f063813faa548da9bfb11dea9ff6fe39c0f11626
https://github.com/cacheaudit/cacheaudit/commit/f063813faa548da9bfb11dea9ff6fe39c0f11626
https://pqcrypto2016.jp/data/pqc2016_nist_announcement.pdf

	Bounding the cache-side-channel leakage of lattice-based signature schemes using program semantics

