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Abstract. Low run-time overhead is crucial for the practicability of
usage-control mechanisms. In this article, we propose an approach to
accelerate usage control by exploiting access correlations. Our approach
combines two main ingredients: firstly, a technique to compute decisions
ahead of time and, secondly, a method to guide selection of usage events
to pre-compute decisions for. For the first, we speculatively pre-compute
decisions for usage events. For the second, we exploit access correlations
to identify high acceleration potential. We implemented our approach and
evaluated it in a case study of security policy enforcement in a distributed
storage system. Our empirical results show that the speedup is substantial.
More concretely, the speedup on average is up to 61.5%.

1 Introduction

Usage control [29] augments access control by protecting the access to resources
as well as the subsequent use of the resources. For instance, usage control can
ensure that a confidential document can only be accessed by authorized users and
can also constrain the number of times the document is printed or propagated to
other authorized users. Dynamic mechanisms are a popular approach to enforce
usage control (e.g., [7,9,13,15,20]). Analysis of the system at run-time allows such
approaches to precisely enforce usage control policies. However, by operating at
the run-time of the system, dynamic mechanisms inevitably impose a performance
overhead on the system.

Large performance overheads can easily deter the users of a system. How
much overhead is acceptable in practice depends on the application domain. The
question how much overhead is tolerable has been investigated, for instance, in
the area of web services with the finding that delays of already a few hundred mil-
liseconds can result in sales loss, reduced service use, and generally a competitive
disadvantage [5, 12,25,30,31].

A standard approach to reduce overhead of dynamic mechanisms is to reduce
the number of program instructions that are instrumented to invoke the mecha-
nism by static analysis (e.g., [1, 1, 3, 10, 11, 22, 27, 27]). In this article we follow an
orthogonal approach: We exploit domain knowledge to accelerate enforcement
during run-time. Thus, our approach can be employed in addition to existing
approaches based on static analysis.
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In this article, we propose SPEEDAC, an approach to speculatively pre-
compute decisions based on access correlations. Concretely, a usage-control
mechanism following our approach computes and stores decisions for possible
future usage events on the side and uses these pre-computed decisions when the
events actually occur. Our approach exploits that a lookup of a decision can be
more efficient than computing the decision. For example, in a distributed setting,
computing a decision is expensive when it requires network communication
[13, 20]. For selecting which decisions to pre-compute, SPEEDAC exploits access
correlations on pieces of data such as files, database entries, and in-memory
objects. By access correlations we refer to correlations between accesses to data
in a program resulting from access patterns encoded in the program logic and
from how the program is used. For instance, that an employee uses her company’s
storage service to access the agenda of a business meeting correlates with her
accessing the meeting presentation.

We demonstrate our approach in a case study of a distributed storage system
in which we employ usage control against conflicts of interest. For this scenario, we
implemented our approach in a concrete usage-control mechanism and empirically
evaluated the performance of our implementation based on the 6-hour MSN BEFS
access trace by Microsoft [18]. Our evaluation showed speedup on average of up
to 61.5% compared to not utilizing access correlations, which indicates that our
approach is feasible and can significantly accelerate usage control.

In summary, the technical contributions of this article are:

– the SPEEDAC approach to accelerate usage control by speculatively pre-
computing decisions, where selection of usage events is guided by access
correlations

– an implementation of SPEEDAC against conflict of interest in distributed
storage systems, and

– an empirical evaluation of the performance of our proposed mechanism based
on a 6-hour access trace by Microsoft.

To our knowledge, our work is the first based on the idea of exploitation of
probabilistic correlations between usage events to accelerate dynamic mechanisms.
Our evaluation shows that the speedup can be substantial and hence that this is
an interesting direction to counter the overhead caused by dynamic usage-control
mechanisms. Our article constitutes a first step: Further research will enable
a better understanding of the full design space for concrete SPEEDAC-based
mechanisms and its potential to accelerate usage control.

2 The Problem

Performing usage control means ensuring that the usage events performed by a
target program comply with given usage constraints. Dynamic approaches can
utilize accurate usage histories for precisely enforcing usage constraints. This
comes at the cost of run-time overhead that is perceivable by users of the system.

According to studies by Amazon, Bing, and Google Search [5, 12, 30], page
load time increases of 100–200ms already have a negative impact on sales and
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reference experiments overhead of overhead

[15] file copying; compilation dummy policy 1.5–33ms
[15] file copying; compilation policy monitoring 4–1000ms
[19] FTP and HTTP file

transfers
data-flow tracking
(best-case), dummy policy

106–2931ms

[19] FTP and HTTP file
transfers

data-flow tracking
(worst-case), dummy policy

131–53353ms

[7] data storage via custom test
program

access control, trust and
reputation management

6–400ms

[13] FTP file transfers local decision-making 1.9–3ms
[13] FTP file transfers cooperative decision-making 2.7–16.1ms

Table 1: Perceivable overhead caused by usage-control mechanisms

user experience. This suggests that the run-time overhead caused by a usage-
control mechanism for a single page request should remain below 100ms for the
mechanism to be acceptable in practice. A single page request, however, can
trigger a cascade of requests. For example, we observed that loading a single
page of Dropbox’s web interface for browsing photos1 triggered Firefox to send
75 requests to Dropbox. That is, in this example a usage-control mechanism may
take at most 1.33ms per request to remain below 100ms in total.

We looked at several usage-control mechanisms whose perceivable overhead
has been measured experimentally: a non-distributed [15] and a distributed
[19] mechanism for usage control on data and copies of data; an access control
mechanism for grid computing [7]; and a generic mechanism to enforce security
policies in distributed systems, which has been used to enforce Chinese Wall
policies in distributed systems [13]. Table 1 summarizes our observations. The
mechanism by Harvan et al. [15] exhibits overheads between about 1.5ms and
1s, depending on the test case. The mechanism by Kelbert et al. [19] introduces
overheads of at least 106ms for file transfers of size 100kB. The mechanism by
Colombo et al. [7] exhibits overheads between 6ms and 400ms. CliSeAu, by Gay
et al. [13], yields overheads between 1.9ms and 16.1ms, depending on the concrete
experiment.

The overhead of the different approaches is low already. However, in the
Dropbox example, even the lowest overheads – 1.5ms per access for a dummy
policy and 1.9ms for a Chinese Wall policy – accumulate to a total overhead of
112.5ms for 75 requests. This raises the question how to further reduce overhead
of dynamic mechanisms. The problem we therefore address in this article is how
to further accelerate dynamic usage-control mechanisms.

3 Our Approach: SPEEDAC

The SPEEDAC approach for accelerating usage control is to speculatively pre-
compute decisions (“SPEED”) on the side and to use access correlations (“AC”)

1 https://www.dropbox.com/photos
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to determine the speculative aspect of the pre-computation. Through the pre-
computation on the side, SPEEDAC enables a reduction of the overhead that one
can perceive when using a program that is subject to a usage-control mechanism.

3.1 Speculative Pre-computation of Decisions

With SPEEDAC, the decisions made by a usage-control mechanism are not all
computed when they are needed but are, to some extent, pre-computed. That
is, the mechanism computes decisions for some usage events already before the
events actually occur. Since it is typically not known in advance which usage
events occur, decisions are pre-computed speculatively for usage events that the
mechanism can suspect to occur. Such a decision is then computed as if the
usage event was actually about to occur. Rather than being used directly, the
decision is stored in memory or in a database and might not be used at all when
the respective usage event never occurs. For brevity, in the following we refer to
speculatively pre-computed decisions simply as pre-computed decisions.

The pre-computation of decisions with SPEEDAC is performed “on the side” by
a usage-control mechanism. That is, the mechanism need not suspend the target
program for pre-computing decisions but uses, e.g., a concurrent thread for the
pre-computation. The mechanism triggers the pre-computation of decisions after
it has handled a concrete usage event. In particular, it allows the pre-computation
to take the decision for this newest usage event into account.

Concretely, the decision-making with SPEEDAC integrates as follows into
how the usage-control mechanism processes usage events. When the mechanism
intercepts a usage event that the running target program is about to perform,
the mechanism first performs a lookup for a pre-computed decision. In case of
success, i.e., if a pre-computed decision for the intercepted event is available, this
decision is enforced. For instance, if the decision is to permit the usage event,
then the mechanism allows the program to perform the event. If the decision is to
prevent the usage event, then the mechanism can, e.g., return an error code to the
target such that it can afterwards resume its execution. When the lookup fails,
i.e., when no pre-computed decision is available, then the mechanism computes a
decision on the spot and enforces this decision. Unless a decision demanded to
terminate the target program, the mechanism resumes the target after enforcing
the decision and simultaneously triggers the pre-computation of decisions.

Figures 1 and 2 illustrate the cases of lookup success and, respectively, lookup
failure. In the figures, time flows from left to right and shaded boxes represent
functionality that is performed during the time. Notably, the target is blocked
while the mechanism has intercepted an event and has not yet enforced a decision
for the event. The target is not blocked while decisions are pre-computed.

We consider an attacker model of a malicious user of the target program.
Concretely, the attacker can interact with the interface exposed by the program,
such as a graphical user interface or a web interface, for trying to circumvent
usage control. The attacker cannot directly observe or modify the mechanism.
For the given attacker, neither soundness nor precision need to be sacrificed for
increased performance when exploiting access correlations as well as parallelism
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Fig. 1: Enforcement in case of lookup success
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Fig. 2: Enforcement in case of lookup failure

for speculatively pre-computing decisions on the side. Preserving soundness and
precision requires careful design and implementation of concrete mechanisms
that use SPEEDAC. For instance, pre-computed decisions should not be utilized
by a mechanism when they have been rendered obsolete by subsequent events.

3.2 Utilization of Access Correlations

Pre-computing decisions for all possible usage events is infeasible with regard to
storage and computation time due to the generally vast number of such events.
For selecting a limited set of decisions to pre-compute and yet achieving a high
rate of successful lookups, we propose to use access correlations.

Access correlations on data result from access patterns encoded in a target
program and from usage patterns established by the program’s users. They
capture which accesses to pieces of data are stochastically dependent. In this
article, we focus on positive correlations, i.e., on cases in which the likelihood
of accesses to two pieces of data occurring together during the run-time of the
program is higher than the likelihood would be in case of stochastic independence.
When the correlation between accesses to two pieces of data is sufficiently strong,
we call the pieces of data correlated. An example of access correlations are
correlations between accesses to disk blocks and files. Outside the domain of usage
control, exploiting such correlations has already been proposed for accelerating
file accesses through improved caching and prefetching (e.g., [16, 23]). Access
correlation between files have been successfully calculated, e.g., by treating the
metadata of files as a multi-dimensional attribute space and marking files in close
proximity as correlated [16].

SPEEDAC proposes that a mechanism utilizes access correlations as follows.
Suppose a decision for a usage event that accesses a piece of data d has just been
enforced. Then the mechanism selects, using some selection strategy, a subset D
of all pieces of data correlated to d and pre-computes decisions for usage events
on D . Later during the run-time, the mechanism employs some termination
strategy to remove obsoleted pre-computed decisions again.
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Fig. 3: Enforcement in current approaches

When access correlations are considered sufficiently strong as well as the
selection strategy and termination strategy are scenario-specific and to be specified
by concrete instances of SPEEDAC. When the chosen access correlations and
strategies capture the actual program and user behavior well, the success rate of
lookups is high and pre-computed decisions can be used often.

3.3 Perceivable Overhead

The perceivable overhead of a usage-control mechanism on a program is the
additional delay, caused by the mechanism, that a user of the program experiences
in her interaction with the program. The user might experience this delay, e.g.,
between a mouse click and the response by the GUI program or between a browser
request to a web service and the resulting page being displayed.

Figures 1 and 2 depict the perceivable overhead caused with SPEEDAC for a
single usage event. The overhead for a successful lookup includes the time for
intercepting the event, for looking up a decision, and for enforcing a decision.
The overhead for a failed lookup additionally includes the decision-making. The
pre-computation of decisions is not part of the perceivable overhead, as it is
performed while the target is running rather than while the target is blocked.

Traditional usage-control mechanisms (e.g., [1, 11, 13, 20, 27]) handle usage
events as shown in Figure 3: The mechanisms block the target program for inter-
ception, decision-making, and enforcement. They do not pre-compute decisions
and perform their functionality sequentially to the target.

The perceived overhead in traditional mechanisms clearly is smaller than the
perceived overhead caused by failed lookups in SPEEDAC: The latter comprises
all tasks of the former and additionally includes the lookup. How the case of
a lookup success compares to the traditional approach boils down to how the
successful lookup compares to the decision-making. Decision-making can be
significantly more time-consuming than a lookup in scenarios with complex usage
constraints or in distributed systems, in which decision-making involves network
communication. SPEEDAC reduces the perceived overhead if the time saved
through successful lookups outweighs the overhead of failed lookups on average.
We elaborate an example of such a setting in the remainder of this article.

4 Case Study

We use a case study to demonstrate how SPEEDAC can be realized in a concrete
application scenario and how much acceleration can be achieved. In the application
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Fig. 4: Distributed storage service

scenario, a distributed storage service offers storage space to its users. The service
consists of multiple, spatially distributed servers through which the users can
access the storage. Figure 4 depicts the possible interactions between users and
the service. Through a network such as the Internet, each user can connect to
any of the servers for storing and retrieving files from the service.

The usage of the service shall be constrained according to a Chinese Wall
policy [4] in order to technically counter conflicts of interest. That is, from a
class of competing companies, each user may only access the files owned by one
company. A mechanism can enforce this usage constraint by controlling the read
and write events performed on behalf of users. We chose the Chinese Wall policy
as an example of a business security requirement for which the computation of
decisions in a distributed setting is non-trivial in general [26].

In the remainder of this article, we call two files conflicting if they are owned
by competing companies. We lift this notion to usage events (i.e., read and write
events) by calling two usage events conflicting when the files accessed by the
usage events are conflicting. The notion establishes an irreflexive and symmetric
binary relation on usage events. By equivalence classes on usage events, we refer
to the equivalence classes of the reflexive transitive closure of this relation.

5 Enforcement Mechanism

We design and implement a mechanism following SPEEDAC for the setting in
Section 4. The core challenge is to design a mechanism that is effective and
performant. Effectiveness demands soundness, i.e., that the mechanism assures
the absence of policy violations, and transparency, i.e., that the mechanism
permits all accesses that do not violate the policy [24].

Our mechanism is built on Gay, Hu, and Mantel’s mechanism in [13]. To
monitor and to intervene with a target program’s execution, the mechanism
encapsulates the target program into enforcement capsules, which we refer to
as nodes in our setting. We re-use interception and enforcement, but design our
own decision-making algorithm. The original decision-making algorithm works
as follows: The mechanism maps usage events to nodes that are responsible for
deciding on them. Effectiveness is achieved through the following requirement:
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Whenever two usage events conflict, the same node is responsible to decide on
the events. We call this property on the responsibility distribution properness.

We first explore the design space for the decision-making algorithm. Second,
we describe the proposed decision-making algorithm and the underlying design
decisions. Finally, an overview over key implementation details is presented.

5.1 Design Space

In the design space for applying SPEEDAC to a mechanism for our application
scenario, we identify three particular dimensions: the selection of usage events
for the pre-computation, the location at which pre-computed decisions are stored,
and the lifetime of pre-computed decisions. For each dimension we discuss its
impact on soundness and performance and provide points in the design space.

In our case study, pre-computation does not affect transparency: As time
advances and users access files, the set of accesses that comply with the Chinese
Wall policy shrinks monotonically. Pre-computed decisions from earlier points in
time, thus, do not violate transparency when they are enforced.

Selection. According to SPEEDAC, a mechanism can select the usage events
for the pre-computation from the set of usage events that are correlated to the
previously intercepted usage event. A greedy strategy is to select all correlated
usage events. More cautious strategies are, e.g., to select at most a single correlated
usage event and ensure that for each user only one pre-computed decision exists
or to select a maximal set of correlated usage events such that for each user and
equivalence class only one pre-computed decision exists.

The selection strategy can affect the soundness and performance of a mecha-
nism. For instance, the greedy strategy might select two permissible but conflicting
usage events for the pre-computation. If the mechanism would enforce the deci-
sions for both events, it would violate the Chinese Wall policy. The more cautious
strategies do not exhibit this property, as they prevent conflicting pre-computed
decisions. Concerning performance, the greedy strategy yields a higher chance of
successful lookups than the cautious strategies. However, it also increases the
lookup and maintenance costs for pre-computed decisions.

Location. The location, i.e., the node at which a pre-computed decision is stored,
is a dimension opened up by the distributed setting. A strategy to select the
location can be static or dynamic. A static strategy does not adapt to system
behavior but always uses the same node for each pre-computed decision. For
example, the strategy could fix a node for each usage event based on the file
location. A dynamic strategy selects the node based on observed system behavior.
For example, the strategy could track where a usage event occurs most often and
store the associated pre-computed decision there.

The locations of pre-computed decisions affect the mechanism’s performance.
A pre-computed decision can only be looked up efficiently, when it is stored
at the node intercepting the respective usage event. Otherwise, comparatively
expensive network communication is required. A dynamic strategy can increase
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efficient lookup chances but at the cost of additional bookkeeping. When some
nodes are only temporarily reachable via the network, using these nodes to store
pre-computed decisions also affects the soundness of the mechanism.

Lifetime. The lifetime of pre-computed decisions can be controlled by termination
strategies. A termination strategy can be to terminate certain pre-computed
decisions during the lookup, after the enforcement of a pre-computed decisions,
during on-the-spot decision-making, and/or during the selection of events for pre-
computation. The strategy can be to terminate pre-computed decisions that would
conflict with newly selected usage events for the pre-computation. Conversely,
the termination strategy can also be to keep once pre-computed decisions and
rather select fewer events in the next pre-computation step.

The termination strategy can affect the soundness and performance of the
mechanism. For instance, if conflicting pre-computed decisions are not terminated
when a permitting decision is computed on the spot, then subsequently utilizing
a pre-computed decision might violate the Chinese Wall policy. The performance
impact of a termination strategy is in two directions. Firstly, terminating a pre-
computed decision that is not located at the node that triggers the termination
requires network communication and is therefore expensive. Secondly, terminating
more or fewer decisions has the same impact on the performance as choosing
fewer or, respectively, more events for the pre-computation.

5.2 Design for Effectiveness

In our mechanism responsible nodes compute and pre-compute decisions. Each
node memorizes its permitted usage events to compute decisions in compliance
with the Chinese Wall policy. A node decides to prevent a usage event only when
a conflicting usage event was permitted previously. On enforcement of a permit
decision the responsible node memorizes the permission of the usage event.

We let pre-computed decisions induce temporary responsibility shifts: a node
storing the pre-computed decision becomes temporarily responsible for the equiv-
alence class of the underlying usage event. Conversely, when the pre-computed
decision is terminated, the responsibility shifts back to the originally responsible
node. As a result, the responsibility distribution is proper also in presence of
temporary responsibility shifts. A temporarily responsible node can only lookup
the pre-computed decision, it can not compute decisions by itself.

Our mechanism employs a cautious selection strategy: it selects a maximal set
of correlated usage events such that for each user and equivalence class only one
pre-computed decision exists. The employed termination strategy is twofold: it
terminates pre-computed decisions after their enforcement and during on-the-spot
decision-making. We fix a static strategy to select the location of pre-computed
decisions: for each usage event a node is fixed based on the file location.

Augmenting the mechanism, i.e., [13] with SPEEDAC based on the design
choices we made preserves the effectiveness of the mechanism. Our mechanism’s on-
the-spot decision-making preserves effectiveness due the responsibility distribution
being proper even in presence of temporary responsibility shifts. As previously
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Fig. 5: Decision-making examples

discussed, pre-computed decisions do not affect transparency of our mechanism.
Enforcing a pre-computed decision u would only break soundness when u permits
a usage event and a decision v permits a conflicting usage event. We distinguish
the two cases that could lead to a policy violation. (1) between computation
of u and its enforcement an on-the-spot decision v is enforced. However, the
termination strategy prevents this by terminating u during computation of v.
(2) between computation of u and its enforcement a pre-computed decision v is
enforced. The selection strategy prevents this: if v is computed before u, u is
never pre-computed. If u is computed before v, v is never pre-computed. Thus,
only either u or v is enforced. Absence of both (1) and (2) preserves soundness.

Example. Consider an audit process where Alice is hired to audit car manufac-
turing companies. The companies’ data is distributed over servers USA, Estonia,
and China. To avoid conflict-of-interest Alice is only given access to a single
company’s data. Server China is responsible to decide on usage events. Files of
the companies VW and Audi are correlated in both directions.

A successful lookup is given in Figure 5a. Initially, a pre-computed decision
for access to VW arrives at node USA. An access to VW on server USA is
performed by Alice. USA does a lookup of the pre-computed decision, terminates
the decision, and reverts the responsibility shift through a notification to China.
The notification causes China to update the set of permitted events. Since VW
and Audi are correlated, a decision for access to Audi is pre-computed.

A failed lookup is given in Figure 5b. After the pre-computed decision for VW
arrives at USA, Alice performs an access to Audi on Estonia. A decision for access
to Audi is computed on-the-spot. The mechanism terminates the pre-computed
decision for VW and reverts the responsibility shift. Correlation between Audi
and VW causes a pre-computation of a decision for access to VW .

A key property of our design is that a lookup of a pre-computed decision
requires no coordination among the nodes, as indicated also in our example.
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The coordination was done on the side during the pre-computation. That is, no
network communication takes place for a usage event in case of a lookup success.
We therefore expect that our mechanism exhibits a lower perceivable overhead
compared to traditional approaches, which perform all coordination on the spot.

5.3 Implementation

We prototypically implemented our mechanism using the CliSeAu tool [13].
The implementation of the decision-making algorithm consists of 757 source
lines of Java code (SLOC; empty/comment lines excluded) in 13 classes. This
implementation is generic with respect to the target program. For a concrete target
program to establish the distributed storage service, we selected CrossFTPServer.2
The target-specific implementation consists of 81 SLOC in 3 classes.

We complement SPEEDAC for efficiency at the design level by efficient
data structures at the implementation level that assure efficient lookup and
maintenance of pre-computed decisions. This includes: pre-computed decision
lookup, temporary responsibility shifts, and our usage event selection strategy.
We realized all utilizing hash maps, which feature average O(1) running time for
all operations [8, p. 253]. By using representatives of equivalence classes as keys,
we could efficiently implement lookup, deletion, and responsibility shifting.

To assure effectiveness of our mechanism we implemented JUnit tests and
on top applied systematic manual testing. The JUnit tests cover functionality of
decision-making, responsibility shifting, and bookkeeping for event selection. We
complemented the tests with systematically testing an instantiation of our mecha-
nism for CrossFTPServer. In a system setup with a concrete a policy, we manually
accessed files to test the soundness and transparency of our implementation. In
all cases we found our mechanism to be sound and to be transparent.

6 Performance Evaluation

We experimentally evaluate the performance of our mechanism by investigating
its perceivable overhead. Through the evaluation, we assess whether and to which
extent SPEEDAC reduces perceivable overhead compared to a traditional usage-
control mechanism in our case study. As the reference point for the comparison,
we employ the mechanism by Gay, Hu, and Mantel [13], which we call SOA
(abbreviating State-Of-the-Art) in the following.

6.1 Experimental Setup

For our experimental evaluation we employ a distributed file-storage system, a
concrete instance of the system setting in Section 4. The system consists of 8
servers hosting a file structure modeled after the MSN BEFS trace [18], which
captures the operation of a file server of Microsoft’s Live services. We replay a
post-processed MSN BEFS trace to simulate a system execution.
2 http://www.crossftp.com/crossftpserver.htm
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type 0.8 0.8d 0.8g 0.5 0.2 ∅

SOA 2.62ms 2.62ms 2.58ms 2.02ms 1.49ms 2.27ms
SPEEDAC 1.01ms 1.48ms 1.83ms 0.99ms 0.96ms 1.25ms
abs. speedup 1.61ms 1.16ms 0.75ms 1.03ms 0.53ms 1.02ms
rel. speedup 61.5% 44.3% 29.1% 51.0% 35.6% 44.9%

Table 2: Perceivable overhead

The MSN BEFS trace is a block I/O trace of a Microsoft’s Live services server
containing 8 physical disks. The trace captures operation during 6 hours. For our
experiments, a file access event represents an aggregation of block accesses in
close succession. We place the files for each disk on a separate server.

Our experiments use multiple synthesized Chinese Wall policies, i.e., 0.2, 0.5,
0.8, 0.8d, 0.8g. For each policy we target a rate of cooperative decision-making
in SOA for a trace replay. Conflicting files distributed over nodes require SOA
to cooperatively compute decisions. Our synthesis randomly selects files from
different nodes and marks them as conflicting until we reach the targeted rate.
The rate is represented by the name, e.g., 0.2 targets a rate of 20% in SOA. For
policy 0.8g an equivalence class contains files from at most seven nodes, for 0.8d
from at most four, and for the remaining ones from at most two.

Our experiments use a synthesized file-correlation that predicts, for each file
access, the following file access in 80% of cases. Our synthesis follows the process:
For each file f , the most frequent access following f is marked correlated until
the hit-rate reaches 80%.3

In our experiments we employ 8 Lenovo ThinkCentre M93p as servers. Each
is equipped with an Intel(R) Core(TM) i5-4590 CPU, 32 GB of RAM, and an
1000Mbit/s Intel I217-LM Ethernet adapter. As operating system Ubuntu Linux
14.04.2 LTS is run. The FTP server we employ is CrossFTPServer version 1.11.
The JavaVM is OpenJDK version 7u79-2.5.5-0ubuntu0.14.04.2.

We conduct experiments for each Chinese Wall policies for both SOA and
SPEEDAC. An experiment consists of 5 independent trace replays, i.e., we start
fresh instances of all software. A trace replay measures the response time for
5552150 file accesses by 256 distinct users. We average the obtained results.

6.2 Perceivable Overhead

Our system exhibits an average response time of 2.03ms without usage control
enforcement. The perceivable overhead of SPEEDAC and SOA is obtained by
subtracting 2.03ms from their response times. Table 2 presents our results.

For SOA perceivable overhead is between 1.49ms (for 0.2) and 2.62ms (for
0.8 and 0.8d) with an average of 2.27ms. The perceivable overhead for SPEEDAC

3 The seemingly high hit-rate of 80% in fact constitutes a conservative choice: Hua et
al. [16] obtained a 95.2% hit-rate on the same trace data.
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Fig. 6: Effects of file-correlation on perceivable overhead.

is between 0.96ms (for 0.2) and 1.83 (for 0.8g) with an average of 1.25ms. The
reduction is between 29.1% (for 0.8g) and 61.5% (for 0.8), averaging at 44.9%.

We particularly find the variability in the perceivable overhead among ex-
periments 0.8, 0.8d, and 0.8g with SPEEDAC very interesting, given that these
experiments feature nearly the same perceivable overhead with SOA. We identi-
fied the size of an equivalence class, i.e., its number of usage events, as cause. Our
selection and termination strategies allow for fewer pre-computed decisions with
increased size of equivalence classes. Further investigation showed that, indeed,
fewer pre-compute decisions are enforced during 0.8d and even fewer during 0.8g.

Our results show a reduced perceivable overhead for SPEEDAC in all cases.
On average SPEEDAC reduces perceivable overhead by 44.9% compared to SOA,
i.e., the average perceivable overhead is reduced from 2.27ms to 1.25ms. We find
this encouraging to depoly SPEEDAC for efficient usage control enforcement.

6.3 File-Correlation Effects

Our results made us curious about the effects of different file-correlation hit-rates
on perceivable overhead. We conducted additional experiments to identify the
relation between hit-rate and reduction of perceivable overhead.

A single run was conducted for 3 additionally synthesized file-correlations with
hit-rates 50%, 35%, and 30%. As lowest hit-rate 30% captures only correlating
the most frequent successive file access for each file. Our experiments use policy
0.8 due to high reductions for SPEEDAC in our previous experiments.

Figure 6 shows the results of our experiments. For 80% the reduction is taken
from our previous experiment. Hit-rates 50%, 35%, and 30% show a reduction of
58%, 43%, and respectively 38%. Between hit-rates 50% and 80% the perceivable
overhead reduction only differs by 3%. A curve, fitted on the obtained results,
allows to anticipate reduction rates for hit-rates beyond the ones we employed.

To our surprise hit-rates above 50% only cause marginal additional reduction
of perceivable overhead. On the other side of the spectrum, even hit-rates low as
30% result in a significant reduction of 38%. Thus, our results show SPEEDAC is
useful even in settings with limited knowledge of access correlations.
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7 Related Work

Optimizations for enforcement mechanisms, including usage-control mechanisms,
are common and have been pursued in several directions. Mechanisms that utilize
the inlining technique [10], e.g., based on aspect-oriented programming [21], use
static program analysis to reduce the number of program instructions that are
instrumented to invoke the mechanism (e.g., [1, 13, 27]). SASI [11] and Clara [3]
expand the analysis to sequences of instructions in order to further reduce the
number of invocations of the mechanism. Automata-theoretic techniques have
been proposed for minimizing the composition of a program and an enforcement
mechanism [6, 22]. The optimizations performed by these approaches can be
viewed as a form of statically pre-computed decisions (“permit”) for security-
irrelevant events.

Techniques for optimizing the performance of enforcement mechanisms them-
selves have also been proposed. JavaMOP [27] employs an optimization for
enforcing properties on individual Java objects based on a decentralized indexing
scheme that accelerates the lookup of mechanism state. JavaMOP furthermore
optimizes the number of monitor state updates by exploiting the structure of the
enforced property to achieve a low number of monitors. A dynamic optimiza-
tion of an enforcement mechanism is proposed by the RV system [17], which at
run-time collects dead monitors to reduce bookkeeping overhead.

Particularly for distributed enforcement mechanisms, architecture-based op-
timizations have been proposed. Gay et al. [13] and, subsequently, Decat et al.
[9] propose to use a decentralized coordination among the distributed compo-
nents of the mechanism for efficiently and effectively enforcing given properties.
Kelbert et al. [20] employ a general-purpose distributed database for an efficient
coordination. Our approach, i.e., optimizing via access correlations, is orthogonal
to the related works presented in this section. That is, existing optimization
techniques based on static analysis, individual decision-making, and distributed
architectures can be utilized in addition to our optimization.

Application scenarios similar to the one in our case study have been subject
of enforcement mechanisms before [9, 13, 14, 26]. We use the scenario because,
firstly, the Chinese Wall policy [4] is a classic business requirement and, secondly,
we could use a publicly available mechanism as a reference for our evaluation [13].
Note, however, that SPEEDAC is a generally applicable approach for accelerating
usage control. How special-purpose mechanisms, e.g., for DRM [28] or distributed
access control [2], could be optimized is beyond the scope of the article.

8 Conclusion

We proposed SPEEDAC, an approach for accelerating distributed usage control
enforcement by speculatively pre-computing decisions for usage events based on
access correlations. In our case study, we developed a usage-control mechanism
with SPEEDAC against conflicts of interest in distributed storage systems. The
performance evaluation based on a real world data trace from Microsoft’s Live
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services provides first evidence that our approach has the potential to significantly
accelerate usage control. Concretely, our mechanism exhibited perceivable over-
heads that are up to 61.5% lower on average compared to not utilizing SPEEDAC.
In absolute terms, the acceleration allowed us to reduce the perceivable overhead
from 2.27ms to 1.25ms on average (see Table 2).

Our work constitutes a first step in this promising direction. Further investi-
gation in this direction will provide a better understanding of the full potential
of our approach. Questions for further investigations are: How can the approach
be exploited to accelerate usage control even further and in other application
scenarios, e.g., involving also dynamic policies? Does SPEEDAC influence how
much information an attacker capable of measuring perceivable overhead can
learn about processed secrets?
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