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Abstract Decentralized online social networks (DOSNs) have adopted
quite coarse-grained policies for sharing messages with friends of friends
(i.e., resharing). They either forbid it completely or allow resharing of
messages only without any possibility to constrain their subsequent
distribution. In this article, we present a novel enforcement mechanism
for securing resharing in DOSNs by relationship-based access control
and user-determined privacy policies. Our mechanism supports resharing
and offers users control over their messages after resharing. Moreover,
it addresses the fact that DOSNs are run by multiple providers and
honors users’ choices of which providers they trust. We clarify how our
mechanism can be effectively implemented by a prototype for the DOSN
Diaspora*. Our experimental evaluation shows that controlling privacy
with our prototype causes only a rather small performance overhead.
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1 Introduction

Online social networks (OSNs) are web-based services that offer users the func-
tionality to share messages with other users. A decentralized online social network
(DOSN) [12] is an OSN that is supported by multiple service providers. In a
DOSN, a user can choose a provider whom she trusts most to store her profile.
Typical OSNs provide an author with means for sharing a message with the
set of users she categorized as ‘friends’, ‘colleagues’, etc. As of today, DOSNs
allow authors to share sensitive messages with selectable sets of users but forbid
resharing of sensitive messages entirely.3

A better support of controlled resharing in DOSNs would be beneficial.
Consider, for instance, a user who visits various US national parks. Before the
trip, she had informed her friends early that she will visit the US and later
3 Even the centralized OSN Facebook supports controlled resharing only with users
with whom the message had been already shared with. The alternative in Facebook is
uncontrolled sharing where users may arbitrarily reshare messages that they receive.
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informed them about the exact route and the dates of her visits. During the
trip, she enjoys the landscape and sharing pictures with her friends. For privacy
reasons, she wants to control spreading of this information: pictures should remain
among her direct friends and dates of her visit among her friends and her friends’
closest friends. Her motivation for limiting spreading of the dates of her trip could
be to not provoke burglary [25]. She is less concerned about distributing the mere
fact that she is visiting US national parks. This information may be distributed
further, but without becoming public. This scenario illustrates the need for
providing fine-grained control over sharing, resharing, and the distribution of
reshared messages. We refer to the combination of these three forms of controlled
information dissemination by the term controlled resharing.

In this article, we propose a privacy enforcement mechanism for controlled
resharing in DOSNs. Our mechanism enables users to specify by privacy policies
to which extent messages that they are sharing with others may be distributed
further. Our mechanism provides control over the dissemination of messages
inside a DOSN, ensuring that the privacy policies of all users are respected.

Conceptually, our enforcement of privacy policies is based on relationship-
based access control (ReBAC) [15,13]. When checking authorization, we take the
relationships of all users into account who were involved in delivering a message
to the user who wishes to distribute this message further. Technically, we capture
the relationship between users by trust values, where each user can define her
personal trust values for categories of users. The decision whether a received
message may be distributed to some category of users is made based on the
concept of trust concatenation [19].

We developed an implementation of our ReBAC mechanism4 for Diaspora*
[18], at the time of writing the most popular DOSN [28]. To accommodate the
distributed nature of DOSNs, our mechanism also has a distributed architecture.
We chose a design that supports making authorization decisions in a decentralized
fashion to avoid a single point of failure and performance bottlenecks. As under-
lying technological platform, we chose the CliSeAu tool [16]. This combination
of design decisions results in a solution for enforcing controlled resharing in
Diaspora* that is both, effective and efficient. In our performance evaluation, we
observed an overhead of less than 2% for resharing in the domain of the same
provider and of less than 4% when controlling resharing across providers.

2 Definition of Privacy Policies

After the author of a message m has shared m with a collection of categories
(such as ‘friends’, ‘family’, or ‘colleagues’), some users in these categories might
reshare m with others, some recipients of such a reshared message might reshare
m again, and so on. To capture how a message has been delivered from its author
u1 to a set Cn of categories, we use lists of the form (u1,C1, . . . , un,Cn), which
we call reshare paths.

4 Available at http://www.mais.informatik.tu-darmstadt.de/CReDiC.html.
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For instance, the reshare path (Alice, {Colleagues,Friends},Bob, {Family})
captures the sharing of a message by Alice with her friends and colleagues and
the subsequent resharing by recipient Bob with his family.

When resharing a message, the author risks that recipients might abuse
sensitive content. Hence, the distribution of sensitive messages needs to be
limited to receivers whom the author sufficiently trusts. The role of trust in
making the decision to share or not to share a message is well captured by the
notion of decision trust, “the extent to which one party is willing to depend on
something or somebody in a given situation with a feeling of relative security,
even though negative consequences are possible” [22].

We model the trust of a user u in her category c by a scalar trust value from
the interval [0, 1], where greater values mean greater trust. The maximal trust
value 1 means that u trusts users in c as much as herself wrt. the propagation of
her messages. The minimal trust value 0 means that u does not have any trust
in users in c wrt. propagation. We capture the trust values of a user, along with
the user’s categories and relationships to other users in the user’s privacy policy:

Definition 1. A privacy policy of a user u is a triple ppu=(CATu , relu , tvu),
where CATu is a set, relu ⊆ CATu×USER is a binary relation and tvu : CATu →
[0, 1] is a function. A privacy policy for a set of users U ⊆ USER is a family
(ppu)u∈U of privacy policies for each user in U .

In a privacy policy, CATu specifies all categories of u. The relation relu captures
which other users are in the categories of user u. For instance, relAlice(Friends,Bob)
captures that Bob is a member of Alice’s Friends category. The function tvu cap-
tures the trust of user u in her categories. We impose no further constraints on pri-
vacy policies. Hence, through relAlice(Colleagues,Alice) and tvAlice(Colleagues) =
0.5, Alice could specify a medium trust in herself as a colleague.

Intuitively, relu specifies which users from the universe USER of all users
may receive a message that u (re)shares with a particular category. That is, relu
captures an expectation of u about the visibility of messages that she shares with
her categories. The function tvu captures a complementary aspect, namely to
which extent u trusts users in her categories to propagate her sensitive messages.

Sensitivity of messages is not part of privacy profiles. We capture the sensitivity
of messages for authors by values in [0, 1] (greater values mean greater sensitivity).

We denote the trust of a message’s author in a recipient u ′, who obtained a
message m via a reshare path π, under a privacy policy (ppu)u∈U for a set U
comprising all users in π by PT ((ppu)u∈U , π, u

′). We define PT ((ppu)u∈U , π, u
′)

recursively over the length of the reshare path:

PT ((ppu)u∈U , (u,C ), u ′) = max({tvu(c) | c ∈ C ∧ relu(c, u
′)} ∪ {0})

PT ((ppu)u∈U , π.(u,C ), u ′) = PT ((ppu)u∈U , π, u) · PT ((ppu)u∈U , (u,C ), u ′)

That is, if a user u ′ received a message m from m’s author u directly, then the
trust of u in u ′ via (u,C ) equals u’s maximal trust value for a category of u
from C that u ′ is in. If there is no such category, then the trust of u in u ′ is
0. If u ′ received m via a longer path π then the trust of m’s author in u ′ via π
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is the product of the trust values for each (re)sharing of m by a user along π.
We discuss the choice in Section 6. The product of trust values ensures that
prolonged paths yield a decreased trust value.

We make the semantics of privacy policies and their impact on sharing and
resharing of messages more precise by the following definitions. As a prerequisite
for the definitions, we say that a reshare path (u,C ) (resp. π.(u,C )) is a reshare
path to user u ′ iff relu(c, u

′) holds for some category c ∈ C .

Definition 2. Sharing of a message m with sensitivity value s ∈ [0, 1] by a user
u with a set of categories C complies with a privacy policy (ppu)u∈U if and only
if s 6= 1 holds, C ⊆ CATu holds, and (u,C ) is a reshare path to u ′ for all users
u ′ who receive m due to this sharing.

Definition 3. Let sc ∈ [0, 1] be arbitrary. Resharing of a message m with
sensitivity value s ∈ [0, 1] which had been received via a reshare path π, by a user
u with a set C of categories complies with a privacy policy (ppu)u∈U if and only
if s 6= 1 holds; C ⊆ CATu holds; (u,C ) is a reshare path to u ′ for all users u ′

who receive m due to this sharing; and PT ((ppu)u∈U , π, u) ≥ sc
1−s .

The inequality condition introduced in Definition 3 establishes a lower bound
on the trust for resharing ( sc

1−s ) that the author of a message can raise through
an increased sensitivity value. Note that Definition 3 is parametric in sc ∈ [0, 1],
where higher values of sc are more restrictive. We refer to this parameter as
sensitivity coefficient. For instance, the sensitivity coefficient sc = 0.35 ensures
that resharing is completely forbidden along reshare paths π with low trust
(PT < 0.3), is allowed for low-sensitivity messages (s < 0.3) along reshare paths
π with medium trust (0.5 ≤ PT ≤ 0.6), and is completely forbidden for messages
with a sensitivity value above 0.65. Sensitivity coefficients have been used before
in the semantics of privacy policies for controlling the direct sharing of messages
between users. For instance, Kumari et al. [24] propose sensitivity coefficients for
different kinds of operations. Definition 3 transfers this concept to resharing.

Our privacy policies augment what can typically be found in OSNs, namely
categories of users, by trust and sensitivity. Based on these ingredients in privacy
policies, we define when sharing and resharing are compliant. Since the presented
semantics leaves underspecified how users’ privacy policies are obtained for
checking compliance, the semantics supports a decentralized storage of policies
as well as dynamically changing policies.

3 The ReBAC Mechanism

We chose a distributed architecture for our mechanism to accommodate the
distributed nature of DOSNs. Each service provider of a protected DOSN is
supervised by a separate controller. The controller at a provider ensures that all
sharing/resharing actions of users whose profiles the provider stores comply with
the privacy policies of all users, not only of users hosted at the provider.

In the design of our ReBAC mechanism, we assume that a user’s messages are
only distributed to service providers who are controlled by our mechanism and
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who can be trusted to not circumvent our control. This could be achieved, e.g.,
by corresponding legal agreements between service providers: Service providers
who did not sign the agreement are excluded from receiving certain messages by
providers who signed the agreement.

Our mechanism provides no protection against communication outside the
DOSN. For instance, a user with whom a message has been shared or reshared
inside the DOSN might take this message and communicate it to others via email
or might use the browser to copy the message text and paste it, possibly with
modifications, into a new message in the DOSN. This risk cannot be completely
mitigated by technical means. Users should take this aspect into account when
specifying trust values and when admitting users to their categories. A user who
is distrusted should not be given a sensitive message in the first place.

Finally, we assume that the implementation of sharing/resharing with cate-
gories in the DOSN is sound in the sense that when a user shares or reshares a
message m with a category c then only users in c receive m.

3.1 Decentralized Control of Resharing

The purpose of our ReBAC mechanism is to ensure that privacy policies of all
users are obeyed when sharing and resharing messages inside a DOSN. Since
we assume the DOSN to soundly implement sharing and resharing of messages
with categories, compliance of sharing is ensured by the DOSN (recall Defi-
nition 2). Our controllers therefore do not control the sharing of a message
by a user. Compliance of resharing, however is only partially ensured by the
DOSN, leaving one crucial condition to be ensured by our controllers (recall
Definition 3). When a user u who obtained a message m via a reshare path π
attempts to reshare m with a set C of categories, our controller therefore checks:
Does PT ((ppu)u∈U , π, u) ≥ sc

1−s hold? (C)

Intuitively, the check (C) ensures that the trust of m’s author into u is
sufficiently high to reshare m with other users. The check involves the privacy
policy of (at least) all users in π, which are part of the users’ profiles and, hence,
possibly stored at another service provider than u’s. For enabling the controllers
to perform the check, our controllers establish the availability of all relevant
information by coordination as follows.

sharing m of sensitivity s by u at provider sp with categories C :
When this action is performed, the controller at sp disseminates the following
information to the controller of each service provider sp′ with a recipient
of m: the initial reshare path, the sensitivity s, and for each recipient u ′

the trust value PT (ppu , (u,C ), u ′). Figure 1 (left) shows the dissemination
procedure in pseudo-code. For the sharing, it is invoked with the empty path
π and the value pt = 1 representing the trust value for the empty path. Each
recipient stores the values for controlling future reshares.

resharing m by user u at provider sp with categories C :
When this action is performed, the controller checks whether the action
complies with users’ privacy policies by performing check (C). If the check
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disseminate(m, π, u, C , s, pt):
Data: sp, ppu = (CATu , relu , tvu)
U ← {u ′ | ∃c ∈ C : relu(c, u

′)}
for sp′ ∈ {sp(u ′) | u ′ ∈ U }\{sp} do
PT ← ∅
for u ′ ∈ {u ′ ∈ U | sp(u ′)=sp′} do
pt ′ ← pt · PT (ppu , (u,C ), u ′)
PT ← PT ∪ {(u ′, pt ′)}

end
send(con@sp′, (m, π.(u,C ), s,PT ))

end

Data: sp, u, m, C , (ppu)sp(u)=sp , sc
s ← sensitivity value for m
π ← reshare path for m to u
decompose π = π1.π2, where π2 is
maximal with only users from sp

pt1 ← trust value for π1 to first user in π2

pt ← pt1 · PT ((ppu)sp(u)=sp , π2, u
′)

if pt ≥ sc
1−s

then
disseminate(m, π, u, C , s, pt)

else
disallow reshare

Figure 1. Algorithms for decentralized coordination among controllers

succeeds, then the controller disseminates the reshare path, sensitivity, and
trust values to all affected service providers, as in the case of sharing. Oth-
erwise, the controller disallows the resharing. Figure 1 (right) shows the
procedure in pseudo-code. For the check, the controller uses its local privacy
policies (ppu)sp(u)=sp as well as the value pt1 obtained when m was delivered
to the controller’s service provider. If m was never received from another
service provider (i.e., π1 is empty), then pt1 = 1.

The coordination among controllers follows the propagation of messages. When
a sharing/resharing causes a message to be delivered to another service provider,
the information exchanged by the controllers enables the receiving controllers
to perform check (C) for future reshares. No further communication among the
controllers is then required for this check. That is, all coordination is decentralized.

3.2 Decentralized Control with Timely Policies

The approach presented in Section 3.1 has the virtue to require no coordination
among controllers for checking whether a reshare complies with users’ privacy
policies. This virtue comes with a drawback, which we address in this section:
When a controller checks whether a reshare of a message obtained from another
service provider is compliant, it might rely on outdated privacy policies underlying
the pt-value for π1 in Figure 1. That is, once a message has been shared/reshared
with users at another provider, changes of privacy policies by users at the author’s
service provider cannot influence the further propagation of the message anymore.

We propose a decentralized approach for checking whether a reshare com-
plies with timely privacy policies of users. The key idea behind our approach
is to have the controllers perform a decentralized computation of the check
(C) and to refrain from any proactive distribution of privacy profile informa-
tion. For the decentralized computation, we transform the check (C) slightly to:
Does (1− s) · PT ((ppu)u∈U , π, u) ≥ sc hold? (C’)

The left-hand side of (C’) contains all profile information (the privacy policies
and the sensitivity value) and is the subject to the decentralized computation.
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Figure 2. Coordination for decentralized control with timely policies

Notably, in general none of s, (ppu)u∈U , and π is known to the controller
performing the check. Suppose a user u wants to reshare a message m. The
decentralized computation proceeds in four phases:

Phase 1: The controller at u’s service provider queries the user u ′ from which
u received m. The controller then delegates check (C’) to the controller at
the service provider of u ′. The latter controller queries the reshare path
π = (u1,C1, . . . , un,Cn) of m to u ′ = un.

Phase 2: The controller for un delegates the check to the controller for u1, along
with π. The controller for u1 queries the sensitivity value s form and initializes
result R of the decentralized computation by assigning R ← 1−s .

Phase 3: The active controller (initially the controller for u1) takes the longest
prefix π1 of π such that all users in π1 have their profiles at the service
provider of the controller. The controller then updates the result by assigning
R ← R · PT ((ppu)u∈U , π1, u2) , where U contains all users in π1 and where
u2 is the first user in the remaining suffix π2 of π. If π2 is non-empty, the
controller delegates the further computation, along with R for the result
and π2 for the reshare path, to the controller of u2, which then proceeds in
Phase 3. If π2 is empty, then Phase 4 is entered.

Phase 4: The active controller (for un) checks whether R ≥ sc holds. Depending
on the result of the check, the controller sends the decision to allow or to
disallow the reshare to the controller of u. The controller for u implements
this decision and records π for future reshares.

In Phase 1, we exploit that the user u ′ who (re)shared message m is part of m.
Moreover, the controller at un knows π for m, as established inductively over the
length of the reshare path in Phase 4. In Phase 2, we exploit that the sensitivity
value s for m is stored at the service provider of u1.

Figure 2 visualizes the four phases for the case that all users on the reshare
path are at different service providers (SPi), each of which having its individual
controller (con@SPi). The coordination is triggered by the controller at u’s service
provider. The four phases then sequentially activate the remaining controllers in
the ordering indicated by the arrows.

The computation we propose avoids to gather users’ privacy policies at a
central location. Only intermediate computation results are provided to the
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involved controllers and are subsequently discarded again. The computation leads
the mechanism to effectively check (C) in a decentralized fashion based on timely
privacy policies of users. The coordination among controllers in the computation
follows the ordering of service providers in π, which ensures that successively
involved providers are bound by contract.

3.3 Optimized Coordination

We propose two optimizations for reducing the amount of coordination in the
decentralized computation presented in Section 3.2.

The first optimization applies when a service provider occurs more than once
in a reshare path but other service providers occur in between. The optimization
augments Phase 1, in which the controller for un additionally computes the set
SP of all service providers in π and passes this set to the subsequent phases.
Phase 3 is replaced by the following:

Phase 3’: The controller computes R′ = R·
∏

ui∈U PT (ppui
, (ui,Ci), ui+1), where

U is the set of all users whose profile is stored at the service provider of the
controller and where un+1 = u. The controller then removes itself from SP . If
the resulting set is empty, then Phase 4 is entered. Otherwise, the controller
delegates the further computation, along with R′ for the result, the updated
SP , and with the unchanged reshare path π, to some controller in SP who
then proceeds in Phase 3’.

In Phase 3’, each controller is activated at most once. The optimization is sound
and precise due to the associativity and commutativity of multiplication. However,
it does in general not preserve that service providers of successively involved
controllers are bound by contract.

The second optimization particularly affects long reshare paths and reshare
paths containing low trust values. It augments Phase 3 by the additional abort
condition Is R′ < sc? that triggers the transition to Phase 4. With this condition,
the computation terminates once a sufficiently low intermediate result R is
encountered. The optimization is sound and precise because the product in the
definition of function PT is monotonically decreasing in further factors, as each
of the factors equals a trust value tvu(c) ∈ [0, 1]. Both optimizations can soundly
and precisely be combined, and each maintains a decentralized computation.

4 A Prototype for Diaspora*

To demonstrate the feasibility of our ReBAC mechanism, we developed CReDiC,
short for “Controlled Resharing in Diaspora* with CliSeAu.” CReDiC implements
the mechanism for Diaspora*, the popular open-source DOSN. The implementa-
tion utilizes timely privacy policies (as described in Section 3.2) with optimized
coordination (as described in Section 3.3). Diaspora* is a suitable candidate for
CReDiC as its sharing and resharing with categories is sound. As the underlying
technological platform of CReDiC, we utilize CliSeAu [16].



ReBAC for Resharing in DOSNs 9

4.1 CliSeAu for Ruby

CliSeAu is a tool for dynamic policy enforcement in distributed programs [16].
Previously, it supported enforcement for Java programs only. We developed an
extended variant of CliSeAu that supports enforcement for Ruby programs in
addition. This was necessary for building CReDiC on top of CliSeAu, as Diaspora*
is implemented in Ruby. Our extension utilizes Aquarium [30] for instrumenting
Ruby programs. It consists of 244 lines of Java code and 38 lines of Ruby code.

Our extension of CliSeAu retains the high-level architecture and the coor-
dination model used by CliSeAu for the mechanisms it generates. That is, the
mechanisms consist of enforcement capsules (ECs), placed at the individual
components of the distributed target program. At runtime, each EC intercepts
policy-relevant events of one component of the target, makes decisions for inter-
cepted events, and enforces the decisions made. The developer of an enforcement
mechanism using CliSeAu can specify the events to intercept, the decision-making,
the enforcement, and the coordination among multiple ECs.

4.2 Mapping Diaspora* on our Trust Model

We instantiate the trust model introduced in Section 2 for Diaspora* as follows.
Diaspora* supports that users organize their acquaintances into categories (called
“aspects” in Diaspora*) and that users can change the set of their categories
from the default categories provided by Diaspora*. A user’s set of categories
corresponds to the set CATu in our model. An acquaintance is either in a category
of a user or not, which is captured by the relations relu in our model. When
a user wants to share/reshare a message, she can select one or multiple of her
categories to share with. This corresponds to how we model sharing and resharing
with sets of categories.

Trust and sensitivity values are not supported by Diaspora*. We augment
Diaspora* by trust values for categories by suffixing the category names with
their trust value – e.g., “family (0.9)”. Our mechanism separates name and trust
value again to allow users to change trust by renaming the category. We simulate
the sensitivity value of a message by utilizing the least trust value among the
categories with which the message is shared.

Diaspora* prohibits resharing of sensitive messages, i.e., of messages not
classified as ‘public’. We enable our trust model for resharing by eliminating
this constraint. Since Diaspora* does not allow users to specify categories for
resharing and rather delivers a reshared message to all users who are related to
the resharing user, we simulate the categories for a reshare by taking all categories
of the resharing user. Technically, we implemented this as a patch to Diaspora*
(version 0.5.3.1) consisting of 22 deleted and 20 inserted lines of code.

4.3 The Prototype

We implemented CReDiC as a policy for the CliSeAu tool. This policy specifies
one EC for each service provider (called “pod” in Diaspora*). The ECs run at the
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event delegation
category change path query

relationship change sensitivity query

trust change trust query

sensitivity change decision delivery

Figure 3. Modular architecture of controllers based on eight micro-policies

respective providers and are responsible for controlling the reshares performed
by users at that provider. Notably, the ECs establish the same decentralized
architecture as the DOSN and neither introduce any centralized component nor
impose requirements on users’ client software.

For controlling reshares, CReDiC specifies one method of Diaspora* to be
intercepted. When a call to this method is intercepted by an EC at runtime,
this EC extracts, from the arguments passed to the method, the user u who
attempts to reshare a message as well as the message m to be reshared. With
this information, the EC cooperates with other ECs of the DOSN as described
in Sections 3.2 and 3.3 for determining whether the attempted reshare complies
with the users’ privacy policies.

CReDiC obtains trust values by monitoring changes of category names in
profiles of users (recall that we encode the trust values in the names). It obtains
sensitivity values by monitoring newly shared messages. For this monitoring,
CReDiC intercepts four methods of the Diaspora* code. They allow CReDiC to
keep track of dynamically changing privacy policies at the respective EC and
take them into account for controlling resharing.

CReDiC is modular, consisting of eight individual components that we call
“micro-policies”. Four micro-policies handle changes of users’ privacy policies
and the storage of sensitivity values. The other four micro-policies handle the
four phases for resharing. This separation yielded a low code complexity (each
micro-policy is implemented in at most 41 lines of code). Figure 3 depicts the
micro-policies (shaded boxes), their triggers (white boxes with solid arrows), and
their temporal ordering (uncontinuous arrows). The trigger for a micro-policy is
either an event of a service provider or a delegation received from another EC.
The modularization allows a phase to take place at the same controller as the
previous phase (dotted arrows) or at a different one (dashed arrows). The figure
displays dash-dotted arrows where both cases are possible.

CReDiC globally fixes the sensitivity coefficient to sc = 0.35. Note that the
particular coordination model of CliSeAu based on delegation allows CReDiC
to control simultaneously occurring reshares in an interleaved fashion, without
waiting for the completion of all four phases for each individual reshare. For
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securing the communication between the ECs, CReDiC utilizes CliSeAu’s SSL
feature. With this feature, a certificate infrastructure is automatically generated
for the individual ECs such that authenticity and confidentiality of the cooperation
is maintained in presence of a network attacker. Overall, the implementation of
CReDiC consists of 614 source lines of Java source code and additional 184 lines
of Ruby code that realizes the interface to the Diaspora* code.

4.4 Deployment and Usage

As the provider of a Diaspora* pod, one can deploy CReDiC in two steps.
First, one patches the code of the pod by applying the small patch described
in Section 4.2. This step can be performed automatically with the GNU patch
tool. Second, one instruments the code of the pod with CReDiC. This step is
performed automatically by invoking the extended version of CliSeAu, described
in Section 4.1, with CReDiC as a parameter.

Once CReDiC is deployed to a Diaspora* pod, controlled resharing is enabled
in the pod. Users specify their privacy policies via the accustomed Diaspora* web
interface. Concretely, a user specifies her set of categories and the users in these
categories as she would in normal Diaspora*. She can specify and update her
trust in categories by modifying the trust value contained in the category name
(as described in Section 4.2). In particular, users need not use further interfaces
to specify their privacy policies or benefit from CReDiC’s controlled resharing.

4.5 Analysis

We conducted several tests to verify the effectiveness of CReDiC. Concretely, we
verified CReDiC for three policy-compliant cases of resharing: resharing a message
from the pod on which it was initially shared, resharing from a different pod, and
re-resharing a message involving three pods. We also verified for corresponding
non-compliant cases that CReDiC successfully prohibits the resharing. That
is, the tests confirmed that CReDiC effectively enforces users’ privacy policies.
During the tests, the ECs of all pods involved in a reshare path were online
during the resharing. Since DOSN pods typically aim to be available to their
users, CReDiC does not implement a fallback strategy for offline pods.

Our ReBAC mechanism and our prototype scale as follows. The number of
controllers (ECs) is independent in the number of users in the DOSN and grows
linearly in the number of pods. The amount of network communication performed
for the reshare of a message grows linearly in the number of pods in the reshare
path of the message. This is due to our first optimization described in Section 3.3.
In particular, no network communication takes place between the controllers
when the reshare path involves only a single pod or when a user changes her
privacy policy. The computational complexity grows linearly in the length of the
reshare path: for each element of the path, one lookup of a trust value and one
multiplication. Because our prototype duplicates users’ privacy policies in its own
state and stores reshare paths, the memory required by each EC grows linearly in
the number of pod users’ categories and in their number of shares and reshares.
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pod0 pod1 pod2

Alice Bob Charlie

Dave

Friend (0.8)

Colleague (0.5)

Friend (0.8),
Colleague (0.5)

Friend (0.7)

Friend (0.7)

Friend (0.7)

Figure 4. Example scenario for the performance evaluation

duration overhead
operation CReDiC Diaspora* absolute relative

share message 231.5ms 230.3ms 1.2ms 0.52%
reshare (intra) 294.6ms 290.7ms 3.9ms 1.34%
reshare (inter) 294.3ms 281.8ms 12.5ms 4.44%
change trust 36.0ms 31.1ms 4.9ms 15.76%

Table 1. Performance evaluation results

5 Performance Evaluation

Being a mechanism that operates while the DOSN Diaspora* is running, CReDiC
necessarily introduces some overhead. We evaluate how much overhead is caused
with experiments in which we measure and compare the time taken by Diaspora*
for resharing with and without CReDiC.

For the performance evaluation, we used three machines with Intel Quad-Core
i5-4590 (3.3GHz) CPUs and 32 GB RAM. The machines ran Ubuntu 14.04.2
with 3.13.0 kernel. We ran three patched Diaspora* pods (see Section 4.2) in
production mode with Ruby 2.1.1, Apache 2.4.7, and a MySQL 5.5.54 database.
Four user profiles were hosted by the three pods. We measured page fetch times
using curl 7.52.1 on an Intel Quad-Core i7-6600U (2.6GHz) with 16 GB RAM.
All four machines were connected in a 1Gbps LAN. We use a setup consisting of
four users. Figure 4 displays the users (shaded boxes) and their association with
the pods (white boxes). Users’ privacy policies are indicated by arrows: An arrow
from user u to user u ′ labeled with category c and trust value t represents that
relu(c, u

′) holds and tvu(c) = t . That is, users’ trust in categories is repeated on
all arrows with the same source and same category label.

Table 1 shows our results. For each analyzed operation, the table contains a
separate row. The first column shows the names of the operations, the second and
third column show the durations of the operations in Diaspora* when CReDiC
is enabled and, respectively, disabled. The fourth and fifth column show the
absolute and relative overhead.

Sharing a message took 231.5ms with CReDiC enabled, compared to 230.3ms
with CReDiC disabled, which corresponds to an overhead of 1.2ms (0.52%).
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For resharing, we evaluated two cases: intra-provider resharing, where Alice
reshares a message by Dave with her friends and colleages, and inter-provider
resharing, where Bob reshares a message by Alice with his friends. For the two
operations, the overhead of CReDiC ranges from 3.9ms to 12.5ms (1.34% to
4.44%). CReDiC’s overhead on dynamically changing trust between users was
4.9ms (15.76%, due to the low baseline duration of 31.1ms). Each duration value
in Table 1 reflects the mean of the lower 90th% of 1000 measurements [27].

Overall, CReDiC maintains a rather small performance overhead. An at first
sight counterintuitive result of the evaluation is that inter-provider resharing in
Diaspora* is faster than intra-provider resharing. However, Diaspora* notifies
remote users asynchronously about reshared messages while users at the same
pod are notified synchronously. In our scenario, inter-provider resharing notifies
both recipients (Alice and Charlie) asynchronously while intra-provider resharing
includes one synchronous update (Dave).

6 Related Work

Underlying our model of trust, presented in Section 2, are two main design
decisions. Firstly, we model trust as scalar values ranging from 0 to 1, which
can be found also elsewhere in the literature [4,17,23]. Alternatives found in the
literature are models of trust based on vectors of scalars (e.g., [21]). Through
vectors of scalars, individual aspects of trust such as belief and disbelief in users
[21] or ability, integrity, and benevolence of users [26] can be captured in a more
fine-grained fashion. We build our trust model on scalar trust values rather than
vectors to give users means for quantifying their relationships while taking into
account that specifying trust vectors might be a burden users refrain to take.

Secondly, our model utilizes a particular notion of trust concatenation (mul-
tiplication) and selects a single path (the reshare path) for capturing trust of
an author in a resharing user. Multiplication for concatenating scalar trust val-
ues has been proposed before [4,23]. Alternative models for scalar trust values
have been proposed as well. These models combine some form of multiplicative
concatenation of trust with the aggregation of trust along multiple paths, for
instance via weighted sums of path trust [17] or maximal path trust [23]. Fur-
ther models for trust concatenation are based on trust vectors (e.g., [19]). In
defining compliance with users’ privacy policies based on the reshare path and
no further paths between users, we see two advantages: reduced complexity and
context-dependence. By context-dependence we mean that we consider the trust
along the list of users who have actually seen and reshared the message, rather
than users’ reputations. That is, our choice of trust value reflects the notion
of decision trust, which by definition is associated with a situational context.
Further validation of our model or comparison to other models, e.g., by means of
user studies, are beyond the scope of this article.

In our scenario, authors of messages are the sole owners of their messages.
Multiparty access control (e.g., [20]) is outside the scope of this article.
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The desire to control sharing and resharing has lead to the proposal of several
centralized approaches. Fong et al. [6,13,14] propose a model of OSNs, a ReBAC
model, and a language for expressing ReBAC policies. Relationships between
users are modeled as binary relations on users. The policy language is a modal
logic on the relations of the OSN that allows specifying constraints on resharing
and subsequent distribution. The ReBAC mechanism for OSNs by Carminati
et al. [8] enforces privacy policies of authors that can specify the maximum
length of reshare paths, the minimal concatenated trust value, or relationship
categories. The access control is shared between the requesting user, who provides
a proof of being authorized to access the resource, and the resource provider,
who checks the proof. Virtual Private Social Networks [3,9] are social networks
built on centralized OSNs like Facebook but achieve privacy of user information
at the client-side via a browser extension. This line of work focuses on controlled
sharing of messages, not controlled resharing. SCUTA [24] is a usage control
mechanism for centralized control of sharing in OSNs. The mechanism controls
users’ client-side operations, such as viewing, saving, and printing content.

Mechanisms for DOSNs have also been proposed. Albertini et al. [1] propose
an access control mechanism for cloud-based OSNs. The proposed mechanism
supports resharing but introduces centralized components, KMS and RMS, for
storing keys and access rules. While the mechanism utilizes encryption for users’
keys and access rules transmitted to KMS and RMS, colluding KMS and RMS
could reveal the plain data. Bahri et al. [2] propose a mechanism for a-posteriori
access control in a DOSN, which also relies on a centralized component (called
TReMa). Our mechanism, in contrast, features a fully decentralized architecture.
Safebook [10,11] and PeerSoN [7,5] are DOSNs for protecting privacy of user data.
Both DOSNs include a mechanism for controlled sharing of messages. Controlled
resharing is beyond their scope. GEM [29] is a distributed goal evaluation
algorithm for datalog-like policies. The goal in our trust model (compliance
according to Definition 3) is of a simpler but quantitative nature that cannot be
specified as a goal for GEM. D-FOAF [23] is a distributed identity management
system on top of trust relationships between users in multiple OSNs. D-FOAF
computes the trust between two users by gathering trust values of all paths
between requester and owner at one location. Our mechanism computes trust
between two users based on a single path (the reshare path) and computes path
trust in a distributed fashion to keep users’ privacy policies decentralized.

7 Conclusion

We presented a novel enforcement mechanism that supports more fine-grained
privacy policies for resharing of messages than popular OSNs like Facebook and
DOSNs like Diaspora*. Our ReBAC mechanism enables controlled sharing and
resharing of messages among users hosted at one service provider of a DOSN and
also among users hosted at different providers. The mechanism enforces personal
privacy policies of users inside a DOSN based on ReBAC. As usual for such
access control mechanisms, malicious communication outside the DOSN is not
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prevented. We demonstrated that the mechanism can be effectively implemented
by a prototype for Diaspora* and showed that its performance overhead is small.

Our mechanism complements mechanisms for controlled sharing in OSNs by
which authors know and explicitly specify the supposed recipients of messages.

Enabling authors to better control how their messages spread after resharing
shall allow them to permit resharing more often, without uncontrollable dangers
to their privacy. Thus, users can securely increase their outreach in DOSNs like
Diaspora* and develop new personal connections with users who have received
their messages via trusted others.
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