
An Evaluation of Bucketing in Systems with
Non-Deterministic Timing Behavior

Yuri Gil Dantas, Richard Gay, Tobias Hamann,
Heiko Mantel, and Johannes Schickel

Department of Computer Science, TU Darmstadt, Germany
lastname@mais.informatik.tu-darmstadt.de

Abstract. Timing side-channel vulnerabilities constitute a serious threat
against privacy and confidentiality of data. In this article, we study the
effects of bucketing, a previously proposed mitigation technique against
timing side channels. We present two implementations of bucketing that
reside at the application and at the kernel level, respectively. We experi-
mentally evaluate the effectiveness of these implementations in a setting
with non-deterministic timing behavior, a practically relevant setting
that has not been studied before. Our results show that the impact of
non-deterministic timing behavior is substantial. The bucket boundaries
cannot be established sharply and this reduces the effectiveness of buck-
eting. Nevertheless, bucketing still provides a significant reduction of
side-channel capacity.

1 Introduction

In a side-channel attack, an adversary exploits execution characteristics of a
program to deduce secret information. Timing behavior, energy consumption,
EM radiation are execution characteristics on which side-channel attacks can
be based. By exploiting side-channel vulnerabilities, attacks have been able to
deduce sensitive information like e.g., cryptographic keys. For instance, timing
attacks that are able to recover the full secret key from AES [3] and RSA [12]
implementations have been developed. Timing attacks have also been developed
against web applications [2,4].

Multiple techniques against timing side-channel attacks have been proposed
like, e.g., predictive mitigation [22], unification [15], or cross-copying [1]. This
article focuses on the bucketing technique [14]. Bucketing is the discretization of a
program’s execution times such that the results of each program run are returned
at only a fixed number of points in time (buckets). Security-wise, bucketing aims
to reduce the amount of information that an adversary can learn for a secret
by reducing the possible number of observations. Performance-wise, bucketing
allows one to navigate in a flexible fashion in the trade-off between the security
provided and the performance overhead cost.

Bucketing has been evaluated in [14,16,8,21]. The bucketing technique has
been proposed in [14], along with a theoretical bound on the amount of infor-
mation about the secret key that can be extracted from a timing-channel. The

Published in:
L. J. Janczewski and M. Kutylowski (Eds.): SEC 2018, IFIP AICT 529, pp. 323-338, 2018.
© Springer Nature Switzerland AG 2018
The final authenticated version is available online at
https://doi.org/10.1007/978-3-319-99828-2_23

https://doi.org/10.1007/978-3-319-99828-2_23


effectiveness of bucketing for a cryptographic implementation of modular ex-
ponentiation was demonstrated using this bound. In subsequent studies, it has
been shown that guarantees on semantic security of cryptosystems remain valid
when applying bucketing to mitigate timing side channels [16]. The same work
also provided a tighter bound on the leakage of timing channels. In [8], a sys-
tematic approach is presented in order to determine the optimal instantiation of
bucketing. Recently, an even tighter bound for timing-channel leakage has been
proposed, that is about the square root of the previously considered bounds [21].

So far, the technique of bucketing has been studied for systems with deter-
ministic timing behavior [14]. In such systems, each given input always leads
to the same timing observation. In this article, we investigate a complementary
setting, namely the effect of bucketing in systems with non-deterministic timing
behavior. A better understanding for this setting is needed for clarifying the
effects of bucketing in a non-deterministic setting.

Bucketing can be implemented at different levels of a layered system archi-
tecture. In our research project, we developed two implementations of bucket-
ing: one implementation at the application level, and another one inside the
operating-system kernel for reducing timing side channels in Java programs.
Based on these implementations, we evaluate the effectiveness of bucketing in
a non-deterministic setting. More concretely, we evaluate the effectiveness of
bucketing in terms of leakage bounds and reduction of side-channel capacity.
Moreover, we evaluate the efficiency of our implementations.

Our results indicate that our implementations are not able to release events
instantaneously at the bucket boundary, but rather within a certain interval
after the bucket boundary. This leads to a large number of possible observations
that an adversary can make, increasing the leakage bound on information an
adversary can learn about the secret. We provide empirical estimations of the
side-channel capacity to show that our implementations can significantly reduce
the channel capacity by 84% (application level) and 78% (kernel level). These
numbers are similar to the reduction achieved by other established techniques
for mitigating timing side channels like e.g., cross-copying, as shown in [17].

The remainder of the article is structured as follows. Section 2 briefly clarifies
the concept of timing side channels. Section 3 presents an overview on bucket-
ing. Section 4 discusses the design space options for bucketing implementations
and presents implementations at both application and kernel level. Section 5
provides details on our empirical evaluation of bucketing for systems with non-
deterministic timing behavior. After a discussion of the related work in Section 6,
we conclude in Section 7.
All machinery needed to reproduce our results are publicly available.1

2 Timing Side Channels

Timing side channels go back to Kocher’s seminal work on timing attacks [13].
In a timing-side channel attack, an adversary exploits correlations between the

1
http://www.mais.informatik.tu-darmstadt.de/assets/bucketing/machinery.tar.gz

2

http://www.mais.informatik.tu-darmstadt.de/assets/bucketing/machinery.tar.gz


execution time of a program and the secrets that the program processes. By
gathering multiple timing observations, such an adversary can learn information
about these secrets, and, in the worst-case, extract all secrets.

In RSA, modular exponentiation (modExp for short) operation has been a
classic example of a timing side-channel vulnerability. Consider for instance the
implementation in Figure 1, which can be used to implement encryption and
decryption operations of the RSA encryption scheme [19]. For decryption in
RSA one computes p = cd (mod n), where c is the ciphertext, d is the private
exponent, and n is the modulus.

The timing behavior of modExp reveals the Hamming weight of the private
exponent. The private exponent d is processed by modExp bit by bit. When a
bit is set (Line 4), modExp performs an additional multiplication and mod oper-
ation (Line 5). Execution of these instructions takes additional time. Thus, an
adversary can learn the Hamming weight of the private exponent by performing
multiple timing observations. Knowing the Hamming weight of the private ex-
ponent might be sufficient for making a brute force attack (i.e. by trying out all
possible private exponent values with that Hamming weight) feasible.

1 public int modExp(int c, int d) {
2 int r = 1;
3 for (int i = 0; i < this.keySize; i++) {
4 if (d % 2 == 1)
5 r = (r ∗ c) % n;
6 c = (c ∗ c) % n;
7 d >>= 1; }
8 return r % n;}

Fig. 1: Implementation of modExp containing a timing side-channel vulnerability

3 Bucketing

Bucketing is a technique against timing side-channel attacks. The approach of
bucketing is to discretize the timing behavior of a program by grouping different
execution times into so called buckets. More concretely, bucketing allows only
a set of possible execution times by delaying program executions to a set of
observable times, the so-called bucket boundaries. For each event that occurs
within the limits of a given bucket, the event is delayed until the boundary of
this corresponding bucket. Note that this delay inherently causes a performance
penalty. What one gains in exchange is a reduction of the amount of information
that can be leaked through a timing side channel.

Bucketing has been initially studied as mitigation technique in systems with
deterministic timing behavior [14]. That is, each given input always leads to
the same timing observation. Thus, bucketing can reduce the number of timing
observations to the number of defined buckets. The same article shows that
bucketing in combination with input blinding2 is effective in mitigating timing
side channels in cryptographic implementations.

2 Blinding [13] is a technique that decorrelates the messages from the decryption times.

3



In contrast to constant-time implementations like, for instance, unification [15],
cross-copying [1], conditional assignment [18], or transactional branching [9], the
goal of bucketing is not to completely mitigate timing side channels. Rather,
bucketing bounds the information that an adversary can learn for a secret by
reducing the possible number of observations he can make. This allows an ad-
versary to infer some information about the secret, but at the same time reduces
the performance overhead caused by the mitigation technique. A careful choice
of the bound of information that is allowed to be leaked, however, can prevent
adversaries from learning the complete key.

It has been shown that the amount of information that is leaked to an ad-
versary through a timing side channel can be bounded by

log2

(
n + O− 1

n

)
(1)

where O denotes the number of different timing observations and n is the amount
of measurements the adversary performed [16]. A bigger value of O increases the
bound on leaked bits. Conversely, reducing O decreases the bound of leaked bits.

Example. To showcase the leakage reduction that can be achieved by bucket-
ing, consider a hypothetical implementation of a crypto-algorithm with a 512-bit
secret key. Assume a flawed implementation that leaks the Hamming weight of
the secret key (e.g., the modExp implementation from Figure 1), and determinis-
tic timing behavior. With these assumptions, an adversary of the non-mitigated
program can at most make 512 different observations, depending on the Ham-
ming weight of the key. Instantiating Expression (1) for this example and 153
measurements by an adversary, we get a bound on the leakage of 512 bits.

This means that, in the worst case, an adversary can determine the whole
key within 153 measurements. When applying an instantiation of Expression (1)
with three buckets for this example, we get a bound on the leakage of 14 bits.
This means that, in order to learn the complete key, an adversary needs at least
1.64 × 1077 measurements. This illustrates how effective bucketing can be in a
setting with deterministic timing behavior.

4 Implementations of Bucketing Mechanisms

This section presents two implementations of bucketing: one at the application
level and one inside the operating-system kernel. These implementations meet
design goals concerned with the effectiveness and efficiency of the mechanism.
We also evaluate the design space w.r.t. the choice of a system level, the choice of
a delay mechanism and the handling of events occurring outside the last bucket.

4.1 Terminologies and Design Goals

An implementation of bucketing shall facilitate an effective and efficient reduc-
tion of timing side channels in the target program. By effectiveness, we refer
to the ability of the mechanism to reduce the number of possible observations
to a limited amount of points in time. By efficiency, we refer to the overhead
introduced to the target program by the mechanism.

4



For systems with non-deterministic timing behavior, releasing events instan-
taneously at the corresponding bucket boundary might not be possible, e.g., due
to the non-deterministic behavior of garbage collection or just-in-time compi-
lation in Java programs. In this case, the event will rather be delayed within
a certain interval of possible observations after the bucket boundary. We refer
to the width of this interval as the precision of the mechanism, and to the dis-
tance between the intended bucket boundary and the mean release time of our
mechanism as the bias of the implementation. A high precision and thus a small
release interval is the central aspect of the effectiveness of the mechanism.

Regarding user acceptance of security mechanisms, effectiveness alone is not
sufficient. The mechanism should rather also be as transparent to end users as
possible. Hence, the runtime overhead added by the mechanisms shall be as
low as possible while still enforcing the desired security properties. The over-
head added by a bucketing implementation has two aspects: the overhead added
by the delay of events until the next bucket boundary, and effects that are in-
duced by the implementation. The first aspect is mainly affected by the choice
of bucket sizes and boundaries, and is thus induced by the mitigation technique
itself. Previous work on bucketing has covered the overhead added by the miti-
gation technique itself [14], and how bucketing can be instantiated with minimal
performance overheads [8]. In this article, we focus on the overhead added by our
actual implementation. This overhead, in turn, has two main aspects. Firstly,
an implementation of bucketing can add a general overhead to the program, for
instance due to initialization steps of the mechanism. Secondly, the bias of the
implementation directly adds to the perceived overhead of the mechanism.

A generic security mechanism shall be applicable to a wide range of target
programs. In this work, our focus is on bucketing for Java applications. Hence, an
implementation of bucketing shall abstract from the target program as much as
possible, such that it can be applied to generic programs that include a timing
vulnerability. However, a generic approach that can be used for a variety of
programming languages can be preferable to language-specific implementations.

In summary, we identify three main design goals for an implementation of
bucketing in practice: high precision, low overhead (including bias), and appli-
cability to a wide range of programs.

4.2 Design Space

Choice of System Level. One central consideration of the implementation of
the security mechanism is the system level where the mechanism is implemented.
Security mechanisms can be placed directly at the kernel level of the operating-
system, at the application level where the target programs of the mechanism
reside, or in an intermediary middleware level that is specific to the intended
application domain of target programs.

Placing our implementation of bucketing in an intermediary middleware level
does not meet our design goal of applicability to a wide range of target programs.
Specific middleware levels can differ between different systems, and would thus

5



require specialized implementations for each middleware level to be supported.
In the following, we focus on the application and kernel level.

Regarding the three design goals identified in Section 4.1, we see both al-
ternatives fitting for an implementation of bucketing. An implementation in the
kernel level offers the advantage of applicability to target programs in different
programming languages, as long as they can interact with the system level. An
implementation at application level facilitates a better portability between sys-
tems running different operating systems and requires no modification of the
underlying system. We implement bucketing for Java programs at application
level using the runtime enforcement framework CliSeAu [10]. We also imple-
ment bucketing at kernel level as a reference to validate our findings.

Delay Mechanisms. Regarding the precision of a bucketing implementation,
it is vital to achieve a high precision of the delay mechanism that is used for de-
laying events. We have considered two alternative techniques for delaying events:
sleep mechanisms and busy-waiting loops.

We evaluated the precision of these techniques at both application and ker-
nel level. For each system level, we performed 219 measurements to assess the
precision of sleep and busy-waiting. On the application level, busy-waiting is on
average 199.55% more precise than sleep mechanisms. On the kernel level, the
precision gain of busy-waiting is on average 199.85%. For this reason, we favored
busy-waiting over sleep technique in our implementations.

Handling Events Outside the Last Bucket. The theory of bucketing as-
sumes knowledge about the worst-case execution time (WCET) of a program.
In practice, knowledge about this time is usually not given. In a setting with
non-deterministic timing behavior, a clear boundary for WCET does not exist
in general. Effects like e.g., scheduling affect the execution time of a program.

This drawback leads to the question how the last bucket boundary shall be
chosen in practice, and how events that are observed outside this last bucket shall
be handled by the mechanism. We leave the choice of the last bucket boundary
underspecified, as this might differ between system environments or specific re-
quirements on the mechanism for a given target program. Thus, the last bucket
boundary can be instantiated by the end user of the mechanism. Regarding the
aspect of handling events outside the last bucket, we see two alternatives: such
events can either be released directly when they are observed, or they can be
dropped completely. Releasing events directly when they are observed by the
mechanism might introduce additional observations to an adversary. This can
thus lead to additional leakage. Completely dropping events, however, might be
unacceptable for end users of the mitigated application. We thus choose to re-
lease such events immediately for our implementations. However, adapting this
behavior is straightforward and can be done easily in both implementations.

4.3 Application Level Implementation

We implement bucketing at the application level using the runtime enforcement
framework CliSeAu [10]. CliSeAu is a generic framework used to harden Java

6



programs by dynamically enforcing security requirements. CliSeAu has a mod-
ular architecture consisting of four components: interceptor, local policy, enforcer
and coordinator. For our implementation of bucketing, we focus on the intercep-
tor and the enforcer. The interceptor component is responsible for intercepting
attempts of the target program to perform security-relevant events and the en-
forcer component enforces the decided countermeasures on the target program.
For more details about CliSeAu’s architecture, we refer the interested reader
to [10]. The use of a generic enforcement framework enables the support for a
wide range of target programs. To instantiate our mechanism, the signature of
the sensitive methods and the sizes of the buckets are provided to the framework.

target program

bucketing 
mechanism

program
initialization

timing-sensitive
computation

event 
notification

event
delay

program
continuation

user
space

Application level

target program

bucketing 
mechanism

program
initialization

timing-sensitive
computation

event 
notification

user
space

kernel
space event

delay

program
continuation

Kernel level

Fig. 2: High-level workflow of our bucketing implementations

The overall workflow of our implementation is depicted on the top of Fig-
ure 2. After program initialization, but before starting the timing-sensitive com-
putation, the mechanism is notified about the start of the computation. The
timing-sensitive computation is then executed, notifying the mechanism once it
has been finished. The mechanism delays the event until the next bucket bound-
ary is reached, continuing regular program execution afterwards.

The event notification step before the timing-sensitive computation is per-
formed in CliSeAu by the interceptor component. To instantiate this inter-
ceptor component, users of the mechanism provide the method signatures of
timing-sensitive computations. The event delay is performed in CliSeAu by the
enforcer component. To instantiate this enforcer component, users of the mech-
anism provide the amount of buckets to be enforced, and their corresponding
boundary times. Using these two components, the CliSeAu encapsulation pro-
cess modifies the target program by inlining the bucketing mechanism to the
target program. Following our design decision from Section 4.2, events outside
the last bucket are released immediately without delay.

Instantiating our mechanism for a specific target program involves two as-
pects: the specification of the monitored methods in the target program, and
the instantiation of the parameters for bucket boundaries. The first aspect is
given in the form of AspectJ pointcuts, while the second aspect is implemented
as instantiation of an EnforcerFactory in CliSeAu with an array containing the
bucket boundaries to be enforced. In practice, an instantiation of our mechanism
can be achieved in 12 LOC.

7



4.4 Kernel Level Implementation

Our bucketing implementation in the Linux kernel provides an interface for user
space target programs to incorporate bucketing in timing-sensitive computations.
The Linux kernel provides multiple interfaces that can be used from application
level. Among these, regular system calls and so called virtual dynamically shared
objects (vDSO) are the most interesting ones for our implementation. System
calls provide developers of user space programs with the ability to interact with
the kernel. However, system calls triggers a context switch from user space to
kernel space, where the functionality implemented by the system call is executed.
The need for this context switch can be avoided by using vDSO calls. The vDSO
mechanism maps kernel methods into user space contexts, such that they can be
executed directly in user space without the overhead of a context switch3. For
this reason, we implement bucketing at the kernel level using vDSO calls.

The overall workflow of bucketing in the Linux kernel is depicted on the
bottom of Figure 2. Both the event notification step and the event delay are
performed as vDSO calls in the kernel. The bucketing mechanism is not inlined
when using our kernel level implementation. Users of our mechanism include the
vDSO calls to the mechanism directly in their target programs code4. For this,
the event notification call is executed directly before starting the timing-sensitive
computation. The call returns the current time stamp inside the Linux kernel,
which is stored in a local variable in the target program. After executing the
timing-sensitive computation, the event release call is executed, providing the
returned initial time from the notification step. The kernel implementation then
delays the event before returning to the target program. Events outside the last
bucket are released immediately without delay.

Similar to our implementation at the application level, instantiating our
mechanism for as specific target program involves two aspects: calling the event
notification method does not involve any parameters and will only initialize our
mechanism by returning the time from the kernel. When calling the event delay
method, the number of buckets, their corresponding boundaries, and the initial
time from the notification step are provided as arguments for the call. Hence,
including the definition of a local variable for the initial time, our mechanism is
instantiated with 3 LOC inside the target program.

5 Evaluation

Our empirical evaluation investigates the effectiveness of bucketing in a non-
deterministic setting in terms of leakage bounds and reduction of side-channel
capacity. Our evaluation compares our implementations of bucketing in terms of
precision, bias and overhead.

Evaluation Setup and Metrics. All of our experiments are carried out on a
desktop machine, Intel i5 3.3GHz with 4GB of memory, running Ubuntu 14.04
with kernel 4.9.18 and using OpenJDK 8.

3 cf. Linux man-pages: http://man7.org/linux/man-pages/man7/vdso.7.html
4 For Java programs, the whole procedure can be done via JNI calls.

8

 http://man7.org/linux/man-pages/man7/vdso.7.html


In our experiments, we consider a vulnerable implementation of modExp (see
Section 2) that can be used in RSA operations. We simulate blinding by random-
izing each message before modExp. We assume a local adversary who measures
the execution time of modExp using the maximum precision measurements pro-
vided by the JVM, System.nanoTime(). Following common practices by [11], our
measurements consist of two phases: start-up and experimental. In both phases,
we perform 219 timing measurements. Note that only the results obtained in the
experimental phase are considered in this article, as these measurements relate
to the steady-state of modExp. For each bucket boundary, we reject outliers that
lie further than three median absolute deviations from the median.

In contrast to systems with deterministic timing behavior, a program running
in a system with non-deterministic timing behavior can have different execution
times for the same input. Thus, we conduct multiple samples to evaluate the
practical impact of our results. For the sake of space, we present three specific
samples in the following sections. To evaluate the effectiveness of our implemen-
tations in reducing timing side-channels, we consider the worst-case reduction
observed. Whereas to evaluate our implementations in terms of precision, bias
and overhead, we consider their mean values.
In our experiments, we measure the following metrics:
– Number of Timing Observations (O): The number of different timing

observations (value-wise) an adversary can gather after performing timing
measurements on the program.

– Channel Capacity (CC): The estimation of the amount of information (in
bits) leaked from the timing channel.

– Average Response Time (Tresp): The average time a user whose request
was processed by the program has to wait between the time that he sent the
request and the time that he obtained the response.

5.1 Empirical Results for the Leakage Bounds

We evaluate how much bucketing can reduce the amount of bits leaked by re-
ducing O. We measure the number of different timing observations an adversary
can gather after performing 219 timing measurements on modExp. We compute
the bound on leaked bits presented in Section 3. As a result, we obtain a bound
on how many bits an adversary can learn in this setting.

Experimental Design. We conduct experiments in two scenarios: with and
without bucketing. For all experiments, we use a static RSA 1024-bit key with
Hamming weight 700. When using bucketing, we instantiate our implementations
with four buckets. For this, we chose the first three buckets equidistantly to each
other and the last bucket as the estimated worst case execution time of modExp.
Finally, we compute Expression 1 with our results.

Experimental Results. Three samples of our results are described in Figure 3.
One of the samples is depicted in Figure 4. no-bucketing represents our results
without bucketing, whereas bucketingAPPL and bucketingKRNL represent our
results when using bucketing at application and kernel level, respectively.

9



Bucketing reduces O by 99%. Conversely, O is much larger when applying
bucketing in systems with non-deterministic timing behavior. While bucketing
in systems with deterministic timing behavior can reduce O to the number of
defined buckets, in our case 4, bucketingAPPL and bucketingKRNL reduce O

to 1461 and 3737, respectively. Thus, according to Expression 1, an adversary
might be able to obtain the entire key after performing 219 timing measurements.

scenario sample 1 sample 2 sample 3

O bound reduction O bound reduction O bound reduction

no-bucketing 374341 880494 - 365596 933315 - 417749 933315 -

bucketingAPPL 846 9053 99.77% 1162 11909 99.68% 1461 14495 99.65%

bucketingKRNL 2429 22331 99.35% 2842 25489 99.22% 3737 32049 99.10%

Fig. 3: Reduction of timing observations and leakage bounds

(a) no-bucketing (b) bucketingAPPL

(c) bucketingKRNL

Fig. 4: Timing distributions with and without bucketing

An important question for these results is to find the cause for this large
number of observations in our implementations. By taking a closer look at our
results, we notice that our implementations are not precise when releasing events.
That is, our implementations release events within a certain interval after the
bucket boundary, as illustrated in Figures 3(b) and 3(c). This substantiates
our claim, discussed in Section 4.1, that releasing events instantaneously at the
bucket boundary seems not to be possible in a non-deterministic setting. A
possible explanation for this effect is that activities in the CPU, e.g., scheduling
and system load, can cause a latency in the response time of programs.

As a result of this imprecision, an adversary can gather a large number
of observations from the program even when bucketing is applied5. A possible
conclusion to be drawn is that bucketing is not effective in reducing timing side

5 Omitted here for the sake of space, we also evaluated that keys with other Hamming
weight (other than 700) also led to a similarly large number of observations.

10



channels in systems with non-deterministic timing behavior. This conclusion,
however, seems to be premature because the large number of observations can
be caused by the properties described above.

In the following section, we investigate more closely how much information
is actually leaked by our implementations of bucketing. In contrast to leakage
bounds, which provides the worst case leakage that could possibly arise, this
estimation has more practical significance with regard to our implementations.

5.2 Empirical Assessment of Key Indistinguishability

We estimate the reduction of the timing side-channel capacity in modExp achieved
by bucketing in isolation. By isolation, we refer to an instantiation of a 1-
bucketing. As in [17], we model a timing side channel as a discrete information-
theoretic channel [7] with input X and output Y . The input alphabet of the
channel models the space of secret inputs to a program and the output alphabet
models possible timing observations. We measure the correlation between the
secret inputs and possible timing observations with the Shannon’s channel ca-
pacity [20], denoted C(X;Y ). We statistically estimate [5] the channel capacity
C(X;Y ) from empirically collected timing observations. As a result, we compute
the percentage reduction of CC achieved by our implementations of bucketing.

Experimental Design. Following the experimental design from [17], we gen-
erate two keys, namely key1 and key2, with different Hamming weights. The
purpose of this setup is to evaluate the reduction of the timing side-channel ca-
pacity for keys with different execution times. For each of the keys, we carry out
experiments with and without bucketing. When using bucketing, we instantiate
a 1-bucketing (with the same bucket size for both keys). Finally, we compute
the CC with the help of the leakiEst tool [6].

Experimental Results. Three samples of our results are described in Figure 5.
One of the samples is depicted in Figure 6. no-bucketing represents our results
without bucketing, whereas bucketingAPPL and bucketingKRNL represent our
results when using bucketing at application and kernel level, respectively.

scenario sample 1 sample 2 sample 3

CC reduction CC reduction CC reduction

no-bucketing 0.4834±0.0006 - 0.4636±0.0005 - 0.4874±0.0004 -

bucketingAPPL 0.0767±0.0015 84.14% 0.0706±0.0008 84.77% 0.0733±0.0008 84.96%

bucketingKRNL 0.063±0.0008 86.96% 0.0857±0.0009 81.51% 0.1027±0.0010 78.92%

Fig. 5: Estimated capacity of timing side channels with 95% confidence intervals

In Figure 5(a), we can visually see that the timing distributions of key1 and
key2 are not overlapping. Thus, the fact whether modExp has received key1 or
key2 can be leaked via a timing side channel. In contrast, when using bucketing
(see Figures 5(b) and 5(c)), the timing distributions of key1 and key2 are mostly
overlapping. This gives us a first hint that our implementations of bucketing
were effective in removing the timing side channel in modExp.

The table in Figure 5 summarizes the results of estimating the capacity of
the timing side channel using the leakiEst tool. Since we are using two different
keys, the capacity of the timing side channel is 1 bit, as an adversary can at
most learn one bit of information: Whether key1 has been used or whether key2

11



(a) no-bucketing (b) bucketingAPPL

(c) bucketingKRNL

Fig. 6: Correlation between two secret keys and their timing distributions

has been used. While for systems with deterministic timing-behavior, bucketing
can reduce the capacity of timing side channels by 100%6, our results indicate
that bucketingAPPL and bucketingKRNL can reduce the capacity of timing
side channels by roughly 84% and 78%, respectively.

The estimated capacity of timing side channels achieved by our implemen-
tations are in the range of the ones reported in [17] for program transformation
techniques. Furthermore, similar to bucketing for systems with deterministic tim-
ing behavior, our implementations significantly reduced the timing side-channel
capacity. Hence, based on our results, we believe that bucketing is also effec-
tive in reducing timing side channels in systems with non-deterministic timing
behavior, despite the large number of possible timing observations.

5.3 Empirical Comparison of Our Implementations

We compare our implementations in terms of precision, bias and overhead (so
called general overhead in Section 4.1). Our results are described in Figure 7.

scenario precision bias overhead

bucketingAPPL [106, 488] ns 201.7 ns 383.7µs (1%)

bucketingKRNL [167, 1624] ns 799.8 ns 343.4µs (1%)

Fig. 7: Empirical comparison of our implementations

bucketingAPPL is roughly three times more precise than bucketingKRNL

when releasing events. This difference directly affects the number of timing ob-
servations one can gather from the program. bucketingAPPL is also more ef-
ficient when releasing events. While bucketingAPPL has a bias of 201.7 ns,

6 This is derived from the assumption that bucketing can reduce the number of ob-
servations to the number of defined buckets.

12



bucketingKRNL has a bias of 799.8 ns. Thus, on average, bucketingKRNL re-
leases events four times slower than bucketingAPPL. In both cases, we believe
that the use of JNI calls to enforce bucketing at the kernel level was the rea-
son for such a difference. On the other hand, bucketingAPPL added slightly
(∼40µs) more overhead than bucketingKRNL. The reason why this happened
is unclear to us at this moment.

6 Related Work

Program transformation mechanisms like unification [15], cross-copying [1], or
conditional assignment [18] aim to completely mitigate timing side channels
introduced by critical conditionals (i.e., conditionals whose timing behavior is
directly affected by the value of a secret). In this constant-time approach, the
program is modified such that critical conditionals take the same execution time
for all secret inputs. Thus, each mitigated program run takes the WCET of the
unmitigated program. To reduce the runtime overhead of constant-time mitiga-
tion, several approaches that incorporate a tradeoff between security guarantees
and runtime overhead have been proposed. Examples for such approaches in-
clude bucketing [14] and predictive mitigation of timing channels [22]. Predictive
mitigation of timing channels, as proposed in [22], offers a tradeoff between se-
curity and performance by using predicted schedules for events. If the predicted
schedule is met for event observations by the mitigated program, events are de-
layed according to the current schedule, as this does not provide information
to an adversary. If the schedule is violated, however, the schedule is adapted
dynamically and events are delayed to meet this adapted schedule. The tradeoff
between security and overhead can be chosen by selecting a tailored adaptation
strategy for the schedule, which is called penalty policy.

In contrast to existing work in the area of bucketing, we are the first to pro-
vide an empirical evaluation of the effectiveness of bucketing in systems with
non-deterministic timing behavior. Previously, the effectiveness of bucketing has
been evaluated based on leakage bounds in systems with deterministic timing
behavior. We do not consider optimal choices of the instantiation of bucketing, as
we are interested in the effectiveness of our implementation rather than efficient
choices in the security-performance tradeoff. We are not the first to evaluate the
effectiveness of timing side-channel mitigation techniques empirically in general.
For instance, [17] provides an empirical evaluation of different program trans-
formations in Java programs. Their evaluation compares the effectiveness and
efficiency of different program transformations, enabling developers to choose a
fitting transformation for their security requirements.

7 Conclusion

This article investigated the impact of non-deterministic timing behavior on
bucketing. Our results show that the impact is substantial. Our bucketing im-
plementations are not able to release events sharply at the bucket boundary,
but rather within a certain interval after the bucket boundary. This leads to a

13



large number of possible observations that an adversary can make, increasing the
leakage bound on information an adversary can learn about the secret. Neverthe-
less, we provided empirical estimations of the side channel capacity to show that
our implementations can reduce the channel capacity by roughly 84% (applica-
tion level) and 78% (kernel level). These numbers are similar to the reduction
achieved by other established techniques for mitigating timing side channels like
e.g., cross-copying, as shown in [17]. Based on these results, we believe that
the large number of observations can be caused by activities in the CPU, e.g.,
scheduling. This observation indicates that future work towards tighter leakage
bounds for non-deterministic timing behavior are desirable. A tighter bound for
timing channel leakage has been recently proposed [21]. Computing this bound
with our results seems to be computationally expensive. Thus, experiments using
this bound as well as evaluation of other algorithms are left to future work.

In this paper, we studied the effectiveness of bucketing as a countermeasure
against timing side channels. Whether bucketing opens other possibilities for
attacks was outside scope. This might be a direction for future work, as other
security mechanisms have been exploited by attackers to mount attacks.

Acknowledgment. This work was funded by the DFG as part of project Secure
Refinement of Cryptographic Algorithms (E3) in CRC 1119 CROSSING.

References

1. J. Agat. Transforming out Timing Leaks. In POPL’00, pages 40–53, 2000.
2. M. R. Albrecht and K. G. Paterson. Lucky Microseconds: A Timing Attack on

Amazon’s s2n Implementation of TLS. In EUROCRYPT’16, pages 622–643, 2016.
3. D. J. Bernstein. Cache-timing attacks on AES. Technical report, 2005.
4. A. Bortz and D. Boneh. Exposing Private Information by Timing Web Applica-

tions. In WWW’07, pages 621–628, 2007.
5. K. Chatzikokolakis, T. Chothia, and A. Guha. Statistical measurement of infor-

mation leakage. In TACAS’10, pages 390–404, 2010.
6. T. Chothia, Y. Kawamoto, and C. Novakovic. A Tool for Estimating Information

Leakage. In CAV’13, pages 690–695, 2013.
7. T. M. Cover and J. A. Thomas. Elements of Information Theory, 2. ed.
8. G. Doychev and B. Köpf. Rational Protection against Timing Attacks. In CSF’15,

pages 526–536, 2015.
9. T. Rezk G. Barthe and M. Warnier. Preventing Timing Leaks Through Transac-

tional Branching Instructions. ENTCS’06, 153(2):33–55, 2006.
10. R. Gay, J. Hu, and H. Mantel. CliSeAu: Securing Distributed Java Programs by

Cooperative Dynamic Enforcement. In ICISS’14, pages 378–398. Springer, 2014.
11. A. Georges, D. Buytaert, and L. Eeckhout. Statistically Rigorous Java Performance

Evaluation. In OOPSLA’07, pages 57–76, 2007.
12. M. S. Inci, B. Gülmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar. Cache Attacks

Enable Bulk Key Recovery on the Cloud. In CHES’16, pages 368–388, 2016.
13. P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,

and Other Systems. In CRYPTO’96, pages 104–113, 1996.
14. B. Köpf and M. Dürmuth. A Provably Secure and Efficient Countermeasure against

Timing Attacks. In CSF’09, pages 324–335, 2009.

14



15. B. Köpf and H. Mantel. Transformational Typing and Unification for Automati-
cally Correcting Insecure Programs. Int. J. Inf. Sec., 6(2–3):107–131, 2007.

16. B. Köpf and G. Smith. Vulnerability Bounds and Leakage Resilience of Blinded
Cryptography under Timing Attacks. In CSF’10, pages 44–56. IEEE, 2010.

17. H. Mantel and A. Starostin. Transforming Out Timing Leaks, More or Less. In
ESORICS’15, pages 447–467, 2015.

18. D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner. The Program Counter
Security Model: Automatic Detection and Removal of Control-Flow Side Channel
Attacks. In ICISC’15, volume 3935, pages 156–168. Springer, 2005.

19. A. Shamir R.L. Rivest and L. Adleman. A Method for Obtaining Digital Signatures
and Public-key Cryptosystems. CACM’78, 21(2):120–126, 1978.

20. C. E. Shannon. A Mathematical Theory of Communication. ACM SIGMOBILE
MC2R’01, 5(1):3–55, 2001.

21. D. M. Smith and G. Smith. Tight Bounds on Information Leakage from Repeated
Independent Runs. In CSF’17, pages 318–327, 2017.

22. D. Zhang, A. Askarov, and A. C. Myers. Predictive Mitigation of Timing Channels
in Interactive Systems. In CCS’11, pages 563–574, 2011.

15


	An Evaluation of Bucketing in Systems with Non-Deterministic Timing Behavior

