
I-MAKS
A Framework for Information-Flow Security in Isabelle/HOL

Technical Report TUD-CS-2018-0056
April, 2018

Sylvia Grewe, Heiko Mantel, Markus Tasch, Richard Gay, Henning Sudbrock

Modeling and Analysis
of Information Systems,
Software Technology Group

I-MAKS
A Framework for Information-Flow Security in Isabelle/HOL

Sylvia Grewe, Heiko Mantel, Markus Tasch,
Richard Gay, Henning Sudbrock

Department of Computer Science, TU Darmstadt, Germany
{gay,mantel,sudbrock,tasch}@mais.informatik.tu-darmstadt.de

grewe@st.informatik.tu-darmstadt.de

Abstract The “Modular Assembly Kit for Security Properties” (MAKS)
is a framework for both the specification and verification of possibilistic
information-flow security properties at the specification-level. With I-MAKS
we provide an Isabelle/HOL formalization of the framework. I-MAKS is a
machine-checked formalization of MAKS benefiting from the rigor of the
proof assistant Isabelle/HOL. I-MAKS enables the usage of MAKS together
with the general purpose verification techniques provided by Isabelle/HOL.
Moreover, the machine-checked proofs of I-MAKS increase the confidence in
the existing pen-and-paper proofs for MAKS or extensions of MAKS. In this
report, we give an overview of I-MAKS describing how the pen-and-paper
formalization of MAKS is captured in Isabelle/HOL.

1 Introduction

Information-flow control ensures that a program does not leak secrets when running.
Information-flow control is complementary to access control: While access control
shall prevent that illegitimate accesses occur, information-flow control shall prevent
that secrets are leaked after a legitimate access.

Noninterference [GM82] is probably the best known property that captures
information-flow security formally. Intuitively, noninterference is defined as the re-
quirement that the public output in each system run is identical to what the system
would output if it were supplied with the same public input but no secret input.
This requirement ensures that a system’s output to public sinks is completely inde-
pendent from secret input that is given to the system.

While noninterference is often suitable for capturing confidentiality require-
ments, it has turned out to be too restrictive when a system specification is non-
deterministic. This observation motivated a search for alternative definitions of
information-flow security. Starting with nondeducibility [Sut86], generalized non-
interference [McC87] and restrictiveness [McC87], numerous, so called, possibilistic
information-flow properties were proposed. Each of these properties defines secu-
rity by a closure condition on the set of possible system runs. Since there seems
not to be a unique closure condition that is best for all purposes, various possi-
bilistic information-flow properties co-exist [Man11] and frameworks were devel-
oped to enable a uniform treatment of possibilistic information-flow properties
(e.g. [McL94,FG95,ZL95,PWK96,Man00a]).

In this report, we present I-MAKS, a framework for the formal specification and
verification of information-flow properties in Isabelle/HOL. I-MAKS is a machine-
checked formalization of the Modular Assembly Kit for Security Properties (MAKS)
[Man00a, Man03] in its version from [Man03] in Isabelle/HOL [NPW02].1 With I-
MAKS we enable the usage of MAKS and its meta-results for the verification of
information-flow properties together with the specification and verification tech-
niques provided in Isabelle/HOL. Moreover, we facilitate the adoption and extension
of MAKS by providing a machine-checked specification in Isabelle/HOL.

In I-MAKS, we re-verified the soundness of the unwinding technique and the
techniques for compositional reasoning provided in MAKS in Isabelle/HOL. Having
machine-checked proofs increases confidence in these techniques. So far only pen-
and-paper proofs for these results existed [Man00b,Man02,Man03]. Surprisingly, we
detected only a single technical mistake, namely, one incorrect step in the proof of
the Generalized Zipping Lemma. The original statement of the lemma was correct.
We corrected this step and constructed a machine-checked proof of this lemma.

Structure. This report is structured as follows: In Section 2, we recall prelimi-
naries about event-based system models, possibilistic information-flow security, and
Isabelle/HOL. In Section 3, we give an overview of I-MAKS’ high-level structure
and introduce some basic definitions. In Sections 4 and 5, we describe the system
models and the framework for the specification of security requirements provided
by I-MAKS. In Section 6, we present the meta-results for the verification of secu-
rity requirements provided by I-MAKS. We discuss related work in Section 7 and
conclude in Section 8.

2 Preliminaries

2.1 Event-Based System Models

Events and Traces. In this report, we use events to model actions of a system
and we use traces to model (partial) system runs.

Definition 1. An event is a term that models an atomic action. ^

We use events to model the actions in which a given system can engage and that
can be seen atomic on the considered level of abstraction. For instance, the term
send(msg) could be used to model that the message msg is sent. Similarly, the term
recv(msg) could be used to model that the message msg is received.

Definition 2. Let E be a set of events. A trace over E is a finite list of events from
the set E. ^

We use traces to model possible (partial) system runs. The events in a trace model
which actions occur in the system run modeled by the trace. The order of events in
the trace reflects the order in which these actions occur.
1 The Isabelle/HOL theories of I-MAKS can be found under http://www.mais.
informatik.tu-darmstadt.de/assets/tools/I-MAKS2018.tar.gz.

3

As convention, we refer to a trace over E just as trace if the set of events E is
clear from the context. As notational convention, we denote the empty trace by 〈〉.
We denote the trace that starts with an occurrence of an event e and then continues
as the trace τ by e.τ . We denote the trace consisting of the events e1, e2, . . . , and
ek in this order by 〈e1.e2. · · · .ek〉. Finally, we denote the set of all traces over a set
of events E by E∗.

Definition 3. Let E be a set of events. The concatenation of two traces traces
α ∈ E∗ and β ∈ E∗ (denoted by α.β) is recursively defined by:

α.β =
{
β if α = 〈〉
e.(α′.β) if α = e.α′ ^

For instance, 〈e1.e2〉.〈e2.e3〉 equals the trace 〈e1.e2.e2.e3〉.

Definition 4. Let E be a set of events. A trace α ∈ E∗ is a prefix of a trace τ ∈ E∗
if there exists a trace β ∈ E∗ such that τ = α.β. A set of traces Tr ⊆ E∗ is closed
under prefixes if each prefix α of each trace τ ∈ Tr is also contained in Tr, i.e.
α ∈ Tr. ^

For instance, 〈〉, 〈e1〉, 〈e1.e2〉, and 〈e1.e2.e3〉 are prefixes of the trace 〈e1.e2.e3〉 and
the set {〈〉, 〈e1〉, 〈e1.e2〉, 〈e1.e2.e3〉} is prefix closed.

Definition 5. Let E and E ′ be sets of events. Let τ ∈ E∗ be a trace. The projection
of τ to E ′ (denoted by τ�E ′) is recursively defined by:

τ�E ′ =

 〈〉 if τ = 〈〉
e.(τ ′�E ′) if τ = e.τ ′ ∧ e ∈ E ′
τ ′�E ′ if τ = e.τ ′ ∧ e < E ′ ^

The event sequence τ�E ′ contains those occurrences of events in τ that are contained
in the set E ′. Note that the relative order of events in τ�E ′ is the same as in τ . For
instance, 〈e1.e2.e2.e3〉�{e1, e2} equals the trace 〈e1.e2.e2〉.

Processes. We use processes to model the actions and the behavior of systems.

Definition 6. A process is a pair (E ,Tr) where E is a set of events and Tr is a
set of traces over E(i.e. Tr ⊆ E∗) that is closed under prefixes. ^

With the set of events E we model in which actions the system can engage, and
with the set of traces Tr we model which system runs are possible. Due to prefix
closure, we do not only model complete system runs by Tr but also partial ones.

As convention, we refer to a trace τ ∈ Tr as possible trace of Tr for a given set
of traces Tr modeling the behavior of a system. If the set of traces Tr is clear from
the context, we leave it out.

4

Labeled Transition Systems. As a stateful alternative to processes, we use la-
beled transition systems to model the behavior of systems [Har87].

Definition 7. A state is a term that models a snapshot of a system. ^

We use states to model a snapshot of a system during the system’s execution. For
instance, the term rdyToRecv could be used to model that a system is currently
able to receive a message. Similarly, the term MsgProcessing could be used to
model that a system is currently processing a message.

We use labeled transitions to model the change of a system’s snapshot after the
system engaged in a specific action.

Definition 8. Let S be a set of states. Let E be a set of events. A labeled transition
from a state s1 to a state s2 using the event e is a triple (s1, e, s2). A labeled
transition relation between S using E is a set of labeled transitions from a state
s1 ∈ S to a state s2 ∈ S using a event e ∈ E. ^

For instance, the labeled transition (rdyToRecv, recv(msg),MsgProcessing)
could be used to model that when a system is ready to receive a message, receiving
a message msg changes the system’s snapshot to processing the message.

As convention, we refer to a labeled transition relation between S using E as
labeled transition relation if the set of states S and the set of events E are clear
from the context.

Definition 9. A labeled transition system is a tuple (S , s0,E , T) where S is a set
of states, s0 is a state, E is a set of events, and T is a labeled transition relation. ^

The set of states S models the possible intermediate snapshots of the system during
execution. The initial state s0 models the snapshot of the system in which the
execution starts. Likewise to processes, the set of events E models in which action
the system can engage. Finally, the labeled transition relation T models how the
snapshot of the system changes after engaging in an action.

2.2 Possibilistic Information-Flow Security

We consider a scenario where the interface to the system of concern is protected
by appropriate access control. Hence, an attacker in this scenario cannot observe
secret actions directly. In addition, we make the worst case assumption that the
attacker knows how the system operates in principle. Based on his observation
during a system run and his knowledge about the system, the attacker tries to infer
additional information about secret actions. Intuitively, we say that a system has
secure information flow if such an attacker cannot obtain information about secrets
either directly by his observations or by his inference.

Formally, we model what actions an attacker can observe for a process (E ,Tr)
by the set L ⊆ E . The set L must contain all events modeling actions that are
observable to the attacker. Consequently, the trace τ�L models the observation an
attacker makes for a trace τ . We refer to a trace ν as a possible observation if there
exists a trace τ ∈ Tr such that ν = τ�L holds.

5

Complementarily to L, we model what actions an attacker cannot observe by
the set H ⊆ E . The set H must contain all events modeling actions that are not
observable to the attacker. Based on our assumption of appropriate access control,
we assume that all secret actions are modeled by events in H . We also assume that
L and H form a disjoint partition of E , i.e. L ∪H = E and L ∩H = ∅.

Our model captures what an attacker can infer from a possible observation ν by
the set {τ ∈ Tr | τ�L = ν}. That is, the set of all possible traces that potentially
generated the observation ν.

In our model, a process is considered secure, iff the attacker is unable to exclude
the possibility of certain secret behavior. Complementarily, a process is considered
insecure, iff the attacker is able to to do so. What secret behavior must be possible
from an attacker’s perspective in order for a process to be considered secure is
defined by information-flow properties.

In the following we illustrate the spectrum of concrete information-flow proper-
ties by two well-known possibilistic information-flow properties before this class of
security properties is explained more generally.

Definition 10. Let (E ,Tr) be a process and L ⊆ E be the set of all events that
model actions whose occurrences are observable to the attacker. The property non-
inference [O’H90, McL94, ZL97] is defined by:

NF ≡ ∀τ ∈ Tr . τ�L ∈ Tr ^

Note that noninference classifies a process as secure if each possible observation τ�L
that is generated by this process, is also a possible trace of this process. This means,
no matter what observation the attacker makes during a trace, the attacker cannot
infer that events in H must have occurred in this trace.

Definition 11. Let (E ,Tr) be a process, L ⊆ E be the set of events that model
actions whose occurrences are observable to the attacker, and H = E \ L be the set
of events that model actions whose occurrence are not observable to the attacker.
The property separability [McL94] is defined by:

SEP ≡ ∀τL, τH ∈ Tr . ∀t ∈ E∗. (t�L = τL�L ∧ t�H = τH�H)⇒ t ∈ Tr ^

Note that separability classifies a process as secure if each possible observation
τL �L that the process can generate is co-possible with the projection τH �H of
each possible trace τH . Moreover, it is not enough if one interleaving of τL�L with
τH�H is a possible trace of the process, but rather each such interleaving must be
a possible trace of the process. This means that, no matter what observation the
attacker makes during a trace, the attacker cannot infer that any possible projection
to H of a possible trace must have or cannot have occurred.

Note that separability is more restrictive than noninference.

Theorem 1. If a process (E ,Tr) satisfies SEP then it satisfies NF.

The additional restrictiveness is caused by requiring that not only the possible
observation is a possible trace, but also any interleaving of any possible secret
behavior with the possible observation is a possible trace.

6

Both noninference and separability require that, for each possible observation
of an attacker, traces must be possible during which the observation is possible
and that bare certain properties. The requirement that for each possible observa-
tion there must be certain possible traces during which the observation is possible
constitutes a closure property on the set of possible traces.

Definition 12. A property of sets of traces P : P(E∗) → B is a closure property
on sets of traces if and only if for all Tr ⊆ E∗ there exists a set of traces such that
Tr ⊇ Tr and P (Tr). ^

Such closure properties on sets of traces are used to formally specify information-flow
properties for trace-based system models. Prominent examples besides noninference
and separability are, for instance, nondeducibility [Sut86], generalized noninterfer-
ence [McC87], restrictiveness [McC87], forward correctability [JT88], and perfect
security property [ZL97].

The relation between such properties is usually not as obvious as for noninference
and separability (cf. Theorem 1) because the differences and similarities between
the definitions of different possibilistic information-flow properties are often rather
subtle. In order to simplify the comparison of properties and to achieve uniformity,
several frameworks for possibilistic information-flow security were developed (e.g.,
[McL94,FG95,ZL95,PWK96,Man00a,Man03,BFPR03,MC12,KLP14]).

For I-MAKS, we chose MAKS [Man00a] in its version from [Man03] as the
conceptual basis. MAKS supports the uniform representation of a wide range of
possibilistic information-flow properties [Man00a]. It also supports the verification
of such properties, using unwinding [Man00b], compositional reasoning [Man02],
and model checking [DHRS11].

As part of our presentation of I-MAKS, we provide more detailed explanations
of MAKS in later sections.

2.3 The Proof Assistant Isabelle/HOL

Isabelle/HOL is a specialization of the generic proof assistant Isabelle to typed
higher-order logic (HOL). It supports one specification language and two verifi-
cation languages. The specification language combines aspects of the functional
programming language ML with typed HOL: It offers constructs for defining types,
constants, functions, and formulas. The verification languages provide proof com-
mands for creating machine-checked proofs of propositions.

Isabelle/HOL supports the structuring of type definitions, functions, theorems
and proofs scripts into multiple theory files.2 Theories may import other theories,
i.e. structuring of theories is done hierarchically.

Types. Isabelle/HOL supports several base types and type constructors by default.
Throughout this report, we use the base type bool for boolean values and the

base type nat for natural numbers. The base type bool consists of the constants
2 For the remainder of this report theory is used as a shorthand for theory file.

7

True and False. The base type nat of the constant 0 and the constructor Suc,
i.e. Suc 0 represents 1, Suc Suc 0 represents 2 and so on. Note that Isabelle/HOL
permits to abbreviate applications of Suc with the corresponding number, e.g. we
can write 2 instead of Suc Suc 0.

Moreover, we use the type constructors list (for lists), set (for sets), and
option (for an option type). For instance, nat list is the type for lists of natural
numbers, nat set is the type for sets of natural numbers, and nat option is the
type for natural numbers and a special undefined value.

In addition to the type constructors introduced above, Isabelle/HOL supports
the definition of function types and product types. A function type t1 ⇒ ... ⇒
tn ⇒ t declares the type of a total function from t1, . . . , tn to t. Note that

the declaration of function types is right-associative, i.e. t1 ⇒ t2 ⇒ t stands for
t1 ⇒(t2 ⇒ t). A product type t1 × t2 declares the type of pairs. The first
element of a pair can be retrieved using the selector fst, and the second element
of a pair can be retrieved using the selector snd. For instance, fst (1,2) is 1.

Finally, Isabelle/HOL supports the declaration of polymorphic types using type
variables. For example, ’a list declares the type of lists of arbitrary type ’a.

Terms. Terms in Isabelle/HOL are either basic constants or function applications.
Isabelle/HOL supports some basic functional programming constructs to con-

struct terms. For example, if if b then t else t2, case case e of c1 ⇒ t1

| ... | cn ⇒ tn, and let let x=e in u with their usual semantics.
Furthermore, Isabelle/HOL supports λ-abstractions. For instance, λ x. x+x is

the function that takes the argument x and returns x+x.

Formulas. Formulas are terms of type bool composed out of the basic constants
True and False, the usual logical connectives (in decreasing priority) ¬, ∧, ∨ as
well as −→, and the quantifiers ∃ as well as ∀.

Sets. Sets in Isabelle/HOL can be defined by explicitly listing all elements, e.g.
{1, 2 ,3} is the set containing 1, 2, and 3, or by set comprehension. For example
the set of all successors of natural numbers satisfying a predicate P can be defined
by set comprehension as follows:

definition nat_P :: "nat set"
where nat_P ≡ { n. P n}

Sets support the usual set membership relation ∈ and its negation <, the subset or
equal relation ⊆ as well as the set operations union ∪, intersection ∩, set difference
-, and the union of all sets in a set of sets

⋃
.

Type Definitions. New types in Isabelle/HOL can be defined using the type
constructors introduced beforehand using the keyword type_synonym. For instance,
type_synonym foo = nat × bool defines the type foo as pairs of nat and bool.

8

Furthermore, Isabelle/HOL supports the definition of new types by the specifi-
cation of a list of constructors using the keyword datatype. Each constructor has
a finite, possible empty list of arguments. The type of an argument can either be a
concrete type or a type variable. For instance, the type of lists [UT18b] that can be
used as type constructor is defined by:

datatype ’a list = Nil | Cons ’a "’a list"

The term Nil, also denoted by [], models the empty list, while a term Cons x xs,
also denoted by x # xs, models a non-empty list with head element x and rest xs.

Finally, Isabelle/HOL supports the definition of an n-ary product type, called
record type, whose fields are named using the keyword record. For instance, the
type rec with three fields A, B, and C of type nat can be defined by:

record rec = A::nat B::nat C::nat

A term of a record type can be defined by a list of equations of the form field

name = value where comma is used as separator between list elements and the
symbols L and M are used to mark the start and the end of the list, respectively. For
instance, L A = 3, B = 5, C = 7 M is a term of type rec from which the value
of the second field can be retrieved using the field name of the second field, i.e.
B L A = 3, B = 5, C = 7 M is 5.

Function Definitions. Functions in Isabelle/HOL can be defined using the key-
words definition, primrec, fun, and function.

The keyword definition is used to define non-recursive functions. Definitions
of non-recursive functions consist of a name (optionally followed by a type signature)
and of exactly one equation. The left-hand side of the equation is the name of the
definition plus the list of formal parameters. The right-hand side of the equation is a
closed term of the function’s return type, i.e. a term that contains no free variables.
For example, the function square for a natural number can be defined by:

definition square :: "nat ⇒ nat"
where "square x ≡ x*x"

The keywords primrec, fun, and function are used to define recursive func-
tions. All of these keywords define recursive functions using multiple equations. For
instance, the functions set and append that, respectively, convert a list to a set
and concatenate two lists are defined by:

primrec set :: "’a list ⇒ ’a set"
where
"set [] = {}" |
"set (Cons x xs) = {x} ∪ (set xs)"

primrec append :: "’a list ⇒ ’a list ⇒ ’a list"
where
"[] @ ys = ys" |
"(x#xs) @ ys = x # xs @ ys"

9

Each of the function definitions consists of two equations (separated by |). The
first equation defines the function’s return value for an empty list, the second equa-
tion for a non-empty list (using recursion). Here pattern matching is used to decide
which of the two equations is relevant for a given parameter. In pattern matching,
the special symbol “_” is used as a wild-card for arbitrary terms.

The three keywords primrec, fun, or function define different classes of recur-
sive functions. The keyword primrec defines recursive functions by giving exactly
one reduction rule for each constructor. In contrast, fun and function define re-
cursive functions without these restrictions. However, it is then required to prove
the exhaustiveness of the function (each possible input is covered by one equation),
the compatibility of patters (each possible input is covered by exactly one equa-
tion), and termination. For functions defined using the keyword fun, these proofs
are performed automatically. For functions defined using the keyword function,
these proofs must be performed manually. Hence, function must be used instead
of fun if the automatic proofs fail.

Theorems, Lemmas, and Proofs. Theorems and lemmas in Isabelle/HOL are
defined using the keywords theorem and lemma followed by a formula or a propo-
sition in Isabelle/HOL’s meta-logic. For instance, that from A and B it follows that
A ∧ B holds is captured by the following theorem:
theorem "~ A ; B � =⇒ A ∧ B"

Note that there is no difference between theorems and lemmas except the intuition
that a theorem is more important than a lemma.

Proofs of lemmas or theorems can be generated interactively by applying a
series of proof commands in one of the two verification languages supplied by Is-
abelle/HOL. With the language apply, proof tactics can be applied to transform the
proof obligations until they are fully discharged. With the language Isar, proofs can
be generated in a mathematical fashion close to proofs on paper. It is also possible
to mix both languages. For an introduction to proving in Isabelle/HOL see [UT18a].

3 Structure of I-MAKS and Basic Definitions

I-MAKS is an Isabelle/HOL formalization of MAKS in its version from [Man03].
The structure of theories in I-MAKS is depicted in Fig. 1. I-MAKS consists of two
top-level components, a specification and a verification component. The specification
component contains all parts of I-MAKS related to supported system models and
security properties. Structurally, the specification component again consists of two
subcomponents: system specification and security specification. The former contains
everything related to the specification of system behavior in I-MAKS. The latter
contains everything related to the specification of information-flow properties in
I-MAKS. The verification component contains all parts of I-MAKS related to the
verification of security properties.

On a technical level, each component consists of a collection of theories. In Fig. 1,
the theories are visualized by boxes where a box with a thick border corresponds to

10

System Specification

Event Systems

State-Event Systems

Security Specification

Views
Information Flow

Properties

Basic Security
Predicates

Property
Library

Verification

Secure
Systems

Compositionality
Results

Unwinding
Results

Figure 1: Structure of Theories in I-MAKS

multiple theories. For instance, the system specification component consists of two
theories: Event Systems and State-Event Systems.

Basic Definitions in I-MAKS. Before we present the individual components of
I-MAKS in the following sections, we present a few basic definitions used in the
components of I-MAKS. These basic definitions formalize the notions prefix and
closed under prefixes (cf. Definition 4) as well as the definition of projection of a
trace τ to a set of events E (cf. Definition 5) in Isabelle/HOL. The definitions are
located in the theories Prefix and Projection.

The notion of a prefix is formalized by the binary predicate prefix.

definition prefix :: "’e list ⇒ ’e list ⇒ bool" (infixl "�" 100)
where
"(l1 � l2) ≡ (∃l3. l1 @ l3 = l2)"

As syntactic abbreviation for the predicate prefix l1 l2, I-MAKS supports the
infix notation l1 � l2.

The notion of closed under prefixes is formalized by the predicate prefixclosed.

definition prefixclosed :: "(’e list) set ⇒ bool"
where
"prefixclosed tr ≡ (∀l1 ∈ tr. ∀l2. l2 � l1 −→ l2 ∈ tr)"

The notion of projection of l to a set E is formalized by the function projection.

definition projection:: "’e list ⇒ ’e set ⇒ ’e list" (infixl "�" 100)
where
"l � E ≡ filter (λx . x ∈ E) l"

As syntactic abbreviation for the function projection l E, I-MAKS supports the
infix notation l � E.

11

4 System Specification Component

The underlying system models of MAKS are event systems and state-event sys-
tems. These two system models are the conceptual basis for the specification and
verification of information-flow security in MAKS.

We introduce the two system models, emphasize the close relationship between
the two system models by providing a translation from state-event systems to event
systems, and provide means for the specification of complex systems by composition.

Remark. The following subsections first introduce notions of MAKS using mathe-
matical notation and then provide the corresponding formalization of these notions
in I-MAKS using the syntax of Isabelle/HOL. For the sake of clarity, definitions of
notions in I-MAKS are denoted in small capital letters, e.g. event system denotes
the notion of event systems in I-MAKS.

4.1 Event Systems

Event systems extend the notion of processes (cf. Definition 6) by explicit input and
output interfaces to the outside modeled by subsets of events.

Definition 13. An event system ES is a tuple (E , I ,O,Tr) such that I ⊆ E, O ⊆
E, I ∩O = ∅, Tr ⊆ E∗, and Tr is prefix closed. ^

The sets I and O model the in- and output interfaces of a system. This means each
event in I models an input action, each event in O models an output action and
each event neither in I nor in O models an internal action. Note that the two sets
I and O are disjoint and, thus, feedback loops must be modeled internally.

I-MAKS Formalization. In I-MAKS, an event system is formalized by a com-
bination of a record type and a predicate (see Theory Event Systems). While the
record type formalizes the elements of an event system, the predicate, referred to
as validity predicate, formalizes the semantic side conditions on these elements, i.e.
when a term of the record type is a valid event system.

The record type formalizing the elements of an event system is the parametric
record type ’e ES_rec where the type variable ’e corresponds to the type of events
of the record type.

record ’e ES_rec =
E_ES :: "’e set"
I_ES :: "’e set"
O_ES :: "’e set"
Tr_ES :: "(’e list) set"

A term of record type ’e ES_rec consists of the fields E_ES (the events), I_ES
(the input events), O_ES (the output events) and Tr_ES (the possible traces) that
correspond to the sets E , I , O and Tr of an event system. I-MAKS provides the
following syntactic abbreviation for retrieving the value of a field: Given a record
R, FR is equivalent to (F R).

12

The semantic side conditions for terms of the record type ’e ES_rec are for-
malized by the predicate ES_valid.

definition ES_valid :: "’e ES_rec ⇒ bool"
where
"ES_valid ES ≡
es_inputs_are_events ES ∧ es_outputs_are_events ES
∧ es_inputs_outputs_disjoint ES ∧ traces_contain_events ES
∧ traces_prefixclosed ES"

definition es_inputs_are_events :: "’e ES_rec ⇒ bool"
where
"es_inputs_are_events ES ≡ IES ⊆ EES"

definition es_outputs_are_events :: "’e ES_rec ⇒ bool"
where
"es_outputs_are_events ES ≡ OES ⊆ EES"

definition es_inputs_outputs_disjoint :: "’e ES_rec ⇒ bool"
where
"es_inputs_outputs_disjoint ES ≡ IES ∩ OES = {}"

definition traces_contain_events :: "’e ES_rec ⇒ bool"
where
"traces_contain_events ES ≡ ∀l ∈ TrES. ∀e ∈ (set l). e ∈ EES"

definition traces_prefixclosed :: "’e ES_rec ⇒ bool"
where
"traces_prefixclosed ES ≡ prefixclosed TrES"

Based on the record type ’e ES_rec and the predicate ES_valid, event systems
in I-MAKS are formalized as follows.

Definition 14. An event system for a type of events ’e is a term of the record
type ’e ES_rec that satisfies the predicate ES_valid. ^

4.2 State-Event Systems

The second system model of MAKS, state-event systems, extend the notion of
labeled transition systems (cf. Definition 9) by explicit input and output interfaces
to the outside modeled by subsets of events.

Definition 15. A state-event system SES is a tuple (S , s0,E , I ,O,T) such that
s0 ∈ S, I ⊆ E, O ⊆ E, I ∩ O = ∅, T ⊆ S × E × S and T contains at most one
triple (s, e, s′) for each s ∈ S and e ∈ E. ^

The set of input events I and the set of output events O respectively, model the
in- and output actions of the system. Note that the transition relation is further re-
stricted and at most contains one transition for each event in each state. This restric-
tion ensures determinism in the effect of an event but still permits non-determinism
in the choice of the event.

13

I-MAKS Formalization. State-event systems in I-MAKS are formalized by a
combination of a record type and a corresponding validity predicate (see Theory
State-Event Systems).

The record type (’s ’e) SES_rec formalizing the elements of state-event sys-
tems is parametric in both the type of states ’s and the type of events ’e.

record (’s, ’e) SES_rec =
S_SES :: "’s set"
s0_SES :: "’s"
E_SES :: "’e set"
I_SES :: "’e set"
O_SES :: "’e set"
T_SES :: "’s ⇒ ’e ⇀ ’s"

Each term of the record type (’s ’e) SES_rec consists of the fields S_SES (the
states), s0_SES (the initial state), E_SES (the events), I_SES (the input events),
O_SES (the output events) and T_SES the transition relation. These fields correspond
to the respective sets of state-event systems. Note that the transition relation is de-
fined as partial function from a state and an event to a unique successor state.
Hence, the last semantic side condition of state-event systems on the transition re-
lation, namely, that for each state and each event there exists at most one transition
is already covered. As syntactic abbreviation for (TSES s e) = Some s’, I-MAKS
supports the usage of s e−→SES s’.

Similar to ES_valid, the predicate SES_valid defines the semantic side condi-
tions on terms of the record type (’s ’e) SES_rec.

definition SES_valid :: "(’s, ’e) SES_rec ⇒ bool"
where
"SES_valid SES ≡
s0_is_state SES ∧ ses_inputs_are_events SES
∧ ses_outputs_are_events SES ∧ ses_inputs_outputs_disjoint SES ∧
correct_transition_relation SES"

definition s0_is_state :: "(’s, ’e) SES_rec ⇒ bool"
where
"s0_is_state SES ≡ s0SES ∈ SSES"

definition ses_inputs_are_events :: "(’s, ’e) SES_rec ⇒ bool"
where
"ses_inputs_are_events SES ≡ ISES ⊆ ESES"

definition ses_outputs_are_events :: "(’s, ’e) SES_rec ⇒ bool"
where
"ses_outputs_are_events SES ≡ OSES ⊆ ESES"

definition ses_inputs_outputs_disjoint :: "(’s, ’e) SES_rec ⇒ bool"
where
"ses_inputs_outputs_disjoint SES ≡ ISES ∩ OSES = {}"

14

definition correct_transition_relation :: "(’s, ’e) SES_rec ⇒ bool"
where
"correct_transition_relation SES ≡
∀x y z. x y−→SES z −→ ((x ∈ SSES) ∧ (y ∈ ESES) ∧ (z ∈ SSES))"

Based on these definitions, state-event systems in I-MAKS are formalized as follows.

Definition 16. A state-event system for a type of states ’s and type of events
’e is a term of the record type (’s, ’e) SES_rec that satisfies the predicate
SES_valid. ^

4.3 Translation from State-Event Systems to Event Systems

State-event systems can be translated to event systems. The translation is based
on the extension from the small-step transition relation of a state-event system to
a big-step transition relation induced by the state-event system.

Definition 17. Let SES = (S , s0,E , I ,O,T) be a state-event system. The induced
big-step transition relation of SES (denoted by T̂SES) is defined by the smallest set
T̂SES ⊆ S × E∗ × S satisfying the conditions

1. ∀s ∈ S .(s, 〈〉, s′) ∈ T̂SES and
2. ∀s, s′, s′′ ∈ S .∀e ∈ E .∀τ ∈ E∗.[(

(s, e, s′) ∈ TSES ∧ (s′, τ, s′′) ∈ T̂
)
⇒ (s, 〈e〉.τ, s′′) ∈ T̂SES

]
. ^

That is, there is a big-step transition from a state s to another state s′ with the
trace τ if and only if there is a sequence of transitions in T from s to s′ with the
events of τ in their order of occurrence.

Based upon the induced big-step transition relation of a state-event system, the
set of possible traces of a state-event system is defined as follows.

Definition 18. Let SES = (S , s0,E , I ,O,T) be a state-event system. The set of
possible traces of SES (denoted by TrSES) is defined by TrSES = {τ ∈ E∗ | ∃s ∈
S . (s0, τ, s) ∈ T̂SES}. ^

This means the set of possible traces of a state-event systems consists of all traces
for which a big-step transition from the initial state to another state is possible.

Using the translation from the transition relation of a state-event system to the
possible traces of a state-event system the event system induced by a state-event
system is defined as follows.

Definition 19. Let SES = (S , s0,E , I ,O,T) be a state-event system. The event
system induced by SES is the event system ES = (E , I ,O,TrSES). ^

That is, the event system obtained by replacing the notion of state and the transition
relation that modeled the behavior of the state-event system with the induced set
of possible traces.

15

I-MAKS Formalization. I-MAKS adopts the translation using three functions
(see Theory State-Event Systems): the recursive function path, the function
possible_traces, and the function induceES.

With the recursive function path I-MAKS provides the induced big-step tran-
sition relation as a partial function.

primrec path :: "(’s, ’e) SES_rec ⇒ ’s ⇒ ’e list ⇀ ’s"
where
path_empt: "path SES s1 [] = (Some s1)" |
path_nonempt: "path SES s1 (e # t) =
(if (∃s2. s1 e−→SES s2)
then (path SES (the (TSES s1 e)) t)
else None)"

Based on this function path, the possible traces of a given record of type (’s ’e)

SES_rec are formalized by the function possible_traces.

definition possible_traces :: "(’s, ’e) SES_rec ⇒ (’e list) set"
where
"possible_traces SES ≡ {t. (enabled SES s0SES t)}"

definition enabled :: "(’s, ’e) SES_rec ⇒ ’s ⇒ ’e list ⇒ bool"
where
"enabled SES s t ≡ (∃s’. s t=⇒SES s’)"

Using this function, I-MAKS formalizes the translation from a record of type
(’s ’e) SES_rec to a record of type ’e ES_rec by the function induceES.

definition induceES :: "(’s, ’e) SES_rec ⇒ ’e ES_rec"
where
"induceES SES ≡

(|
E_ES = ESES,
I_ES = ISES,
O_ES = OSES,
Tr_ES = possible_traces SES
|)"

That is, the events, input events, and output events remain unchanged but the
notion of state and the transition function is replaced by the set of possible traces.

As part of I-MAKS, it is proven that applying the function induceES to a
state-event system evaluates to an event system.

lemma induceES_yields_ES:
"SES_valid SES =⇒ ES_valid (induceES SES)"

Based on this lemma the event system induced by a given state-event system
in I-MAKS is defined as follows.

Definition 20. The event system ES for a type of events ’e induced by a state-
event system SES for a type of states ’s and the type of events ’e is defined by
the result of induceES SES. ^

16

4.4 Parallel Composition of Event Systems

For the specification of complex systems, MAKS supports the composition of event
systems to complex systems.

Based upon the interfaces of event systems, MAKS only considers certain event
systems as composable.

Definition 21. Let ES1 = (E1, I1,O1,Tr1) and ES2 = (E2, I2,O2,Tr2) be two
event systems. The two event systems ES1 and ES2 are composable if and only if
E1 ∩ E2 ⊆ (O1 ∩ I2) ∪ (O2 ∩ I1). ^

That is, two event systems are composable if each shared event is an input event
of one event system and an output event of the other event system. Hence, event
systems only communicate on their interfaces.

Considering two composable event systems, MAKS provides the following notion
of parallel composition.

Definition 22. Let ES1 = (E1, I1,O1,Tr1) and ES2 = (E2, I2,O2,Tr2) be two
composable event systems. Then the parallel composition of ES1 and ES2 is the
event system ES = (E , I ,O,Tr) defined by

E = E1 ∪ E2

I = (I1 \O2) ∪ (I2 \O1)
O = (O1 \ I2) ∪ (O2 \ I1)
Tr= {τ ∈ E∗ | τ�E1 ∈ Tr1 ∧ τ�E2 ∈ Tr2}. ^

The parallel composition of two event systems, the components, is the event sys-
tem, the composed event system, modeling a system that can engage in the actions
modeled by one of the two components. The parallel composition of event systems
preserves the interfaces of the two components except that all events used for com-
munication between the two components become internal events. Moreover, the set
of possible traces of the composed event system consists of all traces that projected
to the events of each component are possible traces of the components. Hence, in
each possible trace of the composed event system its components agree on the oc-
currence of shared events. This means the events shared at the interface of the
two components are means for communication, effectively, establishing a blocking
message passing communication between the two components.

I-MAKS Formalization. I-MAKS adopts MAKS’ notion of parallel composition
by a predicate composable and a function composeES (see Theory Event Systems.

The predicate composable transfers the notion of composable event systems in
MAKS to I-MAKS, i.e. to terms of the record type ’e ES_rec.
definition composable :: "’e ES_rec ⇒ ’e ES_rec ⇒ bool"
where
"composable ES1 ES2 ≡ EES1 ∩ EES2 ⊆ (OES1 ∩ IES2) ∪ (OES2 ∩ IES1)"

Hence, two event systems are composale iff the predicate composable evaluates
to true for those event systems.

17

Definition 23. Two event systems for a type of events ’e are composable if
they satisfy the predicate composable. ^

Likewise to the predicate composable, the function composeES transfers MAKS’
parallel composition to I-MAKS, i.e. to terms of the record type ’e ES_rec for a
type of events ’e.

definition composeES :: "’e ES_rec ⇒ ’e ES_rec ⇒ ’e ES_rec"
where
"composeES ES1 ES2 ≡ L
E_ES = EES1 ∪ EES2,
I_ES = (IES1 - OES2) ∪ (IES2 - OES1),
O_ES = (OES1 - IES2) ∪ (OES2 - IES1),
Tr_ES = {τ. (τ � EES1) ∈ TrES1 ∧ (τ � EES2) ∈ TrES2

∧ (set τ ⊆ EES1 ∪ EES2)} M"

As syntactic abbreviation, I-MAKS supports the usage of ES1 ‖ ES2 instead of
composeES ES1 ES2 for two terms ES1 and ES2 of the record type ’e ES_rec.

As part of I-MAKS, it is proven that applying the function composeES to two
composable event systems always evaluates to an event system.

lemma composeES_yields_ES :
"(ES_valid ES1 ∧ ES_valid ES2) ⇒ ES_valid (ES1 ‖ ES2)"

Together with the insights of the lemma above, the predicate composable and the
function composeES, I-MAKS defines the parallel composition of two composable
event systems as follows.

Definition 24. The parallel composition of two composable event systems
ES1 and ES2 for a type of events ’e is defined by the result of composeES ES1

ES2. ^

5 Security Specification Component

MAKS supports the specification of information-flow properties in a modular fash-
ion. Concretely, the definition of an information-flow property is split in two parts:
(1) the specification of the attacker’s perspective and (2) the specification of the
information-flow property w.r.t. an arbitrary attacker’s perspective.

To this end, MAKS introduces the notion of views to model the perspective
of an attacker on an event-based system model and a MAKS-specific notion of
information-flow properties that are constructed using building blocks, so called
basic security predicates (BSPs).

Remark. As in the previous section, the following subsections first introduce the
notions of MAKS using mathematical notation and then provide the corresponding
formalization of the notions in I-MAKS using the syntax of Isabelle/HOL.

18

5.1 Views

The perspective of an attacker that passively observes the visible behavior of a
system, a so called observer, is formalized by the notion of a view on a set of events
modeling the actions of the system.

Definition 25. A view V is a triple (V,N,C) such that V ∩ N = ∅, V ∩ C = ∅
and N ∩ C = ∅. A view V = (V,N,C) is a view on E where E is a set of events if
V ∪N ∪ C = E. ^

That is, a view on a set of events E is a disjoint partition of E into the set of visible
events V , the set of confidential events C, and the set of don’t care events N . The
set of visible events models what actions an attacker can observe and, thus, must
contain all events modeling actions that are observable to the attacker. The set of
confidential events models what actions shall remain secret to an attacker, i.e. the
attacker can neither observe these actions nor shall he be able to infer information
about them. Hence, C must contain all events modeling secret actions. Finally, the
set of don’t care events models what actions are neither observable to the attacker
nor shall remain secret to an attacker. Hence, N may contain all remaining events
that must be contained in neither V nor C.

Note that a view provides a more fine-grained definition of an attacker’s interface
than the traditional partition of E into L and H used, e.g. in Definition 10 and 11.

I-MAKS Formalization. I-MAKS formalizes views by a combination of the
record type ’e V_rec for a type of events ’e and a corresponding predicate V_valid
(see Theory Views). The fields V, N, C correspond to respective elements of a view,
i.e. the visible events, the don’t care events, and the confidential events.

definition V_valid :: "’e V_rec ⇒ bool"
where
"V_valid v ≡ VN_disjoint v ∧ VC_disjoint v ∧ NC_disjoint v"

definition VN_disjoint :: "’e V_rec ⇒ bool"
where
"VN_disjoint v ≡ V v ∩ N v = {}"

definition VC_disjoint :: "’e V_rec ⇒ bool"
where
"VC_disjoint v ≡ V v ∩ Cv = {}"

definition NC_disjoint :: "’e V_rec ⇒ bool"
where
"NC_disjoint v ≡ N v ∩ Cv = {}"

The predicate V_valid formalizes the side conditions on the fields of a term of record
type ’e V_rec to represent a view. Based on this predicate views in I-MAKS are
formalized as follows.

Definition 26. A view for a type of events ’e is a term of the record type ’e

V_rec that satisfies the predicate V_valid. ^

19

τ ∈ Tr perturbation−−−−−−−−−−−−−−−−−−−−−−→
modifies occurrences of events in C

t ∈ E∗ correction−−−−−−−−−−−−−−−−−−−−−−→
modifes occurrences of events in N

τ ′ ∈ Tr

Figure 2: Pattern underlying the definition of all BSPs [Man03].

The notion of a view on a set of events E that models the perspective of an observer
on the actions modeled by E is formalized by views satisfying the required side
conditions. The side conditions are formalized as the predicate isViewOn.

definition isViewOn :: "’e V_rec ⇒ ’e set ⇒ bool"
where
"isViewOn V E ≡ V_valid V ∧ VV ∪ NV ∪ CV = E"

The predicate isViewOn requires that the term of record type ’e V_rec forms a
disjoint partition of a set of events E of type ’e.

Based upon this predicate, I-MAKS formalizes the perspective of an observer
on a set of events as follows.

Definition 27. Let E be a set of events of a type ’e. A view on E is a view for
the type of events ’e that satisfies the predicate isViewOn for E. ^

5.2 Basic Security Predicates

For the specification of information-flow properties in a modular and uniform fash-
ion, MAKS provides a set of building blocks, the basic security predicates (BSPs).
Each BSP is a closure property on sets of traces and is parametric in a view.

Definition 28. A basic security predicate BSP is a function that maps a view on
a set of events E to a closure property on sets of traces over E. ^

Hence, a BSP defines a information-flow requirement on systems modeled by a set
of traces that is parametric in the attacker’s perspective that observes the system.

As notational convention BSPV denotes the closure property on sets of traces
obtained by applying a BSP BSP to a view V.

All BSPs are defined in a perturbation and correction pattern (cf. Fig. 2). The
perturbation defines the information about confidential events that shall remain
secret in terms of modifications to the occurrences of confidential events. The cor-
rection defines the permitted modifications to the occurrences of don’t care events.
For instance, consider the BSP Backwards-Strict Deletion (BSD).

Definition 29. Let E be a set of events. Let Tr be set of traces over E. Let V =
(V,N,C) be a view on E. The basic security predicate Backwards-Strict Deletion
(denoted by BSD) is defined by:

BSDV(Tr) ≡
∀α, β ∈ E∗.∀c ∈ C.

[(β.〈c〉.α ∈ Tr ∧ α�C = 〈〉)
⇒ (∃α′ ∈ E∗. β.α′ ∈ Tr ∧ α′�V = α�V ∧ α′�C = 〈〉)] ^

20

S

BS

F C

R

D

I

IA

Figure 3: Names of BSPs in MAKS [Man03].

For BSD, the perturbation is the deletion of the last occurrence of an confidential
event and the permitted correction are changes to the occurrences of don’t care
events after the point where the confidential event is deleted. Intuitively, BSD
requires that each trace containing at least one occurrence of a confidential event
can be explained by an alternative trace where the last occurrence of an confidential
event is deleted. Hence, an attacker cannot be certain about the occurrence of the
deleted confidential event based on his observation.

Naming Convention of BSPs. The name of a BSP indicates its perturbation and
correction pattern. For BSD, the prefix BS indicates that backwards-strict cor-
rections are permitted, i.e. corrections that affect the future wrt. the point of the
perturbation of a trace but not the past. The suffix D indicates the perturbation
Deletion, i.e. the removal of the last occurrence of a confidential event in a trace.

Overall MAKS provides four perturbations, identified by the symbols R, D, I
and IA. There are also four corrections, three of them are identified by the symbols
S, BS and FC, while the fourth is identified implicitly by not using one of these
symbols. Within the name of a BSP, the correction identifier appears before the
perturbation identifier. The syntax diagram in Fig. 3 visualizes all possible combi-
nations of the symbols for perturbations and corrections. The diagram shall be read
as follows: Starting from the top left, each sequence of correction and perturbation
symbols on a possible path ending in the top right is a possible name of a BSP.

The blank prefix means that arbitrary modifications in don’t care events are
permitted. The prefix S for strict means that no corrections at all are permitted.
The prefixes BS for backwards-strict and FC for forward correctable mean that only
causal corrections are permitted, i.e. modifications that affect the future w.r.t. the
point in the perturbation of the system run but not the past. The prefix FC restricts
the permitted correction even further than BS. Because FC is not relevant in this
report, we omit an explanation here and refer the reader to [Man03, Page 50f].

BSPs with the suffix R for removal or the suffix D for deletion prevent deductions
about the occurrence of confidential events in a trace. More precisely, BSPs with the
suffix R in their name ensure that an observer is unable to infer that a given trace

21

occurred or an alternative possible trace without any confidential events yielding
the same observation occurred. Similarly, BSPs with the suffix D ensure that an
observer is unable to infer that a confidential event that may potentially occur in a
trace did occur in this trace.

In contrast, BSPs with the suffix I for insertion or the suffix IA for insertion
of admissible events prevent deductions about the non-occurrences of events in a
trace. More precisely, BSPs with the suffix I ensure that an observer is unable to
infer whether a confidential event did not occur in a trace. Similarly, BSPs with
the suffix IA ensure that an observer is unable to infer whether a confidential event
that may potentially occur in a trace did not occur in this trace.

Overall MAKS provides 14 BSPs derived in the naming pattern presented in
Fig. 3. We omit the definitions of the remaining 13 BSPs and instead provide them
in their I-MAKS representation in the following or in Appendix A.1.

I-MAKS Formalization. I-MAKS adopts the concept of BSPs in Isabelle/HOL
in Theory Basic Security Predicates. As part of the theory, it formalizes all 14
BSPs presented in [Man03] in Isabelle/HOL.

I-MAKS formalizes BSPs as a combination of a type for BSPs and a predicate
ensuring the closure property requirement on the binary predicate.

type synonym ’e BSP = "’e V_rec ⇒ ((’e list) set) ⇒ bool"

definition BSP_valid :: "’e BSP ⇒ bool"
where
"BSP_valid bsp ≡
∀V Tr E. (isViewOn V E ∧ areTracesOver Tr E)

−→ (∃ Tr’. Tr’ ⊇ Tr ∧ bsp V Tr’)"

In combination I-MAKS formalizes BSPs as follows.

Definition 30. A basic security predicate (bsp) for a type of events ’e is a
term of the type ’e BSP that satisfies the predicate BSP_valid. ^

Note that, in addition to views, bsps can also depend on additional parameters to
express more complex security requirements.

In the following, we present three examples of bsps formalized in I-MAKS. We
extracted these examples from the theory Basic Security Predicates where the
remaining 11 BSPs are also formalized and lemmas that BSP_valid is satisfied for
each of the 14 BSPs are proven.

The first example, removal (R), is formalized by the predicate R.

definition R :: "’e BSP"
where
"R V Tr ≡
∀ τ∈Tr. ∃ τ’∈Tr. τ’ � CV = [] ∧ τ’ � VV = τ � VV"

R intuitively requires that removing all occurrences of confidential events from a
possible trace τ can be corrected to another possible trace τ’. To obtain τ’, the

22

perturbed trace τ � VV ∪ NV may be corrected by inserting or removing don’t care
events at arbitrary points, while the visible events are left untouched. Thus, if R
holds, an attacker with view V cannot infer from a possible observation whether
the trace that occurred contained confidential events or not.

Permitting corrections at arbitrary points can be too liberal for some systems,
i.e. might not detect all intuitively insecure behavior. Moreover, requiring only
alternative traces without any confidential events might not capture the desired
information-flow property. The BSP BSD (cf. Definition 29) is less liberal and per-
mits only causal corrections. It is formalized in I-MAKS by the predicate BSD.

definition BSD :: "’e BSP"
where
"BSD V Tr ≡
∀α β. ∀c∈CV. ((β @ [c] @ α) ∈ Tr ∧ α�CV = [])
−→ (∃α’. ((β @ α’) ∈ Tr ∧ α’�VV = α�VV ∧ α’�CV = []))"

The two bsps shown so far require that deleting all or only the last occurrence(s)
of confidential events in a trace can be corrected to another trace with the same
observation for the attacker. I-MAKS also defines bsps requiring that the insertion
of confidential events somewhere after the last confidential event of the initial trace
can be corrected accordingly. An example for such a bsp is BSI.

definition BSI :: "’e BSP"
where
"BSI V Tr ≡
∀α β. ∀c∈CV. ((β @ α) ∈ Tr ∧ α�CV = [])
−→ (∃α’. ((β @ [c] @ α’) ∈ Tr ∧ α’�VV = α�VV ∧ α’�CV = []))"

BSI requires that inserting a confidential event c somewhere after the last occurrence
of a confidential event in a possible trace β @ α can be corrected to another possible
trace β @ [c] @ α’. Likewise to BSD, BSI permits only causal corrections after the
perturbation of the considered trace, i.e. corrections in the perturbed trace β @

[c] @ α may only affect α. Intuitively, all bsps inserting occurrences of confidential
events in a possible trace ensure that an attacker is unable to infer that a confidential
event did not occur during a trace.

Beyond the formalization of all 14 BSPs presented in [Man03] in Isabelle/HOL, I-
MAKS also provides a complete Isabelle/HOL formalization including proofs for the
taxonomy of the 14 BSPs in Theory BSPTaxonomy. The complete list of taxonomy
results formalized and proven in I-MAKS can be found in Appendix A.2.

5.3 Information-Flow Properties

In MAKS more complex information-flow properties than the BSPs themselves are
defined as conjunction of multiple BSPs for a set of views on some set of events.

Definition 31. Let E be a set of events. An information-flow property is a pair
(VS, BSPS) where VS is a set of views on E and BSPS is a set of BSPs.
An information-flow property is satisfied for a set of traces Tr ⊆ E∗ iff BSPV(Tr)
holds for each V ∈ VS and each BSP ∈ BSPS. ^

23

That is, an information-flow property consists of the perspective of the attackers
against whom the system shall be secure and the building blocks that conjoined
specify the desired notion of information-flow security. A system is considered secure
wrt. the defined information-flow property if each of the BSPs is satisfied for each
view and set of possible traces modeling the system.

Examples for how MAKS’ notion of information-flow properties and BSPs can be
used to define information-flow properties such as the properties in Section 2.2 are
omitted here and instead given in their Isabelle/HOL formalization in the following.

I-MAKS Formalization. Like in MAKS, information-flow properties in I-MAKS
are structurally formalized as a pair of a set of views and a set of bsps.

type synonym ’e IFP_type = "(’e V_rec set) × ’e SP"

type synonym ’e SP = "(’e BSP) set"

The corresponding predicate IFP_valid formalizes the semantic side conditions of
information-flow properties on terms of the type ’e IFP_type.

definition IFP_valid :: "’e set ⇒ ’e IFP_type ⇒ bool"
where
"IFP_valid E ifp ≡
∀V ∈ (fst ifp). isViewOn V E

∧ (∀BSP ∈ (snd ifp). BSP_valid BSP)"

Combining the type ’e IFP_type and the predicate IFP_valid, I-MAKS formal-
izes information-flow properties as follows.

Definition 32. An information-flow property for a type of events ’e is a
term of ’e IFP_type that satisfies the predicate IFP_valid. ^

I-MAKS adopts the notion of satisfaction for information-flow properties utiliz-
ing the predicate IFPIsSatisfied.

definition IFPIsSatisfied :: "’e IFP_type ⇒ (’e list) set ⇒ bool"
where
"IFPIsSatisfied ifp Tr ≡
∀ V∈(fst ifp). ∀ BSP∈(snd ifp). BSP V Tr"

Hence, a set of traces satisfies an information-flow property if and only if
IFPIsSatisfied is satisfied.

Definition 33. Let ifp be an information-flow property. Let Tr be a set of
traces. the information-flow property ifp is satisfied for Tr if and only if
IFPIsSatisfied ifp Tr is satisfied. ^

Using information-flow properties I-MAKS provide formalizations of sev-
eral possibilistic information-flow properties from the literature in Theory Property

Library. For instance, noninference (cf. Definition 10) is formalized as follows.

24

definition NF :: "’e set ⇒ ’e set ⇒ ’e IFP_type"
where
"NF L H ≡ ({HighConfidential L H}, {R})"

definition HighConfidential :: "’e set ⇒ ’e set ⇒ ’e V_rec"
where
"HighConfidential L H ≡ (| V=L, N={}, C=H |)"

This formalization of noninference is equivalent to the formalization of noninference
in MAKS (see [Man03]). This also holds for the other information-flow properties
formalized in Theory Property Library, i.e. they are also equivalent to their for-
malizations in MAKS. We provide the I-MAKS formalization of all information-flow
properties expressed in MAKS presented in [Man03] in Appendix A.4.

6 Verification Component

MAKS provides support for reasoning by unwinding on state-event systems in the
form of unwinding results. That is, a sound proof-technique for the verification of
BSPs reasoning about local requirements on single transitions and adjacent states
instead of reasoning about the set of all possible traces of a state-event system.

In addition, MAKS provides support for compositional reasoning by composi-
tionality results for the different BSPs. These compositionality results allow one to
reason about the security of a system’s components separately and then establish
security for the overall system.

In this section, we provide the I-MAKS representation of the unwinding result for
BSD and provide the compositionality result for BSD. We provide the representation
of the remaining unwinding results and compositionality results of MAKS in I-
MAKS in Appendix A.5 and Appendix A.6.

6.1 Unwinding Results

Reasoning by unwinding reduces the verification of BSPs for a given state-event sys-
tem to the verification of two so called unwinding conditions for a suitable unwinding
relation. An unwinding relation is a binary relation on the states of a state-event
system. Intuitively, it captures an indistinguishability relation on states of a state-
event system that shall relate all states indistinguishable for an attacker observing
only transitions of the state-event system with a visible event. If one can provide an
unwinding relation for a state-event system satisfying the two unwinding conditions
for a BSP, one can conclude that the state-event system satisfies this BSP.

Overall MAKS provides an unwinding theorem for each of the 14 BSPs allowing
one to verify a BSP for a state-event system by verifying two unwinding conditions.

I-MAKS Formalization. In the following, we present the unwinding theorem
for BSD in I-MAKS and the two unwinding conditions locally-respects forwards and
output-step consistency used in this theorem. For this purpose, let SES be a state-
event system and V be a view on ESES.

25

All unwinding conditions only reason about the reachable states of a state-
event system. The predicate reachable characterizes theses states in I-MAKS.

definition reachable :: "(’s, ’e) SES_rec ⇒ ’s ⇒ bool"
where
"reachable SES s ≡ (∃t. s0SES t=⇒SES s)"

That is, all states in the image of the big-step transition function are reachable.
Based on this predicate, the unwinding condition locally-respects forwards is

formalized in I-MAKS utilizing the predicate lrf on binary relations of states.

definition lrf :: "’s rel ⇒ bool"
where
"lrf ur ≡
∀s ∈ SSES. ∀s’ ∈ SSES. ∀c ∈ CV.
((reachable SES s ∧ s c−→SES s’) −→ (s’, s) ∈ ur)"

Intuitively, the predicate lrf ensures that the states before and after any occurrence
of a confidential event are indistinguishable.

Using the predicate lrf, I-MAKS formalizes the unwinding condition locally-
respects forwards as follows.

Definition 34. Let SES be a state-event system. Let V be a view on ESES.
The unwinding condition locally-respects forwards is satisfied for a binary
relation ur on states of type ’s if and only if lrf ur is satisfied. ^

The unwinding condition output-step consistency is formalized in I-MAKS uti-
lizing the predicate osc on binary relations of states.

definition osc :: "’s rel ⇒ bool"
where
"osc ur ≡
∀s1 ∈ SSES. ∀s1’ ∈ SSES. ∀s2’ ∈ SSES. ∀e ∈ (ESES - CV).

(reachable SES s1 ∧ reachable SES s1’
∧ s1’ e−→SES s2’ ∧ (s1’, s1) ∈ ur)

−→ (∃s2 ∈ SSES. ∃ δ. δ � CV = [] ∧ δ � VV = [e] � VV

∧ s1 δ=⇒SES s2 ∧ (s2’, s2) ∈ ur)"

Intuitively, the predicate osc captures the following requirement (cf. Fig. 4): If
any two states s1’ and s1 are indistinguishable, then a possible transition with a
confidential event e from s1’ to s2’ has to be matched by a sequence of transitions
with a trace delta from s1 to s2. Thereby, the trace δ can differ from the trace
[e] in at most the occurrence of don’t care events. Moreover, the states resulting
after the transitions have to be indistinguishable.

Using the predicate osc, I-MAKS formalizes the unwinding condition output-
step consistency as follows.

Definition 35. Let SES be a state-event system. Let V be a view on ESES. The
unwinding condition output-step consistency is satisfied for a binary relation
ur on states of type ’s if and only if osc ur is satisfied. ^

26

s′1 s′2

s1 s2

e
T

δ
T

X X

Figure 4: Illustration of the unwinding condition osc [Man03].

In the context of BSPs, the unwinding condition lrf matches the intuition of
D because the observer cannot distinguish states connected by a transition with
a confidential event, i.e. he cannot recognize that a confidential event occurred.
Moreover, the unwinding condition osc matches the intuition of causal corrections in
don’t care events. That is, because only corrections in don’t care event are permitted
but are also restricted to future transitions.

Following this intuition, I-MAKS provides an unwinding theorem for BSD.

theorem unwinding_theorem_BSD:
"[[lrf ur; osc ur]] =⇒ BSD V Tr(induceES SES)"

Hence, one can directly conclude BSD for a state-event system after providing an
unwinding relation ur such that the two unwinding conditions locally-respects
forwards and output-step consistency are satisfied. That is, if there is a
unwinding relation ur on the states of SES such that the two unwinding conditions
locally-respects forwards and output-step consistency are satisfied for
ur, then the set of possible traces induced by SES satisfies BSD for V.

As mentioned beforehand, we list the 13 remaining unwinding theorems and
the unwinding conditions used in these theorems in Appendix A.5. Note that in
these unwinding theorems, the unwinding condition output-step consistency is
always reused and combined with a suitable variant of locally-respects.

6.2 Compositionality Results

To scale to larger systems, MAKS provides support for modular reasoning in the
form of compositionality results. The compositionality results allow one to con-
clude information-flow properties for a composed system from the information-flow
properties satisfied by its components.

Overall, MAKS provides 11 compositionality results. These compositionality
results cover all strict, backwards-strict, and forward-correctable BSPs of MAKS as
well as the BSP R.

I-MAKS Formalization. In the following, we present the compositionality result
for BSD in I-MAKS and the two conditions for its application: proper separation
of views and well-behaved composition. For this purpose, let ES1 and ES2 be two

27

event systems that are composable and let ES be the parallel composition
of ES1 and ES2. Furthermore, let V1 be a view on EES1, V2 be a view on EES2, and
V be a view on EES.

The first condition, proper separation of views, ensures that the attacker’s per-
spective on the two components is compatible with the attacker’s perspective on
the composed system. The predicate properSeparationOfViews formalizes this
condition in I-MAKS.

definition
properSeparationOfViews ::
"’e ES_rec ⇒ ’e ES_rec ⇒ ’e V_rec ⇒ ’e V_rec ⇒ ’e V_rec ⇒ bool"
where
"properSeparationOfViews ES1 ES2 V V1 V2 ≡

VV ∩ EES1 = VV1

∧ VV ∩ EES2 = VV2

∧ CV ∩ EES1 ⊆ CV1

∧ CV ∩ EES2 ⊆ CV2

∧ NV1 ∩ NV2 = {}"

The predicate ensures that the attacker’s perspective on the two components and
the attacker’s perspective on the composed system are compatible in the following
sense: Firstly, the view on the composed system does not change the attacker’s
capabilities on observing the components, i.e. everything the attacker is able to
observe for the components he can also observe for the composed system (captured
by the first two conjuncts). Secondly, the view on the composed system does not
consider events confidential that are not confidential for the components (captured
by the second two conjuncts). Finally, the last conjunct ensures that a correction
in don’t care events only changes don’t care events in one component.

Using the predicate properSeparationOfViews, I-MAKS captures the condi-
tion proper separation of views as follows.

Definition 36. The views V1 and V2 constitute a proper separation of V for
the event systems ES1 and ES2 if and only if properSeparationOfViews ES1

ES2 V V1 V2 is satisfied. ^

The second condition, well-behaved composition, ensures that corrections in one
component affecting the shared events can be handled by the other component. The
predicate wellBehavedComposition formalizes this condition in I-MAKS.

definition
wellBehavedComposition ::
"’e ES_rec ⇒ ’e ES_rec ⇒ ’e V_rec ⇒ ’e V_rec ⇒ ’e V_rec ⇒ bool"
where
"wellBehavedComposition ES1 ES2 V V1 V2 ≡
(NV1 ∩ EES2 = {} ∧ NV2 ∩ EES1 = {})
∨ (∃ %1. (NV1 ∩ EES2 = {} ∧ total ES1 (CV1 ∩ NV2)

∧ BSIA %1 V1 TrES1))
∨ (∃ %2. (NV2 ∩ EES1 = {} ∧ total ES2 (CV2 ∩ NV1)

∧ BSIA %2 V2 TrES2))

28

∨ (∃ %1 %2 Γ1 Γ2. (
∇Γ1 ⊆ EES1 ∧ ∆Γ1 ⊆ EES1 ∧ Υ Γ1 ⊆ EES1

∧ ∇Γ2 ⊆ EES2 ∧ ∆Γ2 ⊆ EES2 ∧ Υ Γ2 ⊆ EES2

∧ BSIA %1 V1 TrES1 ∧ BSIA %2 V2 TrES2

∧ total ES1 (CV1 ∩ NV2) ∧ total ES2 (CV2 ∩ NV1)
∧ FCIA %1 Γ1 V1 TrES1 ∧ FCIA %2 Γ2 V2 TrES2

∧ VV1 ∩ VV2 ⊆ ∇Γ1 ∪ ∇Γ2

∧ CV1 ∩ NV2 ⊆ Υ Γ1 ∧ CV2 ∩ NV1 ⊆ Υ Γ2

∧ NV1 ∩ ∆Γ1 ∩ EES2 = {} ∧ NV2 ∩ ∆Γ2 ∩ EES1 = {}))"

definition total :: "’e ES_rec ⇒ ’e set ⇒ bool"
where
"total ES E ≡ E ⊆ EES ∧ (∀ τ ∈ TrES. ∀e ∈ E. τ @ [e] ∈ TrES)"

The four disjuncts of the predicate wellBehavedComposition establish a case dis-
tinction on the truth values of NV1 ∩ EES2 = {} and NV2 ∩ EES1 = {}. If NV1 ∩
EES2 = {} holds, no shared events are affected by corrections in the first component.
Likewise, if NV2 ∩ EES1 = {} holds, no shared events are affected by corrections in
the second component. Hence, the first disjunct ensures that corrections do not have
an effect on other components. The second disjunct ensures that corrections in the
second component can be handled without leaking information about secrets by the
first component. In the other direction, no shared events are affected by corrections.
The third disjunct is the counterpart to the second disjunct for the opposite direc-
tion. Finally, the fourth disjunct ensures that corrections in either component can
be handled by the components without leaking information about secrets.

Using the predicate wellBehavedComposition, I-MAKS captures the condition
well-behaved composition as follows.

Definition 37. Suppose that V1 and V2 constitute a proper separation of V
for the event systems ES1 and ES2. The composition of ES1 and ES2 is a well-
behaved composition wrt. V1 and V2 if and only if wellBehavedComposition
ES1 ES2 V V1 V2 is satisfied. ^

Assuming the two conditions proper separation of views and well-behaved com-
position, the compositionality result for BSD is formalized by the following theorem
proven in I-MAKS.3

theorem compositionality_BSD:
"[[BSD V1 TrES1; BSD V2 TrES2]] =⇒ BSD V Tr(ES1 ‖ ES2)"

That is, the verification of BSD for the composed system ES can be reduced to the
verification of BSD for the components.

We present the remaining 10 compositionality results formalized and proven in
I-MAKS in Appendix A.6. For all of these compositionality results, it is assumed
that V1 and V2 constitute a proper separation of V for ES1 and ES2 as well as
that the composition of ES1 and ES2 is a well-behaved composition wrt. V1 and
V2. With these results, I-MAKS covers all compositionality results from MAKS.
3 The two conditions proper separation of views and well-behaved composition are not

directly stated in the theorem, instead the conditions are required by the context of the
theorem in Isabelle/HOL.

29

7 Related Work

In the area of information-flow security, one distinguishes between language-based
information-flow security and information-flow security at the specification level.
In the former the security of programs is investigated. In the latter the security of
systems modeled at a higher level of abstraction than programs is investigated. In
this report we focus on information-flow security at the specification level. We refer
to [SM03] for an overview on language-based information-flow security.

Frameworks for Specification-Level Information-Flow Security. Besides
MAKS, there are a couple of other frameworks that were developed for analyzing
and comparing different possibilistic information-flow properties.

The framework of selective interleaving functions is proposed in [McL94], the
process algebra SPA in [FG95] and a representation of information-flow proper-
ties based on low-level equivalence sets in [ZL97]. More recently, three frameworks
supporting the specification of possibilistic information-flow properties were de-
veloped inspired by MAKS: A general schema for the specification of trace-based
information-flow properties is presented in [SS09]. A similar schema for the speci-
fication of information-flow properties of programs with UTP semantics [HH98] is
provided in [BJ10]. Finally, a variant of MAKS supporting non-terminating sys-
tems is presented in [MC12]. However, we are not aware of any formalization of
these frameworks in a proof assistant such as Isabelle/HOL.

The probably closest work to ours is the Bounded-Deducibility Security (BD-
Security) framework [PL14] also formalized in Isabelle/HOL. The framework enables
the specification of possibilistic information-flow properties (incl. declassification)
for I/O automata. In contrast to I-MAKS, it does not provide building blocks for
the definition of custom information-flow properties.

Verification of Information-Flow Properties using Theorem Provers. In-
teractive theorem provers have been applied in the verification of information-flow
properties in several case studies. For instance, in [ACL03] Coq and in [vOLW05]
Isabelle/HOL are used for the verification of information-flow properties expressing
memory isolation on smartcards. In [KSBR13] KIV has been used for the veri-
fication of information-flow properties, e.g. intransitive noninterference [vdM07].
More recently, utilizing the BD-Security framework Isabelle/HOL has been used for
the verification of information-flow properties for an conference management sys-
tem [KLP14] and for a social-media platform [BPPR16, BPPR17]. While I-MAKS
has not been used in comparable case studies with Isabelle/HOL, we are confident
that it can be used for similar case studies in the future.

Tools for the Verification of Information-Flow Properties. With I-MAKS
we enable users to verify possibilistic information-flow properties in Isabelle/HOL.
Related to this general support for the verification of information-flow properties
are special purpose tools that permit the verification of specific information-flow
properties for specific system specification languages.

30

There exist several tools in this direction. For process algebras there are, for
instance, the Checker of Persistent Security (CoPS) [PPR04] targeting the process
algebra SPA for the properties SBNDC, PBNDC, and PPBNDS, the Pi-calculus
Non-interference checker (PicNIc) [CMM+08] to verify four information-flow prop-
erties for the Pi-calculus, aiming in particular at controlled declassification, and
the CSP refinement checker FDR2 [For10] for properties based on the idea of low-
determinism. The Petri Net Security Checker [FGF09] verifies the property PBNI+
for Petri Net specifications. The Automated Non-Interference Check Assistant (An-
ica) [Leh11] targets the verification of PBNI+ and PBNID for Petri Net speci-
fications. The UMLsec-Tool and its successor CARiSMA [WWB+13] can verify
UML specifications with respect to certain information-flow properties including
some MAKS BSPs. These tools enable an automatic verification of the specific
information-flow properties, but they do not provide the freedom to specify and
verify custom information-flow properties.

8 Conclusion

We presented I-MAKS, an Isabelle/HOL formalization of MAKS. I-MAKS trans-
fers the pen-and-paper framework into the proof assistant Isabelle/HOL. With
this transfer, we reverified the soundness of the pen-and-paper framework utiliz-
ing the machine-supported rigor of the proof assistant Isabelle/HOL. In addition
this transfer, enables the usage of the general purpose proof techniques offered by
Isabelle/HOL when using I-MAKS.

We see I-MAKS as step towards developing a tool for the specification and ver-
ification of possibilistic information-flow properties at the specification level. That
is, I-MAKS provides the necessary basis to develop front-ends for the specification
of system models in common specification languages and adding further support
for (semi-)automatic verification of information-flow properties. For instance, the
development of a CSP front-end and the integration of the model-checking tech-
niques from [DHRS11] are interesting future directions. In its current form I-MAKS
already allows one to use the machine-checked framework as a tool in Isabelle/HOL.

We hope that I-MAKS also encourages the development of further machine-
checked extensions of MAKS integrating already existing extensions (e.g. [HS04,
MC12]) or adding novel extensions to the framework.

Acknowledgments

The authors thank Christoph Feller from the University of Kaiserslautern for his valuable
feedback regarding the usage of a preliminary version of I-MAKS and Oliver Bračevac for
his contributions to the proofs in the theories related to unwinding and compositionality.

This work was partially funded by the DFG (German Research Foundation) under the
projects FM-SecEng (MA 3326/1-2, MA 3326/1-3) and RSCP (MA 3326/4-3).

31

References

[ACL03] J. Andronick, B. Chetali, and O. Ly. Using Coq to Verify Java Card Applet
Isolation Properties. In Proceedings of the 16th International Conference on
Theorem Proving in Higher Order Logics (TPHOLs), LNCS 2758, pages 335–
351, 2003.

[BFPR03] A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Refinement Operators and
Information Flow Security. In Proceedings of the International Conference on
Software Engineering and Formal Methods (SEFM), pages 44–53, 2003.

[BJ10] M. J. Banks and J. L. Jacob. Unifying Theories of Confidentiality. In Pro-
ceedings of the Third International Symposium on Unifying Theories of Pro-
gramming (UTP), LNCS 6445, pages 120–136, 2010.

[BPPR16] T. Bauereiß, A. Pesenti Gritti, A. Popescu, and F. Raimondi. CoSMed: A
Confidentiality-Verified Social Media Platform. In Proceedings of the 7th In-
ternational Conference on Interactive Theorem Proving, pages 87–106, 2016.

[BPPR17] T. Bauereiß, A. Pesenti Gritti, A. Popescu, and F. Raimondi. CoSMeDis:
A Distributed Social Media Platform with Formally Verified Confidentiality
Guarantees. In Proceedings of the 2017 IEEE Symposium on Security and
Privacy, pages 729–748, 2017.

[CMM+08] S. Crafa, M. Mio, M. Miculan, C. Piazza, and S. Rossi. PicNIc - Pi-Calculus
Non-Interference Checker. In International Conference on Application of Con-
currency to System Design (ACSD), pages 33–38, 2008.

[DHRS11] D. D’Souza, R. Holla, R. K. Ramesh, and B. Sprick. Model-Checking Trace-
Based Information Flow Properties. Journal of Computer Security, 19(1):101–
138, 2011.

[FG95] R. Focardi and R. Gorrieri. A Classification of Security Properties for Process
Algebras. Journal of Computer Security, 3(1):5–33, 1995.

[FGF09] S. Frau, R. Gorrieri, and C. Ferigato. Petri Net Security Checker: Structural
Non-interference at Work. In Workshop on Formal Aspects in Security and
Trust (FAST’08), LNCS 5491, pages 210–225, 2009.

[For10] Formal Systems (Europe) Ltd and Oxford University Computing Laboratory.
FDR2 User Manual, 2010.

[GM82] J. A. Goguen and J. Meseguer. Security Policies and Security Models. In
Proceedings of the 3rd IEEE Symposium on Security and Privacy (S&P), pages
11–20, 1982.

[Har87] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, 8(3):231–274, 1987.

[HH98] C.A.R. Hoare and J. He. Unifying Theories of Programming. Prentice Hall,
1998.

[HS04] D. Hutter and A. Schairer. Possibilistic Information Flow Control in the Pres-
ence of Encrypted Communication. In Proceedings of the European Symposium
on Research in Computer Security (ESORICS), LNCS 3193, pages 209–224,
2004.

[JT88] D. M. Johnson and F. J. Thayer. Security and the Composition of Machines.
In Proceedings of the Computer Security Foundations Workshop, pages 72–89,
1988.

[KLP14] S. Kanav, P. Lammich, and A. Popescu. A Conference Management System
with Verified Document Confidentiality. In Proceedings of the 26th Interna-
tional Conference on Computer Aided Verification, pages 167–183, 2014.

32

[KSBR13] K. Katkalov, K. Stenzel, M. Borek, and W. Reif. Model-Driven Development
of Information Flow-Secure Systems with IFlow. In Proceedings of the 5th
ASE/IEEE International Conference on Information Privacy, Security, Risk
and Trust (PASSAT), 2013.

[Leh11] A. Lehmann. Automated Non-Interference Check Assistant (Anica). http:
//service-technology.org/anica, September 2011.

[Man00a] H. Mantel. Possibilistic Definitions of Security – An Assembly Kit. In Pro-
ceedings of the 13th IEEE Computer Security Foundations Workshop (CSFW),
pages 185–199, 2000.

[Man00b] H. Mantel. Unwinding Possibilistic Security Properties. In Proceedings of
the 6th European Symposium on Research in Computer Security (ESORICS),
LNCS 1895, pages 238–254, 2000.

[Man02] H. Mantel. On the Composition of Secure Systems. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 88–104, 2002.

[Man03] H. Mantel. A Uniform Framework for the Formal Specification and Verification
of Information Flow Security. PhD thesis, Saarland University, Saarbrücken,
Germany, 2003.

[Man11] H. Mantel. Information Flow and Noninterference. In Encyclopedia of Cryp-
tography and Security (2nd Ed.), pages 605–607. Springer, 2011.

[MC12] D. Milushev and D. Clarke. Coinductive Unwinding of Security-Relevant Hy-
perproperties. In Proceedings of the 17th Nordic Conference on Secure IT
Systems (NordSec), LNCS 7617, pages 121–136, 2012.

[McC87] D. McCullough. Specifications for Multi-Level Security and a Hook-Up Prop-
erty. In Proceedings of the 8th IEEE Symposium on Security and Privacy
(S&P), pages 161–166, 1987.

[McL94] J. D. McLean. A General Theory of Composition for Trace Sets Closed under
Selective Interleaving Functions. In Proceedings of the IEEE Symposium on
Research in Security and Privacy (S&P), pages 79–93, 1994.

[NPW02] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic. LNCS 2283. Springer, 2002.

[O’H90] C. O’Halloran. A Calculus of Information Flow. In Proceedings of the 1st
European Symposium on Research in Computer Security (ESORICS), pages
147–159, 1990.

[PL14] A. Popescu and P. Lammich. Bounded-Deducibility Security. Archive of For-
mal Proofs, 2014.

[PPR04] C. Piazza, E. Pivato, and S. Rossi. CoPS - Checker of Persistent Security.
In Proceedings of the 10th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), LNCS 2988, pages
144–152, 2004.

[PWK96] R. V. Peri, W. A. Wulf, and D. M. Kienzle. A Logic of Composition for Infor-
mation Flow Predicates. In Proceedings of the 9th IEEE Computer Security
Foundations Workshop (CSFW), pages 82–93, 1996.

[SM03] A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[SS09] F. Seehusen and K. Stolen. Information Flow Security, Abstraction and Com-
position. Information Security, IET, 3(1):9–33, 2009.

[Sut86] D. Sutherland. A Model of Information. In Proceedings of the 9th National
Computer Security Conference, Baltimore, MD, USA, 1986.

[UT18a] University of Cambridge and Technische Universität München. Isabelle Docu-
mentation. http://isabelle.in.tum.de/documentation.html, April
2018.

33

[UT18b] University of Cambridge and Technische Universität München. Theory
List. http://isabelle.in.tum.de/library/HOL/HOL/List.html,
April 2018.

[vdM07] R. van der Meyden. What, Indeed, is Intransitive Noninterference? (extended
abstract). In Proceedings of the European Symposium on Research in Computer
Security (ESORICS), LNCS 4734, pages 235–250, 2007.

[vOLW05] D. von Oheimb, V. Lotz, and G. Walter. Analyzing SLE 88 Memory Man-
agement Security using Interacting State Machines. International Journal of
Information Security, 4(3):155–171, 2005.

[WWB+13] S. Wenzel, D. Warzecha, B. Berghoff, J. Bürger, L. Kaltchev, J. Kowald, K.
Mensah, M. Michel, and K. Rudack. CARiSMA. http://vm4a003.itmc.
tu-dortmund.de/carisma/web/doku.php, October 2013.

[ZL95] A. Zakinthinos and E. S. Lee. The Composability of Non-Interference. In Pro-
ceedings of the 8th IEEE Computer Security Foundations Workshop (CSFW),
pages 2–8, 1995.

[ZL97] A. Zakinthinos and E. S. Lee. A General Theory of Security Properties. In
Proceedings of the 18th IEEE Symposium on Security and Privacy (S&P),
pages 94–102, 1997.

34

A I-MAKS Definitions and Theorems

A.1 Definitions of Basic Security Predicates

In the following, we provide the definitions of all BSPs as defined in I-MAKS, corre-
sponding lemmas proven in I-MAKS that state the validity of the BSPs, and necessary
supplementary definitions. We extracted all of these definitions and lemmas from the the-
ory BasicSecurityPredicates.

type synonym ’e BSP = "’e V_rec ⇒ ((’e list) set) ⇒ bool"

definition BSP_valid :: "’e BSP ⇒ bool"
where
"BSP_valid bsp ≡
∀V Tr E. (isViewOn V E ∧ areTracesOver Tr E)

−→ (∃ Tr’. Tr’ ⊇ Tr ∧ bsp V Tr’)"

Supplementary Definitions. We provide definitions of the types for ρ and Γ that are
used as additional parameters in the BSPs IA, SIA, BSIA, FCD, FCI, and FCIA below.
type synonym ’e Rho = "’e V_rec ⇒ ’e set"

record ’e Gamma =
Nabla :: "’e set"
Delta :: "’e set"
Upsilon :: "’e set"

In addition, we provide the definition of ρ-admissibility in I-MAKS which is used in the
definitions of IA, SIA, BSIA, and FCIA.
definition
Adm :: "’e V_rec ⇒ ’e Rho ⇒ (’e list) set ⇒ ’e list ⇒ ’e ⇒ bool"
where
"Adm V % Tr β e ≡
∃ γ. ((γ @ [e]) ∈ Tr ∧ γ�(% V) = β�(% V))"

Unrestricted Basic Security Predicates. We provide the definitions of all BSPs that
permit arbitrary corrections together with their validity lemmas below.
definition R :: "’e BSP"
where
"R V Tr ≡
∀ τ∈Tr. ∃ τ’∈Tr. τ’ � CV = [] ∧ τ’ � VV = τ � VV"

lemma BSP_valid_R: "BSP_valid R"

definition D :: "’e BSP"
where
"D V Tr ≡
∀α β. ∀c∈CV. ((β @ [c] @ α) ∈ Tr ∧ α�CV = [])
−→ (∃α’ β’. ((β’ @ α’) ∈ Tr ∧ α’�VV = α�VV ∧ α’�CV = []

∧ β’�(VV ∪ CV) = β�(VV ∪ CV)))"

35

lemma BSP_valid_D: "BSP_valid D"

definition I :: "’e BSP"
where
"I V Tr ≡
∀α β. ∀c∈CV. ((β @ α) ∈ Tr ∧ α�CV = [])
−→ (∃α’ β’. ((β’ @ [c] @ α’) ∈ Tr ∧ α’�VV = α�VV ∧ α’�CV = []

∧ β’�(VV ∪ CV) = β�(VV ∪ CV)))"

lemma BSP_valid_I: "BSP_valid I"

definition IA :: "’e Rho ⇒ ’e BSP"
where
"IA % V Tr ≡
∀α β. ∀c∈CV. ((β @ α) ∈ Tr ∧ α�CV = [] ∧ (Adm V % Tr β c))
−→ (∃ α’ β’. ((β’ @ [c] @ α’) ∈ Tr) ∧ α’�VV = α�VV

∧ α’�CV = [] ∧ β’�(VV ∪ CV) = β�(VV ∪ CV))"

lemma BSP_valid_IA: "BSP_valid (IA %) "

Strict Basic Security Predicates. We provide the definitions of all BSPs that permit
no corrections together with their validity lemmas below.

definition SR :: "’e BSP"
where
"SR V Tr ≡ ∀ τ∈Tr. τ � (VV ∪ NV) ∈ Tr"

lemma "BSP_valid SR"

definition SD :: "’e BSP"
where
"SD V Tr ≡
∀α β. ∀c∈CV. ((β @ [c] @ α) ∈ Tr ∧ α�CV = []) −→ β @ α ∈ Tr"

lemma "BSP_valid SD"

definition SI :: "’e BSP"
where
"SI V Tr ≡
∀α β. ∀c∈CV. ((β @ α) ∈ Tr ∧ α � CV = []) −→ β @ [c] @ α ∈ Tr"

lemma "BSP_valid SI"

definition SIA :: "’e Rho ⇒ ’e BSP"
where
"SIA % V Tr ≡
∀α β. ∀c∈CV. ((β @ α) ∈ Tr ∧ α � CV = [] ∧ (Adm V % Tr β c))
−→ (β @ [c] @ α) ∈ Tr"

lemma "BSP_valid (SIA %) "

36

Backwards-Strict Basic Security Predicates. We provide the definitions of all BSPs
that permit corrections after the point of perturbation together with their validity lemmas
below.

definition BSD :: "’e BSP"
where
"BSD V Tr ≡
∀α β. ∀c∈CV. ((β @ [c] @ α) ∈ Tr ∧ α�CV = [])
−→ (∃α’. ((β @ α’) ∈ Tr ∧ α’�VV = α�VV ∧ α’�CV = []))"

lemma BSP_valid_BSD: "BSP_valid BSD"

definition BSI :: "’e BSP"
where
"BSI V Tr ≡
∀α β. ∀c∈CV. ((β @ α) ∈ Tr ∧ α�CV = [])
−→ (∃α’. ((β @ [c] @ α’) ∈ Tr ∧ α’�VV = α�VV ∧ α’�CV = []))"

lemma BSP_valid_BSI: "BSP_valid BSI"

definition BSIA :: "’e Rho ⇒ ’e BSP"
where
"BSIA % V Tr ≡
∀α β. ∀c∈CV. ((β @ α) ∈ Tr ∧ α�CV = [] ∧ (Adm V % Tr β c))
−→ (∃α’. ((β @ [c] @ α’) ∈ Tr ∧ α’�VV = α�VV ∧ α’�CV = []))"

lemma BSP_valid_BSIA: "BSP_valid (BSIA %) "

Forward-Correctable Basic Security Predicates. We provide the definitions of all
BSPs that permit perturbations only directly before a visible event and permit corrections
after the point of perturbation together with their validity lemmas below.

definition FCD :: "’e Gamma ⇒ ’e BSP"
where
"FCD Γ V Tr ≡
∀α β. ∀c∈(CV ∩ Υ Γ). ∀v∈(VV ∩ ∇Γ).
((β @ [c,v] @ α) ∈ Tr ∧ α � CV = [])
−→ (∃α’. ∃ δ’. (set δ’) ⊆ (NV ∩ ∆Γ)

∧ ((β @ δ’ @ [v] @ α’) ∈ Tr
∧ α’�VV = α�VV ∧ α’�CV = []))"

lemma BSP_valid_FCD: "BSP_valid (FCD Γ)"

definition FCI :: "’e Gamma ⇒ ’e BSP"
where
"FCI Γ V Tr ≡
∀α β. ∀c∈(CV ∩ Υ Γ). ∀v∈(VV ∩ ∇Γ).
((β @ [v] @ α) ∈ Tr ∧ α�CV = [])
−→ (∃α’. ∃ δ’. (set δ’) ⊆ (NV ∩ ∆Γ)

∧ ((β @ [c] @ δ’ @ [v] @ α’) ∈ Tr
∧ α’�VV = α�VV ∧ α’�CV = []))"

37

lemma BSP_valid_FCI: "BSP_valid (FCI Γ)"

definition FCIA :: "’e Rho ⇒ ’e Gamma ⇒ ’e BSP"
where
"FCIA % Γ V Tr ≡
∀α β. ∀c∈(CV ∩ Υ Γ). ∀v∈(VV ∩ ∇Γ).
((β @ [v] @ α) ∈ Tr ∧ α�CV = [] ∧ (Adm V % Tr β c))
−→ (∃α’. ∃ δ’. (set δ’) ⊆ (NV ∩ ∆Γ)

∧ ((β @ [c] @ δ’ @ [v] @ α’) ∈ Tr
∧ α’�VV = α�VV ∧ α’�CV = []))"

lemma BSP_valid_FCIA: "BSP_valid (FCIA % Γ) "

A.2 Taxonomy Results

In the following, we provide a complete list of the taxonomy results for BSPs formalized
and proven in I-MAKS. We extracted all of theses results from the theory BSPTaxonomy.
For all of these results, it is assumed ES_valid ES, isViewOn V EES, isViewOn V1 EES,
and isViewOn V2 EES hold. We declare any further assumptions in the respective sections.

Taxonomy of BSPs in the First Dimension.

Taxonomy Results for the Same View:

lemma D_implies_R:
"D V TrES =⇒ R V TrES"

lemma BSD_implies_D:
"BSD V TrES =⇒ D V TrES"

lemma SD_implies_BSD :
"(SD V TrES) =⇒ BSD V TrES "

lemma SD_implies_SR:
"SD V TrES =⇒ SR V TrES"

Taxonomy Results for Modified Views: For the following taxonomy results it is assumed
that for the two views V1 and V2, we have that VV2 ⊆ VV1 , NV2 ⊇ NV1 , and CV2 ⊆ CV1

hold.

lemma R_implies_R_for_modified_view:
"R V1 TrES =⇒ R V2 TrES"

lemma D_implies_D_for_modified_view:
"D V1 TrES =⇒ D V2 TrES"

lemma BSD_implies_BSD_for_modified_view:
"BSD V1 TrES=⇒ BSD V2 TrES"

lemma SD_implies_FCD:
"(SD V TrES) =⇒ FCD Γ V TrES"

38

Further Taxonomy Results: For the following taxonomy results it is assumed that for
the two views V1 and V2, we have that VV2 ⊆ VV1 , NV2 ⊇ NV1 , and CV2 = CV1 hold.
Furthermore, is assumed that for Γ 1 and Γ 2, we have that VV2 ∩ ∇Γ2⊆ VV1 ∩ ∇Γ1 , CV2

∩ ΥΓ2⊆ CV1 ∩ ΥΓ1 , and NV2 ∩ ∆Γ2⊇ NV1 ∩ ∆Γ1 hold.

lemma FCD_implies_FCD_for_modified_view_gamma:
"[[FCD Γ 1 V1 TrES;

VV2∩∇Γ 2 ⊆ VV1∩∇Γ 1; NV2∩∆Γ 2 ⊇ NV1∩∆Γ 1; CV2∩Υ Γ 2 ⊆ CV1∩Υ Γ 1]]
=⇒ FCD Γ 2 V2 TrES"

Trivial Satisfaction Results:

lemma Trivially_fulfilled_D_C_empty:
"CV = {} =⇒ D V TrES"

lemma Trivially_fulfilled_BSD_C_empty:
"CV = {} =⇒ BSD V TrES"

lemma Trivially_fulfilled_R_C_empty:
"CV = {} =⇒ R V TrES"

lemma Trivially_fulfilled_SD_C_empty:
"CV = {} =⇒ SD V TrES"

lemma Trivially_fulfilled_FCD_C_empty:
"CV = {} =⇒ FCD Γ V TrES"

lemma Trivially_fullfilled_R_V_empty:
"VV={} =⇒ R V TrES"

lemma Trivially_fulfilled_D_V_empty:
"VV = {} =⇒ D V TrES"

lemma Trivially_fulfilled_BSD_V_empty:
"VV = {} =⇒ BSD V TrES"

lemma Trivially_fulfilled_FCD_V_empty:
"VV = {} =⇒ FCD Γ V TrES"

lemma Trivially_fulfilled_FCD_Nabla_Υ_empty:
"[[∇Γ={} ∨ Υ Γ={}]]=⇒ FCD Γ V TrES"

lemma Trivially_fulfilled_FCD_N_subseteq_∆_and_BSD:
"[[NV ⊆ ∆Γ; BSD V TrES]] =⇒ FCD Γ V TrES"

39

Taxonomy of BSPs in the Second Dimension.

Taxonomy Results for the Same View:
lemma SI_implies_BSI :
"(SI V TrES) =⇒ BSI V TrES "

lemma BSI_implies_I:
"(BSI V TrES) =⇒ (I V TrES)"

lemma SIA_implies_BSIA:
"(SIA % V TrES) =⇒ (BSIA % V TrES)"

lemma SI_implies_SIA:
"SI V TrES =⇒ SIA % V TrES"

lemma BSI_implies_BSIA:
"BSI V TrES =⇒ BSIA % V TrES"

lemma I_implies_IA:
"I V TrES =⇒ IA % V TrES"

Taxonomy Results for Modified Views: For the following taxonomy results it is assumed
that for the two views V1 and V2, we have that VV2 ⊆ VV1 , NV2 ⊇ NV1 , and CV2 = CV1

hold.
lemma I_implies_I_for_modified_view :
"I V1 TrES =⇒ I V2 TrES"

lemma BSI_implies_BSI_for_modified_view :
"BSI V1 TrES =⇒ BSI V2 TrES"

lemma SI_implies_SI_for_modified_view :
"SI V1 TrES =⇒ SI V2 TrES"

lemma IA_implies_IA_for_modified_view :
"[[IA %1 V1 TrES; %2(V2) ⊇ %1(V1)]] =⇒ IA %2 V2 TrES"

lemma BSIA_implies_BSIA_for_modified_view :
"[[BSIA %1 V1 TrES; %2(V2) ⊇ %1(V1)]] =⇒ BSIA %2 V2 TrES"

lemma SIA_implies_SIA_for_modified_view :
"[[SIA %1 V1 TrES; %2(V2) ⊇ %1(V1)]] =⇒ SIA %2 V2 TrES"

Further Taxonomy Results: For the following taxonomy results it is assumed that for
the two views V1 and V2, we have that VV2 ⊆ VV1 , NV2 ⊇ NV1 , and CV2 = CV1 hold.
Furthermore, is assumed that for Γ 1 and Γ 2, we have that VV2 ∩ ∇Γ2⊆ VV1 ∩ ∇Γ1 , CV2

∩ ΥΓ2⊆ CV1 ∩ ΥΓ1 , and NV2 ∩ ∆Γ2⊇ NV1 ∩ ∆Γ1 hold.
lemma FCI_implies_FCI_for_modified_view_gamma:
"[[FCI Γ 1 V1 TrES;

VV2∩∇Γ 2 ⊆ VV1∩∇Γ 1; NV2∩∆Γ 2 ⊇ NV1∩∆Γ 1; CV2∩Υ Γ 2 ⊆ CV1∩Υ Γ 1]]
=⇒ FCI Γ 2 V2 TrES"

lemma FCIA_implies_FCIA_for_modified_view_rho_gamma:
"[[FCIA %1 Γ 1 V1 TrES; %2(V2) ⊇ %1(V1);

VV2∩∇Γ 2 ⊆ VV1∩∇Γ 1; NV2∩∆Γ 2 ⊇ NV1∩∆Γ 1; CV2∩Υ Γ 2 ⊆ CV1∩Υ Γ 1]]
=⇒ FCIA %2 Γ 2 V2 TrES"

40

Trivial Satisfaction Results:
lemma Trivially_fulfilled_I_C_empty:
"CV = {} =⇒ I V TrES"

lemma Trivially_fulfilled_IA_C_empty:
"CV = {} =⇒ IA % V TrES"

lemma Trivially_fulfilled_BSI_C_empty:
"CV = {} =⇒ BSI V TrES"

lemma Trivially_fulfilled_BSIA_C_empty:
"CV = {} =⇒ BSIA % V TrES"

lemma Trivially_fulfilled_SI_C_empty:
"CV = {} =⇒ SI V TrES"

lemma Trivially_fulfilled_SIA_C_empty:
"CV = {} =⇒ SIA % V TrES"

lemma Trivially_fulfilled_FCI_C_empty:
"CV = {} =⇒ FCI Γ V TrES"

lemma Trivially_fulfilled_FCIA_C_empty:
"CV = {} =⇒ FCIA Γ % V TrES"

lemma Trivially_fulfilled_FCI_V_empty:
"VV = {} =⇒ FCI Γ V TrES"

lemma Trivially_fulfilled_FCIA_V_empty:
"VV = {} =⇒ FCIA % Γ V TrES"

lemma Trivially_fulfilled_IA_V_empty_rho_subseteq_C_N:
"[[VV = {}; % V ⊇ (CV ∪ NV)]] =⇒ IA % V TrES"

lemma Trivially_fulfilled_BSIA_V_empty_rho_subseteq_C_N:
"[[VV = {}; % V ⊇ (CV ∪ NV)]] =⇒ BSIA % V TrES"

lemma Trivially_fulfilled_BSI_V_empty_total_ES_C:
"[[VV = {}; total ES CV]] =⇒ BSI V TrES"

lemma Trivially_fulfilled_I_V_empty_total_ES_C:
"[[VV = {}; total ES CV]] =⇒ I V TrES"

lemma Trivially_fulfilled_FCI_Nabla_Υ_empty:
"[[∇Γ={} ∨ Υ Γ={}]]=⇒ FCI Γ V TrES"

lemma Trivially_fulfilled_FCIA_Nabla_Υ_empty:
"[[∇Γ={} ∨ Υ Γ={}]]=⇒ FCIA % Γ V TrES"

lemma Trivially_fulfilled_FCI_N_subseteq_∆_and_BSI:
"[[NV ⊆ ∆Γ; BSI V TrES]] =⇒ FCI Γ V TrES"

lemma Trivially_fulfilled_FCIA_N_subseteq_∆_and_BSIA:
"[[NV ⊆ ∆Γ; BSIA % V TrES]] =⇒ FCIA % Γ V TrES"

41

A.3 Information-Flow Properties

In the following, we provide the complete definition of the notion of information-flow
properties as defined in I-MAKS. We extracted all of these definitions from the theory
InformationFlowProperties.

type synonym ’e SP = "(’e BSP) set"

type synonym ’e IFP_type = "(’e V_rec set) × ’e SP"

definition IFP_valid :: "’e set ⇒ ’e IFP_type ⇒ bool"
where
"IFP_valid E ifp ≡
∀V ∈ (fst ifp). isViewOn V E

∧ (∀BSP ∈ (snd ifp). BSP_valid BSP)"

definition IFPIsSatisfied :: "’e IFP_type ⇒ (’e list) set ⇒ bool"
where
"IFPIsSatisfied ifp Tr ≡
∀ V∈(fst ifp). ∀ BSP∈(snd ifp). BSP V Tr"

A.4 Property Library

In the following, we provide the definitions of information-flow properties from the litera-
ture that can be expressed using I-MAKS together with their representation in I-MAKS.
We extracted all of the definitions from the theory PropertyLibrary.

Supplementary Definitions. In the definitions that we present in the following, we use
the views HighConfidential and HighInputsConfidential as well as the definition of
all interleavings of two traces.

definition
HighInputsConfidential :: "’e set ⇒ ’e set ⇒ ’e set ⇒ ’e V_rec"
where
"HighInputsConfidential L H IE ≡ (| V=L, N=H-IE, C=H ∩ IE |)"

definition HighConfidential :: "’e set ⇒ ’e set ⇒ ’e V_rec"
where
"HighConfidential L H ≡ (| V=L, N={}, C=H |)"

fun interleaving :: "’e list ⇒ ’e list ⇒ (’e list) set"
where
"interleaving t1 [] = {t1}" |
"interleaving [] t2 = {t2}" |
"interleaving (e1 # t1) (e2 # t2) =
{t. (∃t’. t=(e1 # t’) ∧ t’ ∈ interleaving t1 (e2 #t2))}
∪ {t. (∃t’. t=(e2 # t’) ∧ t’ ∈ interleaving (e1 # t1) t2)}"

42

Generalized Noninterference.

definition GNI :: "’e set ⇒ ’e set ⇒ ’e set ⇒ ’e IFP_type"
where
"GNI L H IE ≡ ({HighInputsConfidential L H IE}, {BSD, BSI})"

lemma GNI_valid: "L ∩ H = {} =⇒ IFP_valid (L ∪ H) (GNI L H IE)"

definition litGNI :: "’e set ⇒ ’e set ⇒ ’e set ⇒ (’e list) set ⇒ bool"
where
"litGNI L H IE Tr ≡
∀ t1 t2 t3.

t1 @ t2 ∈ Tr ∧ t3 � (L ∪ (H - IE)) = t2 � (L ∪ (H - IE))
−→ (∃ t4. t1 @ t4 ∈ Tr ∧ t4�(L ∪ (H ∩ IE)) = t3�(L ∪ (H ∩ IE)))"

Interleaving-based Generalized Noninterference.

definition IBGNI :: "’e set ⇒ ’e set ⇒ ’e set ⇒ ’e IFP_type"
where "IBGNI L H IE ≡ ({HighInputsConfidential L H IE}, {D, I})"

lemma IBGNI_valid: "L ∩ H = {} =⇒ IFP_valid (L ∪ H) (IBGNI L H IE)"

definition
litIBGNI :: "’e set ⇒ ’e set ⇒ ’e set ⇒ (’e list) set ⇒ bool"
where
"litIBGNI L H IE Tr ≡
∀ τ_l ∈ Tr. ∀ t_hi t.
(set t_hi) ⊆ (H ∩ IE) ∧ t ∈ interleaving t_hi (τ_l � L)
−→ (∃ τ’ ∈ Tr. τ’ � (L ∪ (H ∩ IE)) = t)"

Forward Correctability.

definition FC :: "’e set ⇒ ’e set ⇒ ’e set ⇒ ’e IFP_type"
where
"FC L H IE ≡

({HighInputsConfidential L H IE},
{BSD, BSI, (FCD (| Nabla=IE, Delta={}, Upsilon=IE |)),

(FCI (| Nabla=IE, Delta={}, Upsilon=IE |))})"

lemma FC_valid: "L ∩ H = {} =⇒ IFP_valid (L ∪ H) (FC L H IE)"

definition litFC :: "’e set ⇒ ’e set ⇒ ’e set ⇒ (’e list) set ⇒ bool"
where
"litFC L H IE Tr ≡
∀t_1 t_2. ∀ hi ∈ (H ∩ IE).
(
(∀ li ∈ (L ∩ IE).
t_1 @ [li] @ t_2 ∈ Tr ∧ t_2 � (H ∩ IE) = []
−→ (∃ t_3. t_1 @ [hi] @ [li] @ t_3 ∈ Tr

∧ t_3 � L = t_2 � L ∧ t_3 � (H ∩ IE) = []))

43

∧ (t_1 @ t_2 ∈ Tr ∧ t_2 � (H ∩ IE) = []
−→ (∃ t_3. t_1 @ [hi] @ t_3 ∈ Tr

∧ t_3 � L = t_2 � L ∧ t_3 � (H ∩ IE) = []))
∧ (∀ li ∈ (L ∩ IE).

t_1 @ [hi] @ [li] @ t_2 ∈ Tr ∧ t_2 � (H ∩ IE) = []
−→ (∃ t_3. t_1 @ [li] @ t_3 ∈ Tr

∧ t_3 � L = t_2 � L ∧ t_3 � (H ∩ IE) = []))
∧ (t_1 @ [hi] @ t_2 ∈ Tr ∧ t_2 � (H ∩ IE) = []
−→ (∃ t_3. t_1 @ t_3 ∈ Tr

∧ t_3 � L = t_2 � L ∧ t_3 � (H ∩ IE) = []))
)"

Nondeducibility for Outputs.

definition NDO :: "’e set ⇒ ’e set ⇒ ’e set ⇒ ’e IFP_type"
where
"NDO UI L H ≡
({HighConfidential L H}, {BSD, (BSIA (λ V. CV ∪ (VV ∩ UI)))})"

lemma NDO_valid: "L ∩ H = {} =⇒ IFP_valid (L ∪ H) (NDO UI L H)"

definition litNDO :: "’e set ⇒ ’e set ⇒ ’e set ⇒ (’e list) set ⇒ bool"
where
"litNDO UI L H Tr ≡
∀ τ_l ∈ Tr. ∀ τ_hlui ∈ Tr. ∀ t.

t�L = τ_l�L ∧ t�(H ∪ (L ∩ UI)) = τ_hlui�(H ∪ (L ∩ UI)) −→ t ∈ Tr"

Noninference.

definition NF :: "’e set ⇒ ’e set ⇒ ’e IFP_type"
where
"NF L H ≡ ({HighConfidential L H}, {R})"

lemma NF_valid: "L ∩ H = {} =⇒ IFP_valid (L ∪ H) (NF L H)"

definition litNF :: "’e set ⇒ ’e set ⇒ (’e list) set ⇒ bool"
where
"litNF L H Tr ≡ ∀ τ ∈ Tr. τ � L ∈ Tr"

Generalized Noninference.

definition GNF :: "’e set ⇒ ’e set ⇒ ’e set ⇒ ’e IFP_type"
where
"GNF L H IE ≡ ({HighInputsConfidential L H IE}, {R})"

lemma GNF_valid: "L ∩ H = {} =⇒ IFP_valid (L ∪ H) (GNF L H IE)"

definition litGNF :: "’e set ⇒ ’e set ⇒ ’e set ⇒ (’e list) set ⇒ bool"
where
"litGNF L H IE Tr ≡
∀ τ ∈ Tr. ∃ τ’ ∈ Tr. τ’� (H ∩ IE) = [] ∧ τ’� L = τ � L"

44

Separability.

definition SEP :: "’e set ⇒ ’e set ⇒ ’e IFP_type"
where
"SEP L H ≡ ({HighConfidential L H}, {BSD, (BSIA (λ V. CV))})"

lemma SEP_valid: "L ∩ H = {} =⇒ IFP_valid (L ∪ H) (SEP L H)"

definition litSEP :: "’e set ⇒ ’e set ⇒ (’e list) set ⇒ bool"
where
"litSEP L H Tr ≡
∀ τ_l ∈ Tr. ∀ τ_h ∈ Tr.
interleaving (τ_l � L) (τ_h � H) ⊆ {τ ∈ Tr . τ � L = τ_l � L} "

Perfect Security Property.

definition PSP :: "’e set ⇒ ’e set ⇒ ’e IFP_type"
where
"PSP L H ≡

({HighConfidential L H}, {BSD, (BSIA (λ V. CV ∪ NV ∪ VV))})"

lemma PSP_valid: "L ∩ H = {} =⇒ IFP_valid (L ∪ H) (PSP L H)"

definition litPSP :: "’e set ⇒ ’e set ⇒ (’e list) set ⇒ bool"
where
"litPSP L H Tr ≡
(∀ τ ∈ Tr. τ � L ∈ Tr)
∧ (∀ α β. (β @ α) ∈ Tr ∧ (α � H) = []

−→ (∀ h ∈ H. β @ [h] ∈ Tr −→ β @ [h] @ α ∈ Tr))"

A.5 Unwinding

In the following, it is assumed that SES_valid SES and isViewOn V ESES hold.

Unwinding Conditions. In the following, we provide the definition of all unwinding
conditions as defined in I-MAKS. We extracted all of these definitions from the theory
UnwindingConditions.

Auxiliary Definitions:

definition En :: "’e Rho ⇒ ’s ⇒ ’e ⇒ bool"
where
"En % s e ≡
∃β γ. ∃s’ ∈ SSES. ∃s’’ ∈ SSES.
s0SES β=⇒SES s ∧ (γ � (% V) = β � (% V))
∧ s0SES γ=⇒SES s’ ∧ s’ e−→SES s’’"

45

Locally Respects:
definition lrf :: "’s rel ⇒ bool"
where
"lrf ur ≡
∀s ∈ SSES. ∀s’ ∈ SSES. ∀c ∈ CV.
((reachable SES s ∧ s c−→SES s’) −→ (s’, s) ∈ ur)"

definition lrb :: "’s rel ⇒ bool"
where
"lrb ur ≡ ∀s ∈ SSES. ∀c ∈ CV.
(reachable SES s −→ (∃s’ ∈ SSES. (s c−→SES s’ ∧ ((s, s’) ∈ ur))))"

definition fcrf :: "’e Gamma ⇒ ’s rel ⇒ bool"
where
"fcrf Γ ur ≡
∀c ∈ (CV ∩ Υ Γ). ∀v ∈ (VV ∩ ∇Γ). ∀s ∈ SSES. ∀s’ ∈ SSES.

((reachable SES s ∧ s ([c] @ [v])=⇒SES s’)
−→ (∃s’’ ∈ SSES. ∃ δ. (∀d ∈ (set δ). d ∈ (NV ∩ ∆Γ)) ∧

s (δ @ [v])=⇒SES s’’ ∧ (s’, s’’) ∈ ur))"

definition fcrb :: "’e Gamma ⇒ ’s rel ⇒ bool"
where
"fcrb Γ ur ≡
∀c ∈ (CV ∩ Υ Γ). ∀v ∈ (VV ∩ ∇Γ). ∀s ∈ SSES. ∀s’’ ∈ SSES.
((reachable SES s ∧ s v−→SES s’’)
−→ (∃s’ ∈ SSES. ∃ δ. (∀d ∈ (set δ). d ∈ (NV ∩ ∆Γ)) ∧

s ([c] @ δ @ [v])=⇒SES s’ ∧ (s’’, s’) ∈ ur))"

definition lrbe :: "’e Rho ⇒ ’s rel ⇒ bool"
where
"lrbe % ur ≡
∀s ∈ SSES. ∀c ∈ CV .
((reachable SES s ∧ (En % s c))
−→ (∃s’ ∈ SSES. (s c−→SES s’ ∧ (s, s’) ∈ ur)))"

definition fcrbe :: "’e Gamma ⇒ ’e Rho ⇒ ’s rel ⇒ bool"
where
"fcrbe Γ % ur ≡
∀c ∈ (CV ∩ Υ Γ). ∀v ∈ (VV ∩ ∇Γ). ∀s ∈ SSES. ∀s’’ ∈ SSES.
((reachable SES s ∧ s v−→SES s’’ ∧ (En % s c))
−→ (∃s’ ∈ SSES. ∃ δ. (∀d ∈ (set δ). d ∈ (NV ∩ ∆Γ)) ∧

s ([c] @ δ @ [v])=⇒SES s’ ∧ (s’’, s’) ∈ ur))"

Output-Step Consistency:
definition osc :: "’s rel ⇒ bool"
where
"osc ur ≡
∀s1 ∈ SSES. ∀s1’ ∈ SSES. ∀s2’ ∈ SSES. ∀e ∈ (ESES - CV).
(reachable SES s1 ∧ reachable SES s1’
∧ s1’ e−→SES s2’ ∧ (s1’, s1) ∈ ur)

−→ (∃s2 ∈ SSES. ∃ δ. δ � CV = [] ∧ δ � VV = [e] � VV

∧ s1 δ=⇒SES s2 ∧ (s2’, s2) ∈ ur)"

46

Unwinding Results. In the following, we provide all unwinding theorems specified and
proven in I-MAKS. We extracted all of these theorems from the theory UnwindingResults.

Unwinding Results for Non-Strict BSPs:
theorem unwinding_theorem_R:
"[[lrf ur; osc ur]] =⇒ R V (Tr(induceES SES))"

theorem unwinding_theorem_D:
"[[lrf ur; osc ur]] =⇒ D V Tr(induceES SES)"

theorem unwinding_theorem_I:
"[[lrb ur; osc ur]] =⇒ I V Tr(induceES SES)"

theorem unwinding_theorem_IA:
"[[lrbe % ur; osc ur]] =⇒ IA % V Tr(induceES SES)"

Unwinding Results for Strict BSPs:
theorem unwinding_theorem_SR:
"[[V’ = (| V = (VV ∪ NV), N = {}, C = CV |);
Unwinding.lrf SES V’ ur; Unwinding.osc SES V’ ur]]
=⇒ SR V Tr(induceES SES)"

theorem unwinding_theorem_SD:
"[[V’ = (| V = (VV ∪ NV), N = {}, C = CV |);
Unwinding.lrf SES V’ ur; Unwinding.osc SES V’ ur]]
=⇒ SD V Tr(induceES SES)"

theorem unwinding_theorem_SI:
"[[V’ = (| V = (VV ∪ NV), N = {}, C = CV |);

Unwinding.lrb SES V’ ur; Unwinding.osc SES V’ ur]]
=⇒ SI V Tr(induceES SES)"

theorem unwinding_theorem_SIA:
"[[V’ = (| V = (VV ∪ NV), N = {}, C = CV |); % V = % V’;

Unwinding.lrbe SES V’ % ur; Unwinding.osc SES V’ ur]]
=⇒ SIA % V Tr(induceES SES)"

Unwinding Results for Backwards-Strict and Forward-Correctable BSPs:
theorem unwinding_theorem_BSD:
"[[lrf ur; osc ur]] =⇒ BSD V Tr(induceES SES)"

theorem unwinding_theorem_BSI:
"[[lrb ur; osc ur]] =⇒ BSI V Tr(induceES SES)"

theorem unwinding_theorem_BSIA:
"[[lrbe % ur; osc ur]] =⇒ BSIA % V Tr(induceES SES)"

theorem unwinding_theorem_FCD:
"[[fcrf Γ ur; osc ur]] =⇒ FCD Γ V Tr(induceES SES)"

theorem unwinding_theorem_FCI:
"[[fcrb Γ ur; osc ur]] =⇒ FCI Γ V Tr(induceES SES)"

theorem unwinding_theorem_FCIA:
"[[fcrbe Γ % ur; osc ur]] =⇒ FCIA % Γ V Tr(induceES SES)"

47

A.6 Compositionality

Auxiliary Definitions. In the following we provide the Isabelle/HOL definitions of the
two predicates properSeparationOfViews and wellBehavedComposition that are used
in the assumptions for the compositionality results. We extracted these definitions from
the theory CompositionBase.

definition
properSeparationOfViews ::
"’e ES_rec ⇒ ’e ES_rec ⇒ ’e V_rec ⇒ ’e V_rec ⇒ ’e V_rec ⇒ bool"
where
"properSeparationOfViews ES1 ES2 V V1 V2 ≡

VV ∩ EES1 = VV1

∧ VV ∩ EES2 = VV2

∧ CV ∩ EES1 ⊆ CV1

∧ CV ∩ EES2 ⊆ CV2

∧ NV1 ∩ NV2 = {}"

definition
wellBehavedComposition ::
"’e ES_rec ⇒ ’e ES_rec ⇒ ’e V_rec ⇒ ’e V_rec ⇒ ’e V_rec ⇒ bool"
where
"wellBehavedComposition ES1 ES2 V V1 V2 ≡
(NV1 ∩ EES2 = {} ∧ NV2 ∩ EES1 = {})
∨ (∃ %1. (NV1 ∩ EES2 = {} ∧ total ES1 (CV1 ∩ NV2)

∧ BSIA %1 V1 TrES1))
∨ (∃ %2. (NV2 ∩ EES1 = {} ∧ total ES2 (CV2 ∩ NV1)

∧ BSIA %2 V2 TrES2))
∨ (∃ %1 %2 Γ1 Γ2. (

∇Γ1 ⊆ EES1 ∧ ∆Γ1 ⊆ EES1 ∧ Υ Γ1 ⊆ EES1

∧ ∇Γ2 ⊆ EES2 ∧ ∆Γ2 ⊆ EES2 ∧ Υ Γ2 ⊆ EES2

∧ BSIA %1 V1 TrES1 ∧ BSIA %2 V2 TrES2

∧ total ES1 (CV1 ∩ NV2) ∧ total ES2 (CV2 ∩ NV1)
∧ FCIA %1 Γ1 V1 TrES1 ∧ FCIA %2 Γ2 V2 TrES2

∧ VV1 ∩ VV2 ⊆ ∇Γ1 ∪ ∇Γ2

∧ CV1 ∩ NV2 ⊆ Υ Γ1 ∧ CV2 ∩ NV1 ⊆ Υ Γ2

∧ NV1 ∩ ∆Γ1 ∩ EES2 = {} ∧ NV2 ∩ ∆Γ2 ∩ EES1 = {}))"

Compositionality Results. In the following, we provide all compositionality results
of MAKS in their Isabelle/HOL formalization. We have extracted these compositionality
results from the theory CompositionalityResults.
For the compositionality results, it is assumed that ES_valid ES1 and ES_valid ES2

holds. Furthermore, it is assumed that composable ES1 ES2 hold. Finally, it is also as-
sumed that isViewOn V EES1‖ES2, isViewOn V1 EES1, and isViewOn V2 EES2 hold.

Compositionality Results for Non-Strict BSPs:

theorem compositionality_R:
"[[R V1 TrES1; R V2 TrES2]] =⇒ R V (Tr(ES1 ‖ ES2))"

48

Compositionality Results for Strict BSPs:

theorem compositionality_SR:
"[[SR V1 TrES1; SR V2 TrES2]] =⇒ SR V (Tr(ES1 ‖ ES2))"

theorem compositionality_SD:
"[[SD V1 TrES1; SD V2 TrES2]] =⇒ SD V (Tr(ES1 ‖ ES2))"

theorem compositionality_SI:
"[[SD V1 TrES1; SD V2 TrES2; SI V1 TrES1; SI V2 TrES2]]

=⇒ SI V (Tr(ES1 ‖ ES2))"

theorem compositionality_SIA:
"[[SD V1 TrES1; SD V2 TrES2; SIA %1 V1 TrES1; SIA %2 V2 TrES2;

(%1 V1) ⊆ (% V) ∩ EES1; (%2 V2) ⊆ (% V) ∩ EES2]]
=⇒ SIA % V (Tr(ES1 ‖ ES2))"

Compositionality Results for Backwards-Strict and Forward Correctable BSPs:

theorem compositionality_BSD:
"[[BSD V1 TrES1; BSD V2 TrES2]] =⇒ BSD V Tr(ES1 ‖ ES2)"

theorem compositionality_BSI:
"[[BSD V1 TrES1; BSD V2 TrES2; BSI V1 TrES1; BSI V2 TrES2]]

=⇒ BSI V Tr(ES1 ‖ ES2)"

theorem compositionality_BSIA:
"[[BSD V1 TrES1; BSD V2 TrES2; BSIA %1 V1 TrES1; BSIA %2 V2 TrES2;

(%1 V1) ⊆ (% V) ∩ EES1; (%2 V2) ⊆ (% V) ∩ EES2]]
=⇒ BSIA % V (Tr(ES1 ‖ ES2))"

theorem compositionality_FCD:
"[[BSD V1 TrES1; BSD V2 TrES2;
∇Γ ∩ EES1 ⊆ ∇Γ1; ∇Γ ∩ EES2 ⊆ ∇Γ2;
Υ Γ ∩ EES1 ⊆ Υ Γ1; Υ Γ ∩ EES2 ⊆ Υ Γ2;
(∆Γ1 ∩ NV1 ∪ ∆Γ2 ∩ NV2) ⊆ ∆Γ;
NV1 ∩ ∆Γ1 ∩ EES2 = {}; NV2 ∩ ∆Γ2 ∩ EES1 = {};
FCD Γ1 V1 TrES1; FCD Γ2 V2 TrES2]]
=⇒ FCD Γ V (Tr(ES1 ‖ ES2))"

theorem compositionality_FCI:
"[[BSD V1 TrES1; BSD V2 TrES2; BSIA %1 V1 TrES1; BSIA %2 V2 TrES2;

total ES1 (CV1 ∩ Υ Γ1); total ES2 (CV2 ∩ Υ Γ2);
∇Γ ∩ EES1 ⊆ ∇Γ1; ∇Γ ∩ EES2 ⊆ ∇Γ2;
Υ Γ ∩ EES1 ⊆ Υ Γ1; Υ Γ ∩ EES2 ⊆ Υ Γ2;
(∆Γ1 ∩ NV1 ∪ ∆Γ2 ∩ NV2) ⊆ ∆Γ;
(NV1 ∩ ∆Γ1 ∩ EES2 = {} ∧ NV2 ∩ ∆Γ2 ∩ EES1 ⊆ Υ Γ1)
∨ (NV2 ∩ ∆Γ2 ∩ EES1 = {} ∧ NV1 ∩ ∆Γ1 ∩ EES2 ⊆ Υ Γ2) ;
FCI Γ1 V1 TrES1; FCI Γ2 V2 TrES2]]
=⇒ FCI Γ V (Tr(ES1 ‖ ES2))"

49

theorem compositionality_FCIA:
"[[BSD V1 TrES1; BSD V2 TrES2; BSIA %1 V1 TrES1; BSIA %2 V2 TrES2;
(%1 V1) ⊆ (% V) ∩ EES1; (%2 V2) ⊆ (% V) ∩ EES2;
total ES1 (CV1 ∩ Υ Γ1 ∩ NV2 ∩ ∆Γ2); total ES2 (CV2 ∩ Υ Γ2 ∩ NV1 ∩ ∆Γ1);
∇Γ ∩ EES1 ⊆ ∇Γ1; ∇Γ ∩ EES2 ⊆ ∇Γ2;
Υ Γ ∩ EES1 ⊆ Υ Γ1; Υ Γ ∩ EES2 ⊆ Υ Γ2;
(∆Γ1 ∩ NV1 ∪ ∆Γ2 ∩ NV2) ⊆ ∆Γ;
(NV1 ∩ ∆Γ1 ∩ EES2 = {} ∧ NV2 ∩ ∆Γ2 ∩ EES1 ⊆ Υ Γ1)
∨ (NV2 ∩ ∆Γ2 ∩ EES1 = {} ∧ NV1 ∩ ∆Γ1 ∩ EES2 ⊆ Υ Γ2) ;
FCIA %1 Γ1 V1 TrES1; FCIA %2 Γ2 V2 TrES2]]
=⇒ FCIA % Γ V (Tr(ES1 ‖ ES2))"

50

