
On the Meaning and Purpose of Attack Trees

Heiko Mantel
TU Darmstadt

mantel@cs.tu-darmstadt.de

Christian W. Probst
Unitec Institute of Technology

cprobst@unitec.ac.nz

Abstract—Attack trees are a popular notation for describing
threats to systems, both in academia and industry. Originally,
attack trees lacked a formal semantics, but formal semantics
for different variants of attack trees were proposed later. These
semantics focus on the attacker’s actions defined in the leaves and
the logical structure defined by the inner nodes of an attack tree.
Surprisingly, they do not clarify the connection to the goal defined
at the root node in a satisfactory fashion. In this article, we aim
at a better clarification of this connection between the attacks
and the attacker goal specified by an attack tree. We argue that
there are multiple sensible success criteria for attacks wrt. a
given attacker goal and develop a framework for defining such
criteria. We exploit our framework to identify similarities and
differences between automatic attack-tree generation techniques.
Finally, we propose a novel variant of attack trees that allows
one to express exploits in an explicit fashion.

Index Terms—Attack trees, threat modeling, security engi-
neering.

I. INTRODUCTION

Attack trees are a pragmatic notation for describing threats

to systems and were originally proposed by Schneier [1]. In

his definition, the root node of an attack tree specifies the

attacker’s goal, and each inner node specifies a subgoal of the

attacker that contributes to the overall goal. The leaf nodes

of an attack tree specify primitive attacker actions. The root

and each inner node, in addition, specify whether its subtrees

are conjunctively or disjunctively connected. A conjunction

expresses that all sub-trees of a node must be processed, while

a disjunction expresses that the sub-trees constitute alternatives.

In [1], an attack tree is used to represent one or more

attacks, each consisting of one or more attacker actions and each

aiming at the attacker’s goal specified by the root node. Schneier

outlines how the nodes of attack trees can be annotated in order

to analyze, for instance, which attacks can be carried out by an

attacker with a given skill set, what is the success probability

of the specified attacks, what are the costs of carrying out the

attacks, and what is the effectiveness of countermeasures.

Albeit we mostly focus on attack trees as a notation for

capturing threats in this article, it should be noted that Schneier

describes them as part of a methodology for thinking about

security. He not only outlines a method for constructing attack

trees, but also discusses the process of improving them over

time and their use in making security engineering decisions.

Attack trees have gained high popularity and enjoy a wide-

spread use in industrial practice. Their practical impact certainly

motivated an intense attention by the research community.

Research efforts resulted in novel variants of attack trees

that, for instance, feature sequential conjunction as operator

for connecting subtrees [2], support the explicit modeling of

defenses [3], or compose goals of pre- and post-conditions

[4]. There are approaches and tools for generating attack trees

automatically (e.g., [5, 6]) and also for supporting security

analysts in their manual construction of attack trees [7].

Schneier did not provide a formal semantics for his notion

of attack trees in [1], and the resulting ambiguity of their

meaning caused criticism by the research community. However,

to date, such criticism is unjustified. Multiple research articles

were dedicated to clarifying and formalizing the semantics of

the original attack trees and of the later proposed variants.

Mauw and Oostdijk define a formal semantics of attack

trees [8] using so called attack suites, which are sets of multi-

sets of primitive attacker actions (or attack components in their

terminology). This formalization nicely reflects the intuition

given in [1]. Mauw and Oostdijk used their formal semantics

for precisely defining conditions that a transformation on attack

trees needs to fulfill in order to be semantics preserving. They

also identified conditions guaranteeing an analysis of attribute

annotations to deliver results that are robust under semantics-

preserving transformations of attack trees. However, their

semantics does not establish a relationship to the attacker’s goal,

and the same observation holds for subsequent action-centered

semantics for variants of attack trees, including [2, 9, 10].

In contrast, techniques for the automatic generation of attack

trees from system models, such as [6, 11], inherently need

a criterion for when an attack against a system is successful.

They use the system model and a goal specification to identify

successful attacks and then construct an attack tree from

these attacks. Unfortunately, automatic attack-tree generation

techniques are not yet good at generating declaratively specified

subgoals. Usually, there is little conceptual gap between

subgoals and actions in an automatically generated attack tree.

In a different direction, variants of attack trees were

recently proposed in which all nodes, including leaf nodes,

are annotated with goal specifications [4, 7]. This results in

elegant frameworks for reasoning declaratively about threats,

but again, the overall attacker goal and the annotations of the

leaf nodes are formulated at a similar level of abstraction, in

this case, because there is no mentioning of attacker actions.

In this article, we study how to relate attacks and the

attacker goal specified by an attack tree to each other. Intuitively,

whether an attack against a system is successful depends on

184

2019 IEEE 32nd Computer Security Foundations Symposium (CSF)

© 2019, Heiko Mantel. Under license to IEEE.
DOI 10.1109/CSF.2019.00020

the actions of the attacked system, the actions of the attacker,

possibly the actions of other actors, and the interplay between

these entities. We identified the following three degrees of

freedom in the definition of a success criterion for attacks:

Purity May occurrences of actions of an attack be interleaved

with occurrences of other actions and, if yes, which ones?

Persistence Is it sufficient if the attacker’s goal is satisfied at

some point in time or should it be satisfied persistently?

Causality How much certainty does one desire that the

satisfaction of the goal, indeed, results from the attack?

We define a framework for defining criteria for the success

of an attack wrt. an attacker goal. Our framework provides

multiple options for each of the three degrees of freedom

above. Our choice of concrete options aims at illustrating

sensible possibilities in the design space, without striving for

completeness. Further options could be added later.

We illustrate how our framework for defining success

criteria can be used to clarify which success criteria are used,

e.g., in automatic attack-tree generation techniques such as

[5, 6]. For this purpose, we formulate the success criteria

underlying these and other publications in terms of Purity,

Persistence, and Causality. The results of this application of

our framework are interesting in their own right. We identify

similarities and differences in the success criteria generation.

In some cases, we argue that the choice of success criteria are

at least debatable, for instance, because they are too liberal.

Finally, we propose exploit tree as a new term, to enable a

clear terminological distinction to attack trees. In our opinion,

attack trees should model threats solely from the perspective

of an attacker. Similarly, attack-defense trees should focus on

two perspectives, the one of the attacker and the one of the

defender. Neither attack trees nor attack-defense trees should

be cluttered with information about system-internal actions or

actions of other actors than the attacker and the defender. Such

information could be captured, for instance, by a behavioral

model of the system instead. Nevertheless, there apparently is

some desire to use trees that carry actions by other actors as

annotations. To avoid confusion with attack trees, we suggest

the term exploit tree for such trees. From a formal perspective,

exploit trees provide no innovation as the definition of their

syntax and semantics resembles the one of attack trees. The

only difference to attack trees is that the leaves of exploit trees

may be annotated with other actions than attacker actions. We

argue that the difference is relevant in threat modeling from a

methodological perspective. Exploit trees can also be used to

clarify better the interplay between attacker actions, actions of

the system under attack, and actions of other actors.1

As a running example, we use a scenario where an attacker

attacks an ATM with the goal to steal money.

1Note that this interplay should be relevant for threat modeling: While
throwing a snowball on a hilltop should better be avoided, it is not certain to
cause disaster. Whether the snowball causes an avalanche depends on many
environmental conditions and events that are outside the control of the thrower.
Moreover, whether the avalanche results in disaster depends on both the state
and the reaction of the system residing at the bottom of the mountain.

Structure of this Article: After introducing basic notions

and formal notation in Section II, we define the syntax and

semantics of attack trees in Section III. In Section IV, we

introduce a logic for describing attacker goals. In Section V, we

develop our framework for defining success criteria for attacks.

In Section VI, we apply our framework to clarify the success

criteria used in prior applications and discuss the lessons

learned from this application of our framework. In Section VII,

we introduce our novel variant of attack trees, exploit trees,

and illustrate it at concrete examples. After discussing related

work in Section VIII, we conclude in Section IX.

II. BASIC NOTIONS AND NOTATION

We use B = {true, false} to denote the set of booleans

and N0 = {0, 1, 2, . . . } to denote the set of natural numbers.

For i, j ∈ N0 with i ≤ j, we write [i, j] for the subset of N0

containing i, j, and all natural numbers in between, i.e., [i, j] =
{i, . . . , j}. If i > j, then [i, j] = ∅ holds. Each nonempty,

finite set N ⊆ N0 has a unique maximal element denoted by

max (N). If N has infinite size, then max (N) =∞.

We use X ⇀ Y and X → Y to denote the space of partial

functions and the space of total functions from a domain X to

a co-domain Y , respectively. We use dom and cdom to retrieve

the domain and co-domain, respectively, of a function. That

is, dom(f) = dom(g) = X and cdom(f) = cdom(g) = Y
hold for f : X ⇀ Y and g : X → Y . Moreover, we use def
and img to retrieve the set of elements for which a function

is defined and the set of elements that can be reached by a

function, respectively. That is, def (f) = {x∈dom(f) | ∃y∈
cdom(f) : f(x) = y } and img(f) = { y ∈ cdom(f) | ∃x ∈
def (f) : f(x) = y } hold.

A predicate over a set X is a function from the space

X → B. We define predicates even and odd over N0 by

even(n) = true if n is even and even(n) = false otherwise

and odd(n) = true if n is odd and odd(n) = false otherwise.

A. Finite and Infinite Sequences

Given a set X , we use functions from N0 → X to model

infinite sequences over X . We use SEQ inf(X) to denote the

set of all such infinite sequences. Moreover, we use functions

f : N0 ⇀ X , with def (f) = ∅ or def (f) = [0, i], for some

i ∈ N0, to model finite sequences over X . We define the

length of a finite sequence f by �f = 0 if def (f) = ∅, and

by �f = max (def (f)) + 1 if def (f) 	= ∅. We use SEQfin(X)
to denote the set of all such finite sequences. Finally, we use

SEQ(X) to denote the set of all infinite and all finite sequences

over X (i.e., SEQ(X) = SEQ inf(X) ∪ SEQfin(X)).

For readability, we use 〈〉 to denote the empty sequence

(i.e., 〈〉: N0 ⇀ X with def (〈〉) = ∅) and l = 〈x0, . . . , xn〉 to

denote a finite sequence with n+ 1 elements (i.e., l : N0 ⇀ X
with def (l)= [0, n] and l(i)= xi for each i∈def (l)).

For appending to a finite sequence, we use the function

◦ : ((SEQfin(X)× SEQfin(X))→ SEQfin(X))

∪((SEQfin(X)× SEQ inf(X))→ SEQ inf(X))

185

(l1 ◦ l2) : i �→

⎧⎨
⎩

l1(i) , if i < �l1
l2(i− �l1) , if i ≥ �l1 and i < �l1 + �l2
undefined , if i ≥ �l1 + �l2

and lift ◦ in a pointwise fashion to sets of sequences by

(L1 ◦ L2) = {l1 ◦ l2 | l1 ∈ L1 ∧ l2 ∈ L2} .
A function emb : N0 ⇀ N0 is an embedding of a sequence

l ∈ SEQ(X) into l′ ∈ SEQ(X ′) (where X ⊆ X ′) iff

• def (emb) = def (l),
• ∀n ∈ def (emb) : l(n) = l′(emb(n)), and

• ∀n ∈ (def (emb)\{0}) : emb(n) > emb(n− 1) hold.

We write emb : l � l′ to indicate that emb is an embedding of

l into l′. For an embedding emb : N0 ⇀ N0 of a nonempty,

finite sequence l ∈ SEQfin(X) into a sequence l′ ∈ SEQ(X ′),
we define the end of emb by end(emb) = max (img(emb)).

A sequence l ∈ SEQ(X1 ∪X2) is an interleaving of l1 ∈
SEQ(X1) and l2 ∈ SEQ(X2) (denoted l interleaves (l1, l2))
iff there exist an embedding emb1 of l1 into l and an embedding

emb2 of l2 into l such that def (l) = img(emb1)∪ img(emb2)
and img(emb1) ∩ img(emb2) = ∅ hold.

For interleaving two sequences, we use the function

∼ : ((SEQ(X)× SEQ(X))→ PS(SEQ(X)))

(l1 ∼ l2) = {l ∈ SEQ(X) | l is an interleaving of l1 and l2}
and lift ∼ in a pointwise fashion to sets of sequences by

(L1 ∼ L2) =
⋃

l1∈L1,l2∈L2

l1 ∼ l2 .

Note that ◦ and ∼ both are associative operators, i.e.,

L1 ◦ (L2 ◦ L3) = (L1 ◦ L2) ◦ L3

L1 ∼ (L2 ∼ L3) = (L1 ∼ L2) ∼ L3 .

Hence, the lifting to n-ary operators (for n ≥ 1) is unambigu-

ous. We use prefix notation for the lifted operators. For instance,

the interleaving of three sets L1, L2, and L3 of sequences is

denoted by ∼(L1, L2, L3) and equals L1 ∼ (L2 ∼ L3).

III. ATTACK TREES

Consider an example scenario where an attacker wants to

steal money from an ATM. One possibility might be that she

steals the ATM physically. Another possibility might be that

she gets physical access to the cash box inside the ATM, for

instance, by using explosives or a key. A third possibility might

be that she obtains a banking card or a copy of such a card

together with the corresponding pin. A fourth possibility might

be that she hacks the control software on the ATM to obtain

access without proper credentials. This scenario is a subset of

a larger set of attacks identified by Fraile et al. [12].

An attack tree for this scenario using the usual graphical

notation is depicted in Figure 1. Note that the annotation at

the root node reflects the attacker’s overall goal and that the

subtrees of the root reflect the four possibilities sketched above.

These subtrees are disjunctively connected, i.e., they describe

alternatives for the attacker to achieve her goal. The roots of

the subtrees are inner nodes. They are annotated with subgoals

that help the attacker in achieving her overall goal.

Have Access
to Money

Get ATM

Have
Cashbox

Have Access
to Cashbox

Open ATM
with Key

Open ATM
with Explosive

Get Cashbox

Have Card
and Pin

Have Copy of
Card and Pin

Have Copy of
Card

Install Card Reader Read Card Data

Have Pin

Read Pin from
Card Data

Observe Pin

Install Camera Read Pin from
Keyboard

Have Customer
Card and Pin

Get Card from
Customer

Get Pin from
Customer

Replace Control
Software

Fig. 1. Example attack tree modeling threats against an ATM (sub-trees for
getting the ATM and for replacing the control software are omitted)

The annotations of leaf nodes specify attacker actions. For

instance, the two leaves at the bottom left of the tree (labeled

“Install Card Reader” and “Read Card Data”) specify that the

attacker installs a card reader and that she reads the card’s data.

If executed in this order, these two actions enable the attacker

to create a copy of the banking card, which corresponds to the

subgoal “Have Copy of Card” of the parent node. That the two

leaves are conjunctively connected and need to be processed

in a particular order is expressed by the arrow across the lines

that connect the parent node to the leaves.

An arc without arrow head across the lines to subtrees

indicates a conjunctive connection where it does not matter in

which order the subtrees are processed. Consider, for instance,

the two leaves on the right-hand side of the tree (labeled “Get

Card from Customer” and “Get Pin from Customer”). Here it

does not matter whether the attacker obtains the card or the

pin first. It only matters that she obtains both.

Overall, the attack tree in Figure 1 models possible ways

for an attacker to get access to the money in an ATM.

We now introduce a formal language for describing such

attack trees and formally define a semantics for our language.

A. Syntax

Definition 1. The language of attack trees over a set of attacker
actions A and a set of attacker goals G is

ATA,G = {ROOT(g : at) | g ∈ G ∧ at ∈ AT ′A,G}

where AT ′A,G is the least set of expressions satisfying:
1) ACT(a) ∈ AT ′A,G for all a ∈ A and
2) if at1, . . . , atk ∈ AT ′A,G and g ∈ G then

OR(at1, . . . , atk), OR(g : at1, . . . , atk) ∈ AT ′A,G ,
AND(at1, . . . , atk), AND(g : at1, . . . , atk) ∈ AT ′A,G ,
and
SAND(at1, . . . , atk), SAND(g : at1, . . . , atk) ∈ AT ′A,G .

186

An expression ROOT(g : at) specifies an attack tree consist-

ing of a root with a single subtree at and a goal g. An expression

ACT(a) specifies a subtree consisting of a single node with

an action a. The expressions OR(at1, . . . , atk) ∈ ATA,G and

OR(g : at1, . . . , atk) ∈ ATA,G both specify subtrees consisting

of k disjunctively connected subtrees at1, . . . , atk. In the second

expression, g specifies the subgoal of the tree.

We distinguish the parallel conjunction AND (for brevity,

conjunction) from the sequential conjunction SAND. Intuitively,

a sequential conjunction (indicated by an arrow in Figure 1)

expresses that subtrees shall be traversed in the order in which

they occur. In contrast, a parallel conjunction (indicated by an

arc) does not prescribe any order for the traversal.

Note that our language mandates the specification of an

attacker goal in the root node, but, otherwise, leaves the

specification of subgoals in inner nodes of the tree optional.

Example 1. The subtree with the subgoal “Have Card and
Pin” in Figure 1 can be represented in our language by

OR(Have Card and Pin:
SAND(Have Copy of Card and Pin:

SAND(Have Copy of Card:
ACT(Install Card Reader), ACT(Read Card Data)),

OR(Have Pin:
ACT(Read Pin from Card Data),
SAND(Observe Pin:

ACT(Install Camera),
ACT(Read Pin from Keyboard))))

AND(Have Customer Card and Pin:
ACT(Get Card from Customer),
ACT(Get Pin from Customer))) .

The overall attack tree can be formalized in our notation,
starting from ROOT(Have Access to Money : OR(. . .)) .

B. Semantics

To attack a system, an attacker selects particular actions

and a particular order in which she performs these actions.

Definition 2. An attack over a set of attacker actions A is a non-
empty sequence of attacker actions att ∈ (SEQfin(A)\{〈〉}).

In this article, we focus on attacks that can be performed

in finite time. Therefore, we restrict attacks to finite sequences.

We define the semantics of the language ATA,G in terms of

attacks such that the semantics of each expression at ∈ ATA,G

is a set of attacks �at� ⊆ (SEQfin(A)\{〈〉}).
Definition 3. The function �·� :ATA,G→PS(SEQfin(A)\{〈〉})
is defined recursively by:

1) �ACT(a)� = {〈a〉},
2) �ROOT(g : at)� = �at�,
3) �OR(at1, . . . , atk)� =

⋃
i∈{1,...,k}�ati�

�OR(g : at1, . . . , atk)�=
⋃

i∈{1,...,k}�ati�

�AND(at1, . . . , atk)� =∼(�at1�, . . . , �atk�)
�AND(g : at1, . . . , atk)�=∼(�at1�, . . . , �atk�)

�SAND(at1, . . . , atk)� = ◦(�at1�, . . . , �atk�)
�SAND(g : at1, . . . , atk)�= ◦(�at1�, . . . , �atk�)

That is, the semantics of a leaf node with an action a is

the set containing one attack consisting of one occurrence of

a. The semantics of an inner nodes depends on the connective.

For OR, AND, and SAND, the operators
⋃

, ∼, and ◦ are used,

respectively, to construct a set of attacks from the semantics

of an inner node’s subtrees. Note that �at� is guaranteed to

be a non-empty set, and that every element in �at� is a non-

empty sequence, because each at ∈ ATA,G contains at least

one subexpression of the form ACT(a).

Example 2. For the expression from Example 1, we have

�OR(Have Card and Pin, . . .)� =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{〈Install Card Reader,Read Card Data,
Read Pin from Card Data〉
〈Install Card Reader,Read Card Data,

Install Camera,Read Pin from Keyboard〉
〈Get Card from Customer,Get Pin from Customer〉
〈Get Pin from Customer,Get Card from Customer〉

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Remark 1. Our semantics is in the tradition of action-
centered semantics for attack trees (e.g., [2, 9, 10]). Among
these, the SP semantics [2] is most closely related. The
main difference to our semantics is that Jhawar et. al. use
a compact graph-based representation where series-parallel
graphs represent multiple possible runs, while we prefer a
representation where each possible run is explicitly modeled by
a separate trace. Since we use traces that linearize occurrences
of actions, �AND(a, b)� = �OR(SAND(a, b), SAND(b, a))�
holds according to our semantics (but not in [2]).

IV. ATTACKERS AND THEIR GOALS

We consider stateful attackers who are interacting with the

systems that they attack via shared-memory and/or message-

passing communication. The goal of an attacker might be, e.g.,

to learn system-internal secrets, to corrupt sensitive data within

the system, or to create a situation where the system cannot

provide the services anymore that it should provide.

We define a formal language for specifying such attacker

goals and use traces to formalize the behavior of systems, of

attackers, and of benign parts of a system’s environment.

A. Behavioral Model

When an attacker acts then this might affect the attacker’s

own state (e.g., if she learns a secret), the system’s state (e.g., if

she provides corrupt data to the system), and the environment’s

state (e.g., if she broadcasts a secret). Similarly, actions

performed by the system or by benign actors in the system’s

environment might affect the attacker’s state, the system’s state,

and the environment’s state, including elements that are shared

such as communication lines and shared memory.

The level of detail at which a scenario needs to be modeled

depends on many aspects. To ensure the reliability of a security

analysis, all aspects of a scenario that are relevant to the attacks

187

considered must be faithfully captured by a behavioral model.

However, cluttering such a model with too many details should

be avoided to keep the model construction and the security

analysis tractable. For instance, one might decide to not model

benign actors in a system’s environment at all, if they are

irrelevant to the attacks of interest.

For capturing snapshots of a scenario, we employ a formal

definition of states, where states are mappings from locations

to values. Locations represent containers for storing data such

as memory locations, registers, or program variables.

Definition 4. Let L be a set of locations, and let V be a set
of values. A state over L and V is a function s : L→ V .

For a security analysis of a scenario, one needs to specialize

this abstract definition of states by specifying sets L and

V concretely. In this process, one might desire to clearly

distinguish which locations belong to the system, to the attacker,

and to the benign environment. One might also desire to

restrict the values that each given location may assume. For

the purposes of this article, we use our abstract definition of

states and only need to refine it in illustrating examples.

We use traces to capture possible and actual behaviors in a

scenario and define traces as sequences of states and actions.

Definition 5. A trace over a set of states S and a set of actions
A is an infinite or a finite sequence tr ∈ SEQ(S ∪A).

This definition of traces is rather general. In a security

analysis, one might decide to use traces of a specific form.

Definition 6. A trace tr over S and A is a state trace iff
img(tr) ⊆ S holds, and tr is a verbose trace iff

∀n ∈ def (tr) : (even(n) = true ⇒ tr(n) ∈ S)
∧(odd(n) = true ⇒ tr(n) ∈ A) holds.

That is, a trace tr is called a state trace if it does not

contain any actions, and tr is called verbose if it starts with a

state and if, afterwards, actions and states alternate within tr .

For the reliability of a security analysis, it is essential that

a trace faithfully captures the behavior of interest. The order of

states and actions in a trace must properly reflect the order of

snapshots and events of the given behavior. For the purposes

of this article, it is crucial that all snapshots of the behavior

and all occurrences of events that are relevant for the attacks

of interest are modeled by states and actions in the trace.

As usual, all possible behaviors of a scenario can be

modeled by a set of traces. For the reliability of a security

analysis, it is essential that each possible behavior of the

scenario is faithfully modeled by a trace in this set of traces.

Remark 2. The causal relationship between actions (of the
attacker, of the system, and of the benign environment) and
states can be formally captured by defining a transition relation.
The set of possible traces can then be inferred from the
transition relation as detailed in Appendix A.

B. Specification Language

We introduce syntax and semantics of a formal language for

specifying goals of attackers. The language features predicates,

a logical constant to express truth, negation, and conjunction.

Locations play the role of term variables in our language, and

states play the role of valuations.2 To keep the exposition

simple, we refrain from adding constants and function symbols

to the term language and from adding quantifiers and temporal

operators to the formula language.

Technically, our definitions follow the usual lines for

formally defining syntax and semantics of a logic.

Definition 7. A signature is a pair (P, ar) consisting of a set
P of predicates and a function ar : P→N0. For each predicate
P ∈ P , the natural number ar(P) is the arity of P .

Definition 8. Let σ = (P, ar) be a signature, and let L be a
set of locations. The set of formulas over σ and L (denoted by
Fσ,L) is the least set satisfying all of the following conditions:

1) P ∈ Fσ,L holds for all P ∈ P with ar(P) = 0.
2) P (l1, . . . , ln) ∈ Fσ,L holds for all P ∈ P with ar(P) =

n > 0 and for all l1, . . . , ln ∈ L.
3) � ∈ Fσ,L holds.
4) If F, F1, F2 ∈ Fσ,L then

a) ¬F ∈ Fσ,L and
b) F1 ∧ F2 ∈ Fσ,L hold.

Definition 9. Let σ = (P, ar) be a signature. A σ-algebra

is a pair A = (V, ι) such that V is a set of values and
ι : P → PS(⋃n∈N0

V n) is a function with ι(P) ⊆ V ar(P)

for each P ∈ P . The set V is the carrier set (or brief: base)
of A, and the function ι is the interpretation of A.

Definition 10. Let σ = (P, ar) be a signature, and let L be
a set of locations. A formula F ∈ Fσ,L is satisfied by a state

s : L→ V within a σ-algebra A = (V, ι) iff s |=A F , where
the satisfaction relation |= is defined by

1) s |=A P iff () ∈ ι(P) and ar(P) = 0;
2) s |=A P (l1, . . . , lar(P)) iff

(s(l1), . . . , s(lar(P))) ∈ ι(P) and ar(P) ≥ 1;
3) s |=A � holds;

4a) s |=A ¬F iff s |=A F does not hold; and
4b) s |=A F1 ∧ F2 iff s |=A F1 and s |=A F2.

Remark 3. To keep our definitions simple, we limited the
logical connectives to ¬ and ∧. As usual, other connective
can be added as syntactic abbreviations. For instance, F1 ∨F2

can be introduced as an abbreviation for ¬((¬F1) ∧ (¬F2)).
Moreover, given a set of formulas F ⊆ Fσ,L, the expression∨

F∈F F can be introduced as an abbreviation for (F1 ∨
(F2 ∨ . . . (Fn−1 ∨ Fn) . . .)) where 〈F1, F2, . . . , Fn−1, Fn〉 is
a sequence in which each formula of F occurs once.

2To simplify our technical exposition, we refrain from introducing term
variables and valuations as primitive concepts here. Had we introduced term
variables and valuations, we would have to equate them explicitly with locations
and states, respectively, for the remainder of the article.

188

C. Specifying Attacker Goals

From an abstract point of view, the attackers that we

consider can be viewed as ones who aim at arriving in a bad
state, where the attacker’s goal is made concrete by defining

precisely which states are bad. The goals of attackers aiming

at breaching confidentiality, integrity, or availability can be

described as instances of this abstract notion of attacker goal. If

the attacker’s goal is to breach confidentiality, then her goal can

be characterized by defining the set of bad states to contain all

states in which the attacker knows a secret. If the attacker’s goal

is to breach integrity, then this can be characterized by defining

the set of bad states to contain all states in which some location

for storing critical data contains a corrupted value. Finally, if

the attacker aims at obstructing the system’s availability then

she has succeeded in this goal, if the system arrives in a state

in which the system cannot provide its services.

Example 3. We consider the subtree with the subgoal “Have
Card and Pin” of our running example in Figure 1. We assume
that the attacker is interested in the card of a specific person
or a copy thereof together with the corresponding pin.

Assuming two finite sets Cards and PINs , whose elements
model all customer cards relevant in a scenario and all possible
pins, respectively, we introduce four families of predicates

(IsPinOfCardp,c)p∈PINs,c∈Cards ,
(IsCopyOfCardc,c′)c,c′∈Cards ,

(HasCardc)c∈Cards , and (KnowsPinp)p∈PINs

to model the subgoals in this subtree. We define the arity of
predicates IsPinOfCardp,c and IsCopyOfCardc,c′ to be zero,
and the arity of HasCardc and KnowsPinp to be one.

Intuitively, IsPinOfCardp,c captures whether p models the
pin of the card modeled by c, and IsCopyOfCardc,c′ captures
whether c models a copy of the card modeled by c′. Formally,
this intuition is captured by defining ι as follows: If p models
the pin of the card modeled by c then ι(IsPinOfCardp,c) =
{()} and, otherwise, ι(IsPinOfCardp,c) = ∅. If c models a
copy of the card modeled by c′ then ι(IsCopyOfCardc,c′) =
{()} and, otherwise, ι(IsCopyOfCardc,c′) = ∅.

We introduce the locations Knowledge and Storage to
model the knowledge of the attacker and the attacker’s storage
place for cards, respectively. Moreover, we use subsets of PINs
and Cards as values. That is, L and V are chosen such that
Knowledge, Storage ∈ L and PS(PINs),PS(Cards) ⊆ V .

We use states that assign subsets of PINs to Knowledge
and subsets of Cards to Storage. If p ∈ s(Knowledge) then
this intuitively means that the pin modeled by p is known to
the attacker in the snapshot of the scenario modeled by s.
Moreover, if c ∈ s(Storage) then this means that the attacker
has the card modeled by c in the snapshot modeled by s.

We define the interpretation of the two unary predicates
HasCardc and KnowsPinp by

ι(HasCardc)= {(Cards ′) | Cards ′⊆Cards ∧ c∈Cards ′}
ι(KnowsPinp)= {(PINs ′) | PINs ′⊆PINs ∧ p∈PINs ′}

According to Definition 10, s |=(V,ι) HasCardc(l) iff s(l) ⊆

Cards and c ∈ s(l) hold. Moreover, s |=(V,ι) KnowsPinp(l)
iff s(l) ⊆ PINs and p ∈ s(l) hold.

Let c∗ model the card of the person that the attacker is
targeting. We define four auxiliary sets of formulas by

F1 =

{
HasCardc(Storage)
∧IsCopyOfCardc,c∗

∣∣∣∣ c ∈ Cards

}

F2 =

{
KnowsPinp(Knowledge)
∧IsPinOfCardp,c∗

∣∣∣∣ p ∈ PINs

}

F3 =

⎧⎪⎪⎨
⎪⎪⎩

HasCardc(Storage)
∧IsCopyOfCardc,c∗

∧KnowsPinp(Knowledge)
∧IsPinOfCardp,c∗

∣∣∣∣∣∣∣∣
c ∈ Cards,
p ∈ PINs

⎫⎪⎪⎬
⎪⎪⎭

F4 =

⎧⎨
⎩

HasCardc∗(Storage)
∧KnowsPinp(Knowledge)
∧IsPinOfCardp,c∗

∣∣∣∣∣∣ p ∈ PINs

⎫⎬
⎭

We are now ready to formally model the subgoals in the
aforementioned subtree in Figure 1. We use the syntactic
abbreviations from Remark 3 in the following.

The subgoal “Have Copy of Card” can be expressed by
the formula F1 =

∨
F∈F1

F . Both subgoals “Have Pin” and
“Observe Pin” can be expressed by F2 =

∨
F∈F2

F . The subgoal
“Have Copy of Card and Pin” can be expressed by the formula
F3 =

∨
F∈F3

F . The subgoal “Have Customer Card and Pin”
can be expressed by the formula F4 =

∨
F∈F4

F . Finally, the
goal of the entire subtree, i.e. “Have Card and Pin”, can be
expressed by F3 ∨ F4.

V. A FRAMEWORK FOR DEFINING SUCCESS CRITERIA

The definition of goals and subgoals is an integral part of

Schneier’s methodology to model threats against systems [1]:

One identifies all possible attacker goals and creates an attack

tree for each of them. These trees specify attacker goals but

yet lack subtrees that clarify how an attacker can achieve the

goals. Afterwards one refines each attack tree in a stepwise

fashion. At each step, one chooses a leaf node that specifies

a goal or subgoal and then details how it can be achieved

by adding subtrees to this leaf node. During the intermediate

stages of the construction process, there may be leaf nodes that

specify goals rather than attacker actions. However, after the

refinement of an attack tree has been completed, all leaf nodes

specify attacker actions. Hence, the attack trees resulting from

the stepwise refinement process could be specified in ATA,G.

After the refinement process has been completed, the goals

and subgoals specified in an attack tree remain valuable. Firstly,

the goal specified at the root node clarifies the attacker’s intent.

This allows one to check whether an attack tree is relevant for

an application scenario by checking whether the goal specifies

an intent that an attacker might plausibly have in the scenario.

Secondly, the goals/subgoals clarify the scope of an attack tree

and its subtrees. This provides valuable guidance in reading

and understanding attack trees in a modular fashion, hence,

reducing conceptual complexity in the usage and maintenance

189

of attack trees. These two examples illustrate that goals and

subgoals in attack trees are of high practical relevance.

A. Treatment of Goals and Subgoals in the Semantics

Given this practical importance of goals, one might wonder

why they do not play any role in our formal semantics for

attack trees (cf. Definition 3). In fact, adding goals does not add

any meaning to an attack tree under our semantics. Rather, our

formal semantics of attack trees solely focuses on clarifying

which attacks are specified by a given attack tree. That goals are

completely transparent from the perspective of our semantics

(and, hence, constitute mere decorations) might be surprising

and could rightfully raise criticism. Note, however, that our

treatment of goals is in-line with other formal semantics of

attack trees, including [2, 8, 9, 10], which also do not establish

any connection between attacks and the attacker’s goal.

If avoiding the transparency of goals in the formal semantics

were our only objective, then this could be resolved by

modifying Definition 3 such that in addition to attacker actions

also goals are collected in the recursive definition. Technically,

such an adaptation of our semantics would be straightforward,

but it would not provide any clarification of whether the

specified attacks, indeed, achieve the specified attacker goal.

Hence, we avoid the cluttering of our formal semantics of

attack trees with such a superficial treatment of goals. We aim

for connecting the attacks and the attacker goal specified by

an attack tree in more meaningful ways in this section.

B. Identification of Key Question

Let us investigate how attacks and attacker goals can be

connected on a semantic level in the context of attack trees by

focusing primarily on the following question:

Does an attack achieve an attacker goal in a run?

This is, indeed, the key question to be clarified. Once we

have a precisely defined criterion for whether a given attack

achieves a given goal in a given run, then obtaining criteria for

answering questions about entire attack trees like, for instance,

“Does the attack tree specify only attacks that are successful in
some possible system run?” or “Does the attack tree specify
all attacks that are successful in some system run?” become

straightforward based on our semantics of attack trees and

formulas (cf. Definitions 3 and 10).

When searching for a suitable criterion for when an attack is

successful wrt. an attacker goal in a system run (from now, brief:

success criterion), we found multiple candidate definitions

that each make sense to us. Before clarifying this spectrum

of alternative success criteria, we coin and formalize some

concepts that we use in the definition of such criteria.

C. Formalization of Relevant Concepts

We define two liftings of the satisfaction of formulas to

traces. The first lifting requires the formula to be satisfied at a

particular point of a trace, and the second lifting requires the

formula to be satisfied from a particular point onwards.

Definition 11. An attacker goal g ∈ Fσ,L is satisfied in tr ∈
SEQ(S∪A) at n∈def (tr) iff tr(n)∈S and tr(n) |=g hold.

An attacker goal g ∈ Fσ,L is an invariant in tr ∈ SEQ(S∪
A) from a point n∈ def (tr) iff g is satisfied in tr at n and
tr(n′)∈S implies tr(n′) |=g for all n′∈def (tr) with n′ ≥ n.

We write tr@n |=A g to indicate that g is satisfied in tr
at n and tr@n |=+

A g if g is an invariant in tr from n.

We define what it means for an attack to occur in a trace.

Definition 12. Let AAtt ⊆ A be a set of attacker actions.
An occurrence of an attack att ∈ (SEQfin(AAtt)\{〈〉}) in

a trace tr ∈ SEQ(S ∪A) is an embedding emb : N0 ⇀ N0 of
att into tr . The start of the occurrence emb is emb(0), and
the end of the occurrence emb is end(emb).

There may be zero, one, or multiple occurrences of a given

attack in a given trace. We say that an attack att occurs in a
trace tr if there is at least one occurrence of att in tr .

We introduce two restricted forms of occurrences of attacks.

Definition 13. Let AAtt ⊆ A be a set of attacker actions.
An occurrence emb : N0 ⇀ N0 of an attack att ∈

(SEQfin(AAtt)\{〈〉}) in tr ∈ SEQ(S ∪A) is AAtt -pure iff

∀n ∈ [emb(0), end(emb)] :
(n ∈ img(emb) ∨ tr(n) /∈ AAtt) ,

and emb : N0 ⇀ N0 is uninterrupted iff

∀n ∈ [emb(0), end(emb)] :
(n ∈ img(emb) ∨ tr(n) /∈ A) .

That is, if an occurrence emb of att in tr is AAtt -pure,

then attacker actions may occur in tr at positions between

emb(0) and end(emb) (i.e., from where the first action of att
occurs in tr to where the last action of att occurs in tr) only

if these positions are in img(emb). Intuitively, this means that

the actions of the attack occur in the trace without occurrences

of other attacker actions in between. Similarly, if an occurrence

emb of att in tr is uninterrupted, then the actions of the attack

att occur in the trace tr under emb without occurrences of

any other actions in between. Note that, if an occurrence emb
of att in tr is uninterrupted, then it is also AAtt -pure.

D. Degrees of Freedom in Defining a Success Criterion

It is fair to assume that any sensible success criterion3

implies both that the attack must occur in the run and that the

attacker goal must be satisfied at some point during the run.

At first sight, one might think that the implication in the other

direction should then also hold, but this is not such a clear

case. In fact, the success criterion for which the implication

holds in both directions is the most liberal one in the spectrum

of success criteria that we outline in the following.

As stated in the introduction, we identified three degrees

of freedom in the definition of a success criterion for attacks:

3Recall that we introduced “success criterion” as abbreviation for “criterion
for when an attack is successful in a run wrt. a given attacker goal”.

190

Purity May occurrences of actions of an attack be interleaved

with occurrences of other actions and, if yes, which ones?

Persistence Is it sufficient if the attacker’s goal is satisfied at

some point in time or should it be satisfied persistently?

Causality How much certainty does one desire that the

satisfaction of the goal is, indeed, a result of the attack?

We present multiple options for resolving each of these three

degrees of freedom. For each option that we present, we argue

why it makes sense, but we do not strive for covering all

sensible options. What we propose here is meant to be an open

framework to which further options can be added later.

Let tr ∈ SEQ(S ∪ A) be a trace, AAtt ⊆ A be a set of

attacker actions, and att ∈ (SEQfin(AAtt)\{〈〉}) be an attack.

Purity: As said before, there must be an occurrence emb :
N0 ⇀ N0 of att in tr . The options that we present for Purity

differ in which actions may occur in the trace tr at positions

in [emb(0), end(emb)] that are not in img(emb):

PU1 Arbitrary other actions may occur.

PU2 Other actions may occur except for attacker actions (i.e.,

emb is an AAtt -pure occurrence of att in tr).

PU3 No other actions must occur (i.e., emb is an uninterrupted

occurrence of att in tr).

Allowing arbitrary other actions to occur in between the actions

specified by an attack (i.e., Option PU1) means that the criterion

is robust against insertion of occurrences of actions into a trace.

This means, if an attacker briefly deviates from the action

sequence specified by the attack by trying out other actions,

then the attack is still present according to our Option PU1.

In some cases, it is too liberal to allow arbitrary actions

in between the actions specified by an attack. For instance,

consider an attack in which an attacker gains knowledge about

a secret by obtaining a crypto key in an intermediate step. Such

an attack has little chance to be successful, if an action occurs

in between that makes the attacker forget the key. Here, one

might prefer Option PU2, i.e., to not consider the attack to be

present when other attacker actions occur in between.

A similar situation occurs, for instance, if a system has

actions at its disposal that undo the effects of attacker actions.

For instance, if the system can cause a key refresh then this

voids the effect of the attacker learnings, because keys she has

learned become outdated. This motivates Option PU3.

Be reminded that we are striving here for a declarative

criterion that clarifies what it means for an attack to occur in

a given trace. We are not concerned with the likelihood of

traces to occur. This is why the examples given for Option PU2

and PU3 are relevant, even though an attacker would probably

not deliberately forget a key that she knows and needs, and

even if an attacker might be able to exploit a key so quickly

that the system cannot perform a key refresh quick enough.

Persistence: We consider two options for Persistence:

PE1 The attacker goal must be satisfied in tr at some point

n ∈ def (tr).
PE2 The attacker goal must be an invariant in tr from some

point n ∈ def (tr).

An attacker who corrupts an access control to access a bank

safe aims at arriving at a state where she owns a large amount

of money. After she successfully stole money from the bank

safe, she reaches a state where her goal is satisfied. Later she

might perform costly purchases and enjoy a lavish lifestyle.

At a certain point in time, her goal to own a large amount

of money will not be satisfied anymore. In such a scenario,

Option PE1 is fitting, while Option PE2 is too restrictive.

An attacker who aims at learning the master key of a system

might aim at keeping the knowledge of the master key even

under updates. In this case Option PE2 is more appropriate.

Obviously, there are many other sensible options for

Persistence that one could consider like, for instance, that

the goal must be satisfied for some duration.

Causality: This might be the most controversial degree of

freedom as it gives rise to a great variety of options. It also

motivates our proposal of exploit trees, a novel variant of attack

trees, in Section VII. In the following, let emb : N0 ⇀ N0 be

the embedding of att into tr (satisfying the option for Purity)

and n ∈ def (tr) be the point at/from which the attacker goal

is satisfied/an invariant (satisfying the option for Persistence).

We consider the following four options to express the causal

relationship between emb, the occurrence of the attack, and n,

the point where the attacker goal is satisfied. We express all

of these options as constraints on n and emb:

C1 n and emb may be arbitrary

C2 n must be greater than the point where the first action of

att occurs in tr under emb.
C3 n must be greater than the point where the last action of

att occurs in tr under emb.
C4 n must equal the addition of 1 to the point where the last

action of att occurs in tr under emb.

Option C1 is the most liberal one. It does not require any

causal dependency between the actions in the attack and the

point(s) where the attacker’s goal is satisfied. One might find

it too liberal to say that an attack successfully achieves an

attacker goal if the goal was satisfied anyway. This motivates

our consideration of the other three, more restrictive options.

Option C2 requires that at least one action from the attack

has occurred before the point n. This is a causal dependency

between the point(s) where the attacker’s goal is satisfied and

the occurrence of the attack, but a rather minimal one.

Option C3 requires a stronger causal dependence, namely

that the entire attack must have occurred before the point n.

Option C4 is a specialization of Option C3 requiring the point

at/from which the attacker goal is satisfied/an invariant in tr
to be located directly after the last action of the attack.

Many other sensible options for Causality could be defined.

For instance, one could consider alternatives that have a less

temporal flavor than Options C2, C3, and C4.

E. Representation of Success Criteria and Taxonomy

In Section V-D, we presented multiple options for each

degree of freedom in the definition of a criterion for the success

191

of an attack in a run wrt. a given attacker goal. For each of these

options, we provided a motivation and described circumstances

under which the option might or might not be suitable.

It remains to give precise characterizations of these options

and of the success criteria that result for each combination of

options. Since all options are compatible with each other, they

can be freely combined in the definition of a success criterion.

The core of our novel framework is the template for the

definition of success criteria by 2nd-order formulas in Figure 2.

The three grey boxes of increasing darkness in the figure

formalize the options for Purity, Persistence, and Causality,

respectively, that we informally introduced in Section V-D.

If further options shall be added to the framework, their

formalizations would need to be added to the template.

∃emb : N0 ⇀ N0 : ∃n ∈ def (tr) :
emb :att � tr
∧∀n′ ∈ ([emb(0), end(emb)]) \ img(emb) :

[� | tr(n′) /∈AAtt | tr(n′) /∈(AAtt∪ASys∪AEnv)]

∧ [tr@n |=A g | tr@n |=+
A g]

∧ [� | n>emb(0) | n>end(emb) | n=1+end(emb)]

Fig. 2. A template for defining success criteria (alternative options for Purity,
Persistence, and Causality are surrounded by [and], and are separated by |)

We use expressions T(i, j, k) with i ∈ {1, 2, 3}, j ∈ {1, 2},

and k ∈ {1, 2, 3, 4} as shorthand for the formulas that result

from instantiating our template with the ith option for Purity,

the jth option for Persistence, and the kth option for Causality.

That is, for instance, T(3, 1, 4) corresponds to the formula

∃emb : N0 ⇀ N0 : ∃n ∈ def (tr) :
emb :att � tr
∧∀n′ ∈ ([emb(0), end(emb)]) \ img(emb) :
tr(n′) /∈(AAtt∪ASys∪AEnv)

∧ tr@n |=A g
∧n=1+end(emb)

Note that, if two instantiations of our template differ in the

options chosen, then the resulting formulas are not equivalent.

In some cases, the success criteria resulting from different

combinations of options are related by logical implication. This

is clarified by the following theorem.

Theorem 1. T(i, j, k) implies T(i′, j′, k′) if i ≥ i′, j ≥ j′, and
k ≥ k′ for i, i′∈{1, 2, 3}, j, j′∈{1, 2}, and k, k′∈{1, 2, 3, 4}.

Proof. The options for Purity become more restrictive in the

order in which they appear in the template. That is, tr(n′) /∈
(AAtt∪ASys∪AEnv)⇒ tr(n′) /∈AAtt and tr(n′) /∈AAtt ⇒ �.

Likewise, for Persistence tr@n |=+
A g ⇒ tr@n |=A g.

Finally, the options for Causality also become more

restrictive in the order in which they appear in the template.

That is, the implications n=1+end(emb)⇒ n>end(emb),
n>end(emb)⇒ n>emb(0), and n>emb(0)⇒ � hold.

The theorem follows from the fact that the sub-formulas

capturing the options for Purity, Persistence, and Causality are

conjunctively connected within our template.

Theorem 1 could be used by a security analyst to migrate

to a more suitable success criterion in a stepwise fashion.

If the security analyst finds that the currently used success

criterion is too liberal, then he could migrate at each step of

the search process to an option with a higher number for Purity,

Persistence, or Causality until a suitable success criterion is

found. Analogously, if the success criterion is too restrictive,

he would migrate to options with a smaller number.

Remark 4. We provided a template for defining criteria for the
success of an attack in a trace wrt. a given attacker goal by 2nd-
order formulas. For specifying attacker goals, we introduced a
propositional logic in Section IV in which propositions may be
parameterized by locations. An alternative possibility would
have been to employ a temporal logic for specifying attacker
goals that is so expressive that both the attacker goal and the
desired success criteria can be expressed inside this logic.

While this might be appealing, in particular if one could
benefit from existing model checking techniques and tools,
it would not have helped us in achieving the conceptual
clarification that we were striving for. In fact, we found it
helpful, to have a clear separation between attacker goals and
success criteria when deepening our understanding.

Also note that moving to a richer logic for attacker goals
does not make the questions addressed in this article void.
When using a richer logic, a security analyst still has to face
the task to identify the formulas that faithfully capture both
the attacker’s goal and an appropriate success criterion.

VI. SELECTION AND APPLICATION OF SUCCESS CRITERIA

We now have a framework for defining success criteria in

a fashion that is both precise and uniform.

A precisely defined success criterion can serve as reference

point in the evaluation of a given attack tree for a given system

model. Based on the success criterion and our formal semantics

of attack trees, one can check, e.g., whether the attack tree at
with goal g is correct for a set of possible traces Tr , i.e.,

∀att ∈ �at� : ∃tr ∈ Tr : “att achieves g in tr”

or complete in its specification of successful attacks, i.e.,

∀att ∈ (SEQfin(A)\{〈〉}) :
(∃tr ∈ Tr : “att achieves g in tr”)⇒ att ∈ �at� .

In both of these cases, the chosen success criterion provides

the precise meaning of “att achieves g in tr”.

A precisely defined success criterion can also serve as a

reference point for the evaluation of techniques and tools for

the automatic generation of attack trees. Based on the success

criterion, one can investigate questions such as “Is every attack
tree generated by the technique/tool correct?” or “Is every
attack tree generated by the technique/tool complete?”. Without

a precisely defined success criterion, one lacks the reference

point needed for verifying attack-tree generation techniques.

192

Finally, a precisely defined success criterion provides a

basis for studying the effectiveness of defense mechanisms:

∃att ∈ (SEQfin(A)\{〈〉}) :
(∃tr ∈ Tr : “att achieves g in tr”)
∧¬(∃tr ∈ Tr ′ : “att achieves g in tr”)

where Tr and Tr ′ specify the set of possible runs without and

with the defense being present. Here, a defense mechanism is

considered to be effective if at least one attack specified by a

given attack tree becomes unsuccessful due to the integration

of the defense mechanism into the system.

The uniformity of definitions of success criteria provides a

basis for comparisons. One can investigate questions such as

“In which respect do the success criteria underlying two correct
attack-tree generation techniques differ?” or “Does one attack-
tree generation technique assume a more restrictive success
criterion than another attack-tree generation technique?”.

In the following, we illustrate how the success criteria

underlying prior publications can be captured in our framework.

We consider techniques for the automatic generation of attack

trees [5, 6, 13, 14] and a technique for guiding security analysts

in the stepwise refinement of attack trees [7].

A. Identification of Underlying Success Criteria

We specify success criteria of prior publications by identi-

fying the relevant options for Purity, Persistence, and Causality.

The formal characterization of the success criteria then follows

from the template provided by our framework.

Our overall findings are summarized in Figure 3.

In the figure, we name the relevant option for each degree

of freedom in the 2nd, 3rd, and 4th column. In case, a degree

of freedom could not be resolved from the publication, we

write “-”. In case, a degree of freedom could only be resolved

for illustrating examples, we indicate this by “- (NO)”, where

NO names the option underlying the examples. The 5th column

specifies the alphabet of actions that may be used in an attack

tree. We write AAtt for the set of attacker actions, ASys for the

set of system actions, AEnv for the set of environment actions,

and A for AAtt ∪ ASys ∪ AEnv . Some approaches consider

variants of attack trees in which actions must not be used as

annotations. We indicate this by ∅. Moreover, we use ‘? (AAtt)”

to indicate that it did not become sufficiently clear from the

respective publication which actions are permitted in an attack

tree, but our impression from text and illustrating examples is

that likely, only actions from AAtt should occur.

Vigo et al. [5] propose an approach to generate attack

trees using static analysis based on a process calculus. They

model the behavior of systems by process terms in the

Quality Calculus, a variant of the π-calculus that features

flexible binders. The attacker is modeled as a process running

concurrently with the system. The attacker and the system

communicate via channels, where the attacker can use a channel

only if she knows the channel’s name. The goal of the attacker

is to communicate in a way such that the system reaches a

particular system state (i.e., Option PE1 for Persistence).

P
u
ri

ty

P
er

si
st

en
ce

C
au

sa
li

ty

ac
ti

o
n
s

in

at
ta

ck
tr

ee

Vigo et al. [5] PU1 PE1 - AAtt

Ivanova et al. [6] PU3 PE1 C4 ? (AAtt)

Gadyatskaya et al. [13] PU3 PE1 C4 A
Kammmüller [14] PU3 - (PE1) - (C4) ? (AAtt)

Audinot et al. [7] PU1 PE1 C4 ∅

Fig. 3. Identification of the success criteria that underly prior work

Vigo et al. [5] generate attack trees for a given system,

modelled by a process term, using propositional formulas as an

intermediate representation. In the first step, the process term is

translated in a syntax-directed fashion to a set of propositional

formulas of the forms Φ⇒ l, Φ⇒ c, and Φ⇒ x, where l is

a location in the process term, c is a channel name and x is a

variable name. Intuitively, a formula l means that the attacker

can make the system reach location l, c means that the attacker

can learn channel name c, and x means that the attacker can

learn the variable x. A formula Φ⇒ l means that the attacker

can reach the location l if she can fulfill Φ.

Attack trees are generated from the set of generated

implications for a given attacker goal (i.e., a location l that

shall be reached) by backwards chaining. In this process, the

knowledge that an attacker needs to have in order to reach l is

recorded. The resulting attack tree is an AND/OR-tree where

leaves are annotated by channel names. That is, channel names

correspond to attacker actions in our setting. The semantics

of a generated attack tree is the set of all combinations of

channel names that allow an attacker to successfully reach l.
The underlying semantics of attack trees is closer in spirit to

[8] than to the semantics given in Section III as it remains

under-specified in which order channel names need to be used.

A consequence of the semantics not being specific in this

respect is that our definition of occurrences of attacks cannot

be used. Consequently, it remains unclear which option to

choose for Causality. An attack tree may only contain attacker

actions (i.e., channel names), but the attacker, the system and

other actors may perform steps in between the use of channel

names specified by an attack (i.e., Option PU1 for Purity).

Ivanova et al. [6] propose an approach to generating attack

trees by policy invalidation. In their terminology, a “global

policy” specifies either that some action must not be enabled

for a certain actor or that some asset must not reach a certain

location. The attacker’s goal is to invalidate such a global

policy. They use “local policies” to specify for each action,

which credentials are needed for performing this action. For

connecting subtrees, they support SAND and OR.

They use a fairly sophisticated model for socio-technical

systems that supports the modeling of geographic locations

using two levels, “locations” and “domains”, where “locations”

may belong to multiple “domains” (to model, e.g, that a room

193

is part of some building and also of some city). They provide

concepts for modeling actors and passive assets (e.g., data),

where actors are associated with a behavior, assets carry a

value, and both have a location. Assets may be connected to

actors such that they move around with that actor. In addition,

assets may be associated with a “metric” to capture, e.g., price,

time, impact, or a probability. They use credentials to specify

the enabledness of actions and introduce four special actions

on credentials, geographic locations, and “metrics”.

Ivanova et al. perform a forward reachability analysis to

identify whether some state is reachable in which a global

policy is violated (i.e., Option PE1 for Persistence and Option

C4 for Causality). In their reachability analysis, they consider

all actions that can be performed by actors whom they consider

as attackers. The occurrence of other actions in between attacker

actions is not permitted (i.e., Option PU3 for Purity). From their

description it does not become clear whether one is allowed to

consider also the system as an attacking actor. This ambiguity

is relevant for understanding which actions may occur in an

attack tree. In their illustrating example, only attacker actions

occur in the attack tree (indicated by “? (AAtt)” in Figure 3).

They claim that an attack tree generated by their approach

is correct, in the sense that every attack specified by the tree

is a successful attack, and also complete, in the sense that

every successful attack is specified by the tree. These claims

are plausible, but made informally and without proof.

Gadyatskaya et al. [13] observe that automatically generated

attack trees lack informative subgoals and a refinement structure

that manually created attack trees usually feature and that is

helpful for security analysts to obtain an overview of potential

vulnerabilities. They aim at bridging this gap and propose the

use of refinement specifications for constraining the structure

of generated attack trees. They consider SAND and OR for

connecting subtrees and build on the SP semantics from [2],

which is similar to our semantics in Section III.

Sets of predicates are used both to specify attacker goals

and to characterize system states. That is, an attacker goal

is satisfied if a system state is reached that features the

desired predicates (i.e., Option PE1 for Persistence and Option

C4 for Causality). They define abstraction-based refinement

specifications as a constraint system for soundly propagating

subgoals of subtrees to parent nodes. This propagation does

not depend on the behavioral specification of the system, and

it is rather conservative because, for an SAND-connection of

subtrees, only the rightmost subtree may contribute to the goal

defined in the parent. The propagation assumes that no other

actions occur in between the actions specified by an attack

(i.e., Option PU3 for Purity). Interestingly, they do not limit

the actions that may occur in an attack tree to attacker actions,

but also permit the use of actions of benign actors to occur.

This understanding is confirmed by their illustrating example.

Gadyatskaya et al. propose a technique for the generation

of “correct” attack trees. They call an attack tree “correct” if it

represents a given set of attacks and satisfies given refinement

specifications. This notion of correctness does not require any

relation between the specified attacks and the attacker’s goal.

Kammmüller [14] presents an Isabelle/HOL formalization

of attack trees building on the Isabelle Insider framework.

His formalization covers three designated base attacks: Goto

“location”, Perform “action”, and Credential “location” that

model an actors move to a location, the performance of an

action by an actor, and the stealing of credentials at a location.

He considers AND and OR for connecting subtrees.

Kammmüller uses labeled transition relations to capture

the semantics of actions, by sets of triples of the form (s, a, s′)
where a is the action, s is state before a occurs, and s′ is the

state after a occurred. This gives rise to a Kripke structure

over which CTL formulas can be interpreted. Surprisingly, the

transition relation leaves the actor implicit, which makes it

hard to distinguish between attacker actions and other actions,

unless one implicitly assumes that all actions are performed

by the attacker, which is the case in the illustrating example

(hence, the “? (AAtt)” in the last column of Figure 3).

For generating attack trees, a reachability analysis is

performed similar in spirit to [6], where the attacker’s goal is

to invalidate a policy that is specified by a CTL formula. While,

in principle, one could use Isabelle/HOL to deal with arbitrary

CTL formulas (including ones that characterize success criteria

beyond the ones representable by our schema from Section V),

Kammmüller provides no guidance for how to construct such

CTL formulas (cf. Remark 4). Moreover, the expressiveness

of CTL is not needed for expressing the attacker goal used in

the illustrating example from the health-care domain. Here, the

attacker strives to reach a state in which an action is enabled

that should not be executed. This attacker goal could also be

formulated in our goal language from Section IV. We indicate

that although, in general, one may use success criteria that

are not definable in our framework, the success criteria in the

illustrating example are definable by the entries “- (PE1)” for

Persistence and “- (C4)” for Causality in Figure 3. No other

actions may occur in between the actions specified by the

attack tree (i.e., Option PU3 for Purity).

Audinot et al. [7] propose an approach to guide security

analysts in the stepwise refinement of attack trees. They provide

a trace-based semantics that is similar in spirit to our semantics

of attack trees in Section III. A technical difference is that

they support a form of true concurrency in their construction.

They use labeled transition systems to specify the behavior

of a system and model runs by sequences of states, which

they call “paths”. Their terminology differs and relates to ours

as follows: their “traces” correspond to our “attacks”, their

“paths” correspond to our “traces”, and them calling a “path π
a τ -attack on a system S” corresponds in our terminology to

some attack specified by the attack tree τ being successful.

In their setting, goals may only appear in leaf nodes. When

a tree consists only of a single node, then the root is also a leaf

and specifies the attacker’s goal. Whenever a node is refined

using AND, SAND, OR, this node loses its goal annotation,

194

but each leaf that is added specifies a goal. At all stages of the

refinement process, each goal specifies the reachability of a

state with certain properties (i.e., Option PE1 for Persistence).

The fourth column in our figure is not applicable (indicated

by “∅”) as leaf nodes do not specify actions. Their traces (in

our terminology: attacks) are words over a set of propositions.

A state matches a leaf node if the goal of the leaf node

is entailed by the propositions satisfied by the state. They

define a notion of embedding that requires that the states in a

path entail the goals in a trace in a point-wise fashion. Their

embeddings nevertheless corresponds to Option PU1 for Purity

(and not to Option PU3). This is due to a technical trick in

their construction of the semantics of attack trees, in which

they permit the satisfaction of an arbitrary number of dummy

goals �∗ before the satisfaction of any goal specified by a

leaf node. After the goal specified by a leaf node, they do not

insert any dummy goals (i.e., Option C4 for Causality).

B. Lessons Learned from the Application of Our Framework

We showed how to specify with our framework the success

criteria that underly selected prior publications. There are

multiple lessons learned from this application of our framework:

Firstly, and for us very surprisingly, it turned out to be much

more difficult than expected to develop from the publications a

sufficiently detailed understanding of the respectively underly-

ing success criteria such that we could formalize these criteria

in a faithful manner. We had expected our distinction of Purity,

Persistence, and Causality to reduce the conceptual complexity

of the task to a level that would have allowed us to proceed

much more quickly. Nevertheless, using Purity, Persistence,

and Causality was helpful for deepening our understanding in

a stepwise fashion and for checking the (non-)faithfulness of

candidate formalizations of the success criteria modularly.

Secondly, we encountered publications on attack trees that

we could not cover in this section, because they did not describe

any success criterion (and for which the success criterion also

did not become clear from the context). For instance, a recent

publication on the correctness of attack trees [4] proposes

criteria for the admissibility and the correctness of attack trees,

but does so without introducing a notion of “attack” (and, hence,

naturally also without a success criterion). While the concept of

“attacks” was simply not needed to derive the theoretical results

in this publication (i.e., from a formal methods perspective),

the omission of such a key concept of threat modeling might

make it hard for security analysts to benefit from the insights

of the publication (i.e., from a security perspective).4

Thirdly, in the representation of success criteria, only

Option C4 was used for Causality, meaning that the attacker’s

4In [4], sequences of states (which are referred to as paths) are used to
give attack trees a meaning. Formally, paths differ from our attacks, which are
sequences of actions (cf. Definition 2), and this difference has consequences.
Given a path, a security analyst cannot easily infer which attacker actions
contribute to the attacker’s goal. In contrast, given an attack, a security analyst
can directly see which attacker actions should be prevented. The two concepts
complement each other. While attacks capture which actions an attacker needs
to perform, paths capture the effects of the attacker’s actions.

goal must be satisfied directly after the last action of an attack

occurred. Our study of prior work might even suggest that

there is a general acceptance for using Option C4 for Causality.

We will get back to this point in Section VII.

It is also interesting to observe that Causality is a degree of

freedom that could not be resolved for the oldest publication

we covered, i.e., [5], due to the use of a semantics of attack

trees that does not define any order for occurrences of attacker

actions. However, the ordering of attacker actions might be

vital for the success of an attack. All of the newer publications

use semantics where the ordering matters.

Fourthly, there is heterogeneity within the column for Purity

in Figure 3, but only Options PU1 and PU3 are used.

As we mentioned in Section V, the use of Option PU1 for

Purity can be too liberal, but let us elaborate this further now

where we have encountered this option in prior work. Consider,

for instance, the following classical bank robbery attack:

enter(Eva,bank), draw(Eva,pistol),
take(Eva,1M$), leave(Eva,bank) ,

where Eva’s goal is to obtain 1M$ from the bank. Recall that

Option PU1 for Purity considers this attack to be present in a

trace even if other actions (including attacker actions) occur in

between the actions of the attack. This means that the above

bank robbery attack is considered present in the following trace

s0, enter(Eva,bank), leave(Eva,bank), draw(Eva,pistol),
store(Eva,pistol), enter(Eva,bank), apply(Eva,loan(1M)),
take(Eva,1M), leave(Eva,bank), sf

After the last action of the attack occurred, Eva has 1M$, i.e.,

the attacker goal is satisfied in state sf . The success criterion

T(1, 1, 4) classifies this occurrence of the bank robbery attack

in the trace as successful wrt. Eva’s goal. Intuitively, this makes

little sense, because Eva owes 1M$ of debts to the bank in

sf . This illustrates the mismatches to one’s intuition that can

occur if Option PU1 is chosen for Purity (as in [7] and [5]).5

Fifthly, there is also heterogeneity in the last column

of Figure 3, where the entries are AAtt , ?(AAtt), and A.

Regarding the actions that may occur in an attack tree,

[13] takes a rather non-conventional viewpoint by permitting

arbitrary actions to occur in an attack tree. This raises the

question whether the attack trees generated by this approach

are as suitable for understanding the threats to a system from

an attacker’s perspective as traditional attack trees are. We will

get back to this point in Section VII.

Noteworthy, but less interesting than the above observations

is that, for Persistence, we only encountered Option PE1. None

of the publications required the attacker goal to be an invariant

from some point in a run.

Remark 5. As explained, Audinot et. al. [7] use a technical
trick in their construction of the semantics of attack trees. They
permit the satisfaction of an arbitrary number of dummy goals
�∗ before the satisfaction of any goal specified by a leaf node.
This corresponds to choosing Option PU1 for Purity.

5See Remark 5 for how the success criterion of [7] could be modified.

195

Our bank-robbery example indicated that Option PU1 might
be too liberal. Hence, one might want to move to Option PU2.
This could be done by inserting a formula that is only fulfilled
by system and environment actions instead of � in the definition
of the semantics of attack trees.

Remark 5 is not meant as the development of fully-fledged

variant of [7], but to illustrate a possibility. The implementation

of this idea will likely require the addition of some technical

machinery. Our main point here was, to sketch how the concepts

introduced in this article can guide one in the migration from

one success criterion to a more suitable one.

VII. EXPLOIT TREES

When developing an attack tree, one should focus on the

viewpoint of one attacker and on a single attacker goal. Both

contributes to simplifying the threat modelling task. Such a

simplification is desirable because an increase of conceptual

complexity not only increases the effort but also the likelihood

of omissions and other mistakes during threat modeling.

To keep the focus on the attacker’s viewpoint, only attacker

actions should be used as annotations of leaves in an attack tree.

Hence, we criticized the use of arbitrary actions by Gadyatskaya

et al. [13] from the perspective of threat modeling in Section VI.

From the perspective of a reachability analysis, however, their

viewpoint makes perfect sense. They search for sequences of

actions that lead to a state that satisfies an attacker goal, and

this might very well be combinations of actions by the attacker,

by the system, and by other, benign actors in the system’s

environment. Using trees as a graphical notation to present

such sequences can be helpful. We only prefer to give such

trees a different name than attack trees, namely exploit trees.

Moreover, we use the term exploit for sequences of actions by

the attacker, by the system, and by benign actors in system’s

environment. We capture the semantics of exploit trees in terms

of such exploits.

The formal definitions of exploits and exploit trees are

analogous to the ones for attacks and attack trees, the only

difference being the use of a larger set of actions. Consequently,

our observations about criteria for the success of an attack in a

run wrt. an attacker goal are directly applicable to exploits. Note

also, that the use of Option C4 for Causality in combination

with exploits offers one the possibility to precisely specify

when the attacker’s goal shall be satisfied, which need not be

after an attacker action. This opens up interesting possibilities.

A. Syntax and Semantics

Definition 14. The language of exploit trees over a set of
attacker actions AAtt , a set of system actions ASys , a set of
environment actions AEnv , and a set of attacker goals G is

ETA,G = {ROOT(g : et) | g ∈ G ∧ et ∈ ET ′A,G}
where A = AAtt ∪ASys ∪AEnv is the set of all actions, and
ET ′A,G is the least set of expressions satisfying:

1) ACT(a) ∈ ET ′A,G for all a ∈ A and

2) if et1, . . . , etk ∈ ET ′A,G and g ∈ G then
OR(et1, . . . , etk), OR(g : et1, . . . , etk) ∈ ET ′A,G ,
AND(et1, . . . , etk), AND(g : et1, . . . , etk) ∈ ET ′A,G , and
SAND(et1, . . . , etk), SAND(g : et1, . . . , etk) ∈ ET ′A,G .

Definition 15. An exploit over a set of attacker actions AAtt ,
a set of system actions ASys , and a set of environment actions
AEnv is a non-empty sequence att ∈ (SEQfin(A)\{〈〉}), where
A = AAtt ∪ASys ∪AEnv is the set of all actions.

The formal semantics �et� of an exploit tree et is a set of

exploits (instead of a set of attacks). Otherwise, the definition

of the formal semantics of exploit trees follows the same lines

as the formal semantics of attack trees (cf. Definition 3). We,

hence, refrain from presenting it here in detail.

B. Illustrating Example

The attack tree in Figure 1 specifies only actions of the

attacker. However, for an attack to be successful other actions

have to occur. For instance, the camera can only be used to

observe the pin when the customer uses the ATM where the

camera is installed. Similarly, copying the banking card is only

possible if the customer puts the card into the reader that the

attacker installed. Adding these actions of the customer to the

attack tree leads to the exploit tree visualized in Figure 4.

Have Copy of
Card and Pin

Have Copy of
Card

Install
Card Reader

Put Card in Reader

Read
Card Data

Have Pin

Read Pin from
Card Data

Observe Pin

Install Camera

Enter Pin

Read Pin from
Keyboard

Fig. 4. Exploit tree showing actions by the card owner (light grey boxes) and
the attacker (white boxes) for a sub-tree of the running example

VIII. RELATED WORK

In Section V, we proposed a framework for defining criteria

for when an attack is successful wrt. an attacker goal in a system

run. To our knowledge, the fact that there are multiple sensible

definitions of such success criteria has not been clarified before.

The first formal semantics for attack trees was proposed

by Mauw and Oostdijk [8]. Their semantics gives a meaning

to attack trees in terms of sets of multisets of attacker actions

(cf. Section I). More recent semantics in this tradition include

[2, 9, 10]. All of these semantics focus on the attacks that are

represented by an attack tree or an attack-defense tree without

establishing a connection to the attacker’s goal. As explained in

Remark 1, our semantics of attack trees defined in Section III

is similar in spirit to the SP-semantics in [2].

Recently, Audinot, Pinchinat, and Kordy developed criteria

for the admissibility and correctness of attack trees [4] using a

196

declarative approach. They use a syntax of attack trees, where

the annotations of nodes are specifications consisting of a pre-

and a postcondition. This uniformity allows them to formulate

their definitions and to derive their results in a rather elegant

fashion. They capture the effects of attacks using sequences

of states. Attacker actions and attacks in the sense of our

article are treated implicitly except for in concrete examples.

As explained in Section VI-B, we therefore did not cover this

approach in the application of our framework in Section VI-A.

In a later article [7], the same authors developed a technique

for guiding security analysts in the stepwise refinement of attack

trees. The syntax of attack trees in this article differs from the

one in their earlier article. Again, they do not permit actions

as annotations of nodes. Instead of using pre-/post-condition

pairs as annotations, they use reachability goals in the new

article. We clarified in Section VI how the success criterion

from this article can be captured in our framework.

For automatically generating attacks, one can employ a

reachability analysis to find out how a state can be reached that

satisfies a given attacker goal. Such approaches to generating

attacks inherently need a success criterion to determine which

attacks achieve the attacker goal (as outlined in Section I).

For instance, Dimkov et al. [15] propose an approach

to generate so called attack scenarios in which an attacker

combines digital, physical, and social means to achieve her

goals. Attack scenarios are expressions that specify a sequential

composition of actions. In their approach, attack scenarios are

generated in three phases. In the first phase, pre- and post-

conditions for each relevant action are determined, and the

earliest iteration is inferred when the execution of the action

is possible. This results in a set of so called action templates.

In the second phase, a backwards search from the attacker’s

goal is performed to determine action templates that contribute

to reaching this goal. In the third and final phase, the set of

action templates is completed to reach the attacker’s goal.

Since [15] does not discuss how attack trees should be

computed from attack scenarios, we did not cover it in

Section VI. Nevertheless, the assumptions underlying this

approach can be categorized using the success criteria from our

framework. Dimkov et al. assume that the actions specified by

an attack scenario occur subsequently without any occurrences

of other actions in between (which corresponds to Option PU3

for Purity). They require the attacker goal to be satisfied by

the state after the last action of the attack scenario occurred

(which corresponds to Option C4 for Causality) and they do

not consider what happens after the attacker goal has been

achieved (which corresponds to Option PE1 for Persistence).

The computed attack scenarios may contain attacker actions as

well as other actions (which means that these attack scenarios

correspond to exploits rather than to attacks in our terminology).

Reachability analyses have also been used to automatically

generate attack trees. However, publications proposing such

attack-tree generation techniques tend to leave the underlying

success criteria implicit, or to describe them only informally

or in semi-formal terms. This leaves room for interpretation

and can become the source of mistakes. We clarified for four

such attack-tree generation techniques (i.e., [5, 6, 13, 14]) in

Section VI how the respectively underlying success criteria

can be expressed in our framework.

Kumar and Stoelinga [16] and recently André et al. [17]

introduced attack-fault trees to assess safety and security aspects

of cyber-physical systems. The focus of this work is different

from our approach in that they target quantitative analyses of

the resulting trees to identify values of properties of interest or

the effect of countermeasures, or to compare effects of design

alternatives on a system’s safety and security. The actions in

attack-fault trees can be attacker actions or failures of basic

components, which occur in the system being modelled. In

this sense, attack-fault trees are similar to exploit trees.

Many other researchers work on quantitative analyses for

attack trees. Aslanyan et al. [18] proposed an extension of

attack-defense trees in which temporal dependencies among

subgoals can be expressed, and encode these as stochastic two-

player games to verify formally specified security properties

and to synthesize strategies for attackers or defenders that guar-

antee or optimize some quantitative property. In earlier work,

Aslanyan and Nielson [19] also evaluate the Pareto efficiency

for trees with multiple conflicting parameters. Hermanns et

al. [20] explore how stochastic timed automata can be used

to study attack-defense scenarios where timing plays a central

role, similar to David et al. [21]. Buldas and Lenin [22] explore

the games as modelling the utility of attackers in the presence

of defenses. Kordy et al. [23] combine trees with Bayesian

networks to identify probabilistic measures of attack-defense

trees with dependent actions.

IX. CONCLUSION

Attack trees have been introduced by Schneier [1] as a

pragmatic notation for describing threats to systems. Due

to their universal applicability, numerous refinements and

enhancements of attack trees have been suggested, some with

and some without semantics. Other approaches consider the

automatic generation of attack trees from system models.

In this article, we aimed at better clarifying the relationship

between the attacks and the attacker goal specified by an attack

tree. We identified “Does an attack achieve an attacker goal
in a run?” as the key question in this respect. We argued that

there is spectrum of sensible answers rather than one answer

that suits all purposes. This observation has been confirmed by

our study in Section VI. Our clarification of success criteria

used in prior publications revealed differences between the

criteria that have been used so far.

The framework for defining success criteria that we

proposed in Section V can express also success criteria that, to

our knowledge, have not been used in publications so far. We

have sketched at one example, how our framework could inspire

modifications in the work of others (cf. Remark 5). We have

also outlined possible uses for precisely defined success criteria

(cf. the beginning of Section VI). They can serve as reference

points for the evaluation of attack trees, as a reference point

197

of a correctness proof for attack-tree generation and attack-

tree transformation techniques, and also serve as a basis for

comparisons of such techniques.

Why the connection between the attacks and the attacker

goal specified by an attack tree has not been studied before?

This still remains a mystery to us, after having written this

article. We hope that our clarification of the connection between

the meaning (i.e., the attacks) and the purpose (i.e., the attacker

goals) of attack trees is useful for others. We needed the

clarification ourselves in the context of other research questions

involving attack trees that we are pursuing.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful detailed

comments and Barbara Sprick for feedback and discussions.

REFERENCES

[1] B. Schneier, “Attack trees: Modeling security threats,” Dr.
Dobbs Journal, December 1999.

[2] R. Jhawar, B. Kordy, S. Mauw, S. Radomirović, and

R. Trujillo-Rasua, “Attack trees with sequential conjunc-

tion,” in ICT Systems Security and Privacy Protection.

Springer, 2015, pp. 339–353.

[3] B. Kordy, S. Mauw, S. Radomirovic, and P. Schweitzer,

“Attack-defense trees,” Journal of Logic and Computation,

vol. 24, no. 1, pp. 55–87, 2014.

[4] M. Audinot, S. Pinchinat, and B. Kordy, “Is my attack

tree correct?” in Computer Security - ESORICS 2017
- 22nd European Symposium on Research in Computer
Security, Part I, 2017, pp. 83–102.

[5] R. Vigo, F. Nielson, and H. R. Nielson, “Automated

generation of attack trees,” in IEEE 27th Computer
Security Foundations Symposium, CSF, 2014, pp. 337–

350.

[6] M. Ivanova, C. Probst, R. Hansen, and F. Kammüller,

“Attack tree generation by policy invalidation,” in Infor-
mation Security Theory and Practice. Springer, 2015,

pp. 249–259.

[7] M. Audinot, S. Pinchinat, and B. Kordy, “Guided design

of attack trees: A system-based approach,” in 31st IEEE
Computer Security Foundations Symposium, CSF, 2018,

pp. 61–75.

[8] S. Mauw and M. Oostdijk, “Foundations of attack trees,”

in Information Security and Cryptology - ICISC 2005,
8th International Conference, Revised Selected Papers,

2005, pp. 186–198.

[9] B. Kordy, S. Mauw, S. Radomirovic, and P. Schweitzer,

“Foundations of attack-defense trees,” in Formal Aspects
of Security and Trust - 7th International Workshop, FAST
2010, Pisa, Italy, September 16-17, 2010. Revised Selected
Papers, 2010, pp. 80–95.

[10] R. Horne, S. Mauw, and A. Tiu, “Semantics for special-

ising attack trees based on linear logic,” Fundamenta
Informaticae, vol. 153, no. 1–2, pp. 57–86, 2017.

[11] O. Sheyner, J. W. Haines, S. Jha, R. Lippmann, and

J. M. Wing, “Automated generation and analysis of attack

graphs,” in IEEE Symposium on Security and Privacy,

2002, pp. 273–284.

[12] M. Fraile, M. Ford, O. Gadyatskaya, R. Kumar,

M. Stoelinga, and R. Trujillo-Rasua, “Using attack-

defense trees to analyze threats and countermeasures in

an atm: A case study,” in 9th IFIP WG 8.1 Working
Conference on The Practice of Enterprise Modeling,
PoEM, vol. 267, 2016, pp. 326–334.

[13] O. Gadyatskaya, R. Jhawar, S. Mauw, R. Trujillo-Rasua,

and T. A. C. Willemse, “Refinement-aware generation of

attack trees,” in Security and Trust Management - 13th
International Workshop, STM, 2017, pp. 164–179.

[14] F. Kammüller, “A proof calculus for attack trees in

isabelle,” in Data Privacy Management, Cryptocurrencies
and Blockchain Technology - ESORICS International
Workshops, DPM and CBT, 2017, pp. 3–18.

[15] T. Dimkov, W. Pieters, and P. H. Hartel, “Portunes: Rep-

resenting attack scenarios spanning through the physical,

digital and social domain,” in Automated Reasoning for
Security Protocol Analysis and Issues in the Theory of
Security - Joint Workshop, ARSPA-WITS, Revised Selected
Papers. Springer, 2010, pp. 112–129.

[16] R. Kumar and M. Stoelinga, “Quantitative security and

safety analysis with attack-fault trees,” in 18th IEEE
International Symposium on High Assurance Systems
Engineering, HASE, 2017, pp. 25–32.

[17] É. André, D. Lime, M. Ramparison, and M. Stoelinga,

“Parametric analyses of attack-fault trees,” in 19th Inter-
national Conference on Application of Concurrency to
System Design, ACSD, 2019, to appear.

[18] Z. Aslanyan, F. Nielson, and D. Parker, “Quantitative

verification and synthesis of attack-defence scenarios,” in

29th IEEE Computer Security Foundations Symposium,
CSF. IEEE Computer Society, 2016, pp. 105–119.

[19] Z. Aslanyan and F. Nielson, “Pareto efficient solutions of

attack-defence trees,” in Principles of Security and Trust
- 4th International Conference, POST. Springer, 2015,

pp. 95–114.

[20] H. Hermanns, J. Krämer, J. Krăźál, and M. Stoelinga,

“The value of attack-defence diagrams,” in Proceedings of
the 5th International Conference on Principles of Security
and Trust. Springer, 2016, pp. 163–185.

[21] N. David, A. David, R. R. Hansen, K. G. Larsen, A. Legay,

M. C. Olesen, and C. W. Probst, “Modelling social-

technical attacks with timed automata,” in 7th ACM CCS
International Workshop on Managing Insider Security
Threats, MIST, 2015, pp. 21–28.

[22] A. Buldas and A. Lenin, “New efficient utility upper

bounds for the fully adaptive model of attack trees,” in

Decision and Game Theory for Security - 4th International
Conference, GameSec, 2013, pp. 192–205.

[23] B. Kordy, M. Pouly, and P. Schweitzer, “A probabilistic

framework for security scenarios with dependent actions,”

in Integrated Formal Methods - 11th International Con-
ference, IFM. Springer, 2014, pp. 256–271.

198

APPENDIX A

LABELED TRANSITION SYSTEMS AND TRACES

Labeled transition systems can be used to model the

possible initial configurations of a scenario and the causal

relationship between events and snapshots in a scenario.

Definition 16. A labelled transition system (or short LTS) is
a tuple Lts = (S, S0, A,→) consisting of a non-empty set of
states S, a non-empty set of initial states S0 ⊆ S, a set of
actions A, and a step relation →⊆ S ×A× S.

Intuitively (s, a, s′) ∈→ means that the event modeled by

action a is enabled in the snapshot modeled by state s, and that

s′ models a snapshot that might result after the event occurred.

A labeled transition system faithfully captures a given

scenario if each initial configuration possible in the scenario

is faithfully modeled by a state s ∈ S0, and if each possible

effect of an event in the scenario is modeled by a transition

(s, a, s′) ∈→. A labeled transition system precisely captures
a given scenario if each state s ∈ S0 faithfully models a

possible initial configuration, and if each transition (s, a, s′) ∈
→ faithfully models possible effect of an event in the scenario.

The notions of traces from Definition 6 can be related to

labelled transition systems as follows:

Definition 17. Let Lts = (S, S0, A,→) be an LTS.
• A state trace tr : N0 ⇀ S is compatible with Lts iff
tr(0) ∈ S0 and for all n ∈ def (tr) holds

(n+ 1)∈def (tr)⇒ ∃a∈A : (tr(n), a, tr(n+ 1))∈→ .

• A verbose trace tr : N0 ⇀ (S∪A) is compatible with Lts
iff for all n ∈ def (tr) holds

(even(n) ∧ (n+ 1, n+ 2) ∈ def (tr))

⇒ (tr(n), tr(n+ 1), tr(n+ 2)) ∈→ .

Labeled transition systems are often used to capture the

possible behaviors of a scenario. In this article, we used sets

of traces for this purpose instead. The following definition

bridges the gap between these concepts and illustrates how

labeled transition systems can be translated into sets of traces.

Definition 18. Let Lts = (S, S0, A,→).
• The set of state traces induced by Lts is {tr :: N0 →
(S ∪A) | tr is a state trace compatible with Lts} .

• The set of verbose traces induced by Lts is {tr :: N0 →
(S ∪A) | tr is a verbose trace compatible with Lts} .

199

