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Abstract. We propose an approach to using run-time monitoring for the
re-engineering of distributed systems. Our re-engineering method MBRE
consists of five steps that provide guidance during a re-engineering. By
utilizing run-time monitors that are parametric in a policy, we obtain the
flexibility needed for a sustainable integration of monitors. We illustrate
this and other features of MBRE at three re-engineering case studies in
a hypothetical hospital scenario. A key novelty of our approach is that it
supports cooperation between monitors also across technological bound-
aries. This is of high relevance because, for instance, system components
in the IoT often run on different platforms and are implemented in dif-
ferent programming languages. Surprisingly, such scenarios have been
outside the focus of the run-time-monitoring community so far.

1 Introduction

A run-time monitor supervises runs of a given target , which may be an entire
system or a system component, with respect to a given policy. The purpose is to
detect policy violations while the target is running and, possibly, to prevent such
violations. Naturally, what a monitor can detect is limited by the information
that the monitor can observe when the target performs a step. If a step of the
target would cause a policy violation, then the monitor might be able to take
countermeasures to avoid the violation. Again, what a monitor can enforce is
limited by how the monitor can influence the behavior of its target.

The choice of a suitable system layer is a key step in the integration of
run-time monitoring into a system. Run-time monitors can be implemented, for
instance, on the application layer, as part of a virtual machine or the operating
system, or as a hardware component. As a rule of thumb, the lower the system
layer, the more fine-grained a monitor’s observations can be, and the higher the
system layer, the more information a monitor can have about the semantics of
steps and data. There is no system layer that is most suitable for integrating run-
time monitors, in general. The suitability of a system layer usually depends on
both, the application and the properties to be controlled by run-time monitoring.

In IoT-applications, one usually faces a situation, where some components
comprise more system layers, into which monitors could be integrated, than other
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components. For instance, a controller might only offer a simple processing unit
on which machine code runs directly without any operating system or protective
virtual machine. Thus, this is the only layer into which a software implementa-
tion of monitors could be integrated. In contrast, a server in the back-end might
comprise a much richer set of system layers, including, e.g., the operating sys-
tem, virtual machines, and applications running within these virtual machines.
Moreover, even if two components conceptually feature the same system layer,
these layers might differ substantially on a technical level, e.g., because a differ-
ent processor is used. Finally, the software running on different components of
an IoT system might have been implemented using different languages.

In this article, we focus on the re-engineering of distributed IoT systems and
report on an on-going research project. At this stage, our main contribution
is a novel re-engineering method that builds on the integration of a run-time
monitoring framework into a given legacy system. We obtain flexibility by us-
ing monitors that can be instantiated with different policies. We determine the
placement of monitors, the capabilities of these monitors to influence their re-
spective target’s behavior, and the need for additional sensors and actuators by
a careful analysis of the legacy system and of the re-engineering objectives.

Our method for run-time-monitoring-based re-engineering consists of five
steps. In the first step, the legacy system and the requirements are analyzed
from a global perspective. By a decomposition, in the second step, one obtains a
local perspective that fits what can be controlled by decentralized, cooperating
monitors. The third and fourth step concern the technical integration of run-
time monitors and of additional devices, respectively. The fifth step finalizes the
re-engineering by instantiating all monitors with suitable policies. For validating
the results of intermediate steps, our method offers the option to instantiate
monitors with auxiliary policies that provide a basis for such a validation.

We use a hypothetical hospital as a playground for illustrating our method.
In this setting, we consider routine tasks that might interfere with each other
due to resource conflicts. We illustrate how monitors can be utilized to resolve
such conflicts on top of the resolution provided by already existing organizational
policies. We also illustrate how monitors integrated during re-engineering can be
re-used in subsequent changes. This provides first evidence that re-engineering
a legacy system with our method leads to flexibility that is sustainable.

The body of this article is structured as follows. In Section 2, we introduce our
MBRE Method, the hypothetical hospital, and seven use cases. In Section 3, we
apply our re-engineering method in three case studies of increasing complexity. In
Section 4, we discuss implementation issues and report on first findings regarding
the performance overhead induced by run-time monitors. We discuss related
work in Section 5 before concluding in Section 6.

2 Approach and Application Scenario

The re-engineering of IT-systems is typically motivated by concrete needs. The
possible motivations include the desire for additional or better functionality, the
requirement to satisfy new regulations concerning safety or security, and the need
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for more cost-effective operation. In addition, a re-engineering can be triggered
by technological changes, e.g., by the availability of a better hardware platform.

In practice, re-engineering can be challenging and costly. Moreover, it can be
difficult to attract qualified engineers to re-engineering projects, in particular, if
they have made painful experiences with re-engineering before. Hence, it is de-
sirable to simplify later changes pro-actively when building a system by choosing
a flexible design that eases later adaptations. Albeit proactive flexibility is de-
sirable, flexibility often needs to be added as an afterthought in practice, and
this is the scenario on that we focus in this article. Nevertheless, we strive with
our approach for similar advantages as in a pro-active integration of flexibility.

We split a re-engineering into two phases, the integration of run-time mon-
itors into a legacy system and the instantiation of these monitors with policies
that are suitable for enforcing the given requirements. By using monitors that
can be instantiated with different policies, we also create flexibility for future
changes. Should additional requirements arise, any previously integrated moni-
tors can be re-used while adapting their policies to the re-modified requirements.

In addition, we exploit the possibility to exchange policies for validating that
the integration of monitors into a legacy system does not cause undesired side
effects. To this end, we instantiate the run-time monitors with dummy policies
and test the resulting system against the legacy system without monitors.

To illustrate our approach, we focus on a particular application domain, i.e.,
the logistics within hospitals. In this domain, many processes are carefully regu-
lated, for safety reasons, and optimized, for cost control. Nevertheless, additional
room for improvement might appear in daily operation.

We introduce a hypothetical hospital as our “legacy system” in Section 2.2.

2.1 The MBRE Method: Monitor-Based Re-Engineering

The starting point of a re-engineering with our method consists of a legacy
system and of a set of requirements that shall be satisfied by a re-engineering:

– We assume that the legacy system is a distributed system consisting of mul-
tiple hardware devices and of code running on these devices. In our case
studies, we consider a legacy system that is accompanied by a floor plan
and by multiple use-cases describing routine tasks. If a more informative
documentation is available, (e.g., a definition of the original requirements, a
documentation of the system design, or a more general development docu-
mentation), then this could be exploited in the analysis steps of our method.

– In our case studies, we use incidents encountered in daily operation to moti-
vate a re-engineering. More generally, requirements could include the addi-
tion of new functionality, the improvement of existing functionality, perfor-
mance improvements, or the compliance with safety or security regulations.

Throughout this article, we use requirement definitions that leave little freedom
in how the problems shall be resolved conceptually. To apply our re-engineering
method in case of less concrete requirements, one needs to make design decisions
for arriving at sufficiently concrete requirements in a pre-processing step. How
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Starting Point
Input: distributed legacy system

documentation of this system (including a collection of use cases)
list of requirements to be satisfied

Step 1: Global analysis of the legacy system and of the requirements
Output: list of components to be supervised by monitors [from Step 1c]

list of devices to be added to the system [1d]
collection of modified use cases [1e]

Step 2: Decomposition into local requirements
Output: specification of local logic of each monitor [2b]

specification of communication between monitors [2c]
specification of communication of monitors with devices [2d, 2e]

Step 3: Integration of the run-time monitoring framework
Output: mapping of targets to system layers and integration techniques [3a]

legacy system with monitors integrated [3b,3c]
optional: auxiliary policies [3d]

Step 4: Integration of additional devices
Output: legacy system with monitors and additional devices integrated [4c]

optional: auxiliary policies [4d]

Step 5: Definition of policies and instantiation of monitors
Output: modified legacy system [5b,5c,5d]

Fig. 1. The five steps of the MBRE Method and their respective output

to arrive at such a concretized requirement definition is a relevant topic in its
own right, but not the focus of this article. Therefore, we abstract from it.

Figure 1 provides an overview of the five steps of our re-engineering method
and their respective output. Steps 1 and 2 primarily operate on a conceptual
level, while Steps 3 and 4 primarily focus on a technical level. The fifth step
concerns both levels. In the following, we refine each of these five steps into
finer-grained steps and introduce labels for the fine-grained steps. We use these
labels in Figure 1 to clarify at which point each output is generated.

Global Analysis [Step 1]: Firstly, one identifies which use cases in the documen-
tation of the legacy system must be adapted to satisfy the requirements [1a].
Secondly, one identifies which capabilities to obtain information at run-time are
needed for enforcing the requirements and, in addition, which capabilities to
alter the legacy system’s behavior at run-time are needed [1b]. Thirdly, one cat-
egorizes each capability from Step 1b depending on whether it can be realized
on existing IT devices or not. On this basis, one compiles a list of components of
the legacy system to be supervised by run-time monitors [1c] and a list of devices
(i.e., sensors and actuators) to be added to the legacy system [1d]. Finally, each
use case is modified according to the requirements [1e].

Decomposition [Step 2]: Firstly, one decides at which level of granularity each
monitor shall observe steps of its respective target at run-time. Moreover, one
determines which information each monitor shall obtain when its target performs
a step and which capabilities each monitor shall have to alter its target’s behavior
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[2a]. Secondly, one decomposes the modifications of the use cases from Step
1e into suitable modifications of the behavior of individual components of the
legacy system. This results in specifications of the local logic of the individual
run-time monitors [2b] and of the cooperation requirements to be resolved by
communication between monitors [2c]. Thirdly, one decides how the run-time-
monitoring framework shall obtain information from each sensor [2d]. One might
choose that information shall be pushed by a sensor or needs to be pulled from
it. One might choose a point-to-point communication between a sensor and a
monitor, making a dedicated monitor responsible for propagating the sensor’s
information to other monitors. Alternatively, one might choose a multi-cast or
broadcast communication, making the sensor’s information directly available to
multiple monitors. Finally, one decides how the run-time-monitoring framework
shall trigger the individual actuators [2e]. For instance, one might determine
a dedicated monitor to be responsible for triggering an actuator. If multiple
monitors may trigger a given actuator, one needs to apply suitable strategies to
avoid possible conflicts by construction or to resolve them at run-time.
Monitor Integration [Step 3]: Firstly, one chooses for each target identified in
Step 1c a suitable system layer into which the supervising monitor shall be inte-
grated. Moreover, one decides how the integration into the chosen layer shall be
realized [3a]. A monitor’s code might be integrated, for instance, by interleaving
it with the target’s code (in-lining), by running it in a separate process (out-
lining), or by a combination of the two (cross-lining). Secondly, one decides on
the protocols for communicating between monitors, where such communication
is needed [3b]. Thirdly, one integrates the monitoring framework into the legacy
system [3c]. Finally, the resulting system is validated [3d].
Device Integration [Step 4]: Firstly, one chooses concrete versions of the devices
(sensors and actuators) identified in Step 1d [4a]. Secondly, one decides where
and how each of these devices shall be placed physically [4b]. Thirdly, the in-
stallation of devices and their integration into the legacy system is performed as
specified [4c]. Finally, the resulting system is validated [4d].
Policy Definition and Instantiation [Step 5]: Firstly, one implements the logic of
each monitor by defining a local policy [5a] that realizes the desired modifications
of the corresponding target’s behavior, as identified in Step 2b. Secondly, one im-
plements the cooperation between monitors and of monitors with un-monitored
devices, as identified in Step 2c [5b]. Thirdly, one instantiates each monitor with
the respective local policy [5c]. Finally, the resulting system is validated [5d].
Intermediate Validation in Steps 3 and 4 A key feature of our approach is that
the intermediate steps can be validated by instantiating the run-time monitoring
framework using suitable auxiliary policies in Steps 3d and 4d.

To this end, one defines, in Step 3d, for each monitor an auxiliary policy
that causes the monitored target to behave equivalently to the target without
monitor. The partially modified system can then be tested (or be analytically
verified) against the unmodified legacy system for behavioral equivalence. Such
a validation can be performed by regression testing, i.e., by using test vectors
that had been used for validating the unmodified legacy system.
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Similarly, one can define auxiliary policies in Step 4d to test that the newly
integrated sensors and actuators work properly. Moreover, one can define policies
to test the interaction of the devices with the run-time-monitoring framework.
Further auxiliary policies can be defined for testing that monitors obtain the
desired information about their targets, that each monitor can alter its target’s
behavior as desired, and that communication between monitors works properly.

Using auxiliary policies in the validation of these intermediate steps has an
additional advantage. Namely, the policies defined in these steps provide a start-
ing point (the no-op policies from Step 3d) and inspiration (the testing policies
from Steps 3d and 4d) for the definition of policies in Steps 5a and 5b.

2.2 The Application Scenario

We consider two elevators and three levels of a hypothetical but realistic hospital
building: a helipad on the roof, the ground floor, and the basement. We abstract
from all other floors of the hospital and also from other possibilities to reach
floors from each other, because they are not relevant for our case studies. Access
to each of these three levels is restricted to authorized personnel. In particular,
patients and visitors are not allowed to enter these areas by themselves.
Hospital Architecture Figure 2 visualizes the floor plans, highlighting entities
that are relevant for our case studies and abstracting from details not relevant.

On the top level (Level 15), a helipad is located for the delivery of emergency
cases to the hospital. This level can only be reached by the first elevator (L1). On
the ground floor (Level 0), there is a dedicated entry for emergency cases that
are delivered by car ambulances (at top-left corner in the floor plan). This level
can be reached by both elevators (i.e., by L1 and L2). In the basement (Level
−1), operating rooms are located in which surgeries of emergency cases are per-
formed. For simplicity, we assume only two operating rooms (O1 and O2), each
with a dedicated preparation room (P1 and P2). Usually, emergency cases are
transported to a preparation room and are moved to the corresponding operating
room via the connecting door. However, if a patient already has been prepared
during transport in the ambulance, then this patient may be brought into an
operating room directly. To simplify the re-stocking of the operating rooms and
the preparation rooms, a supply room (SP) is located in their proximity.

In normal mode, both elevators can be called to all levels by pressing buttons
on the outside, and they can be moved to all levels by pressing buttons on the in-
side. Access to some levels may be restricted to authorized personnel (including
Levels -1, 0, and 15). Authorized personnel may put an elevator into emergency
mode and may request it in emergency mode. An elevator in emergency mode is
under full control of its current operator until this mode is deactivated. In emer-
gency mode, requests for the elevator are ignored to ensure that the transport
of patients in critical conditions is not interrupted by less critical cases.
Definition of Selected Use Cases For many routine tasks in a hospital, it is
regulated how they may be performed. Such organizational regulations can be
defined by workflows or business processes in an established workflow language
(like, e.g., BPMN [14]), complemented by textual explanations. To shorten our
presentation, we refrain from using such a formal notation in this article.
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Fig. 2. Hospital building: simplified floor plans for three levels

Heli-1 and Heli-2 These use cases are triggered by a heli-ambulance arriving at
the helipad with an emergency case, where the patient already has been prepared
for surgery during the flight. Which of the use cases is triggered depends on which
operating room has been assigned to this emergency by the hospital. The goal
is to bring the patient as quickly as possible to this operating room.

The default route is: (1) put the stretcher with the patient on a cart with
wheels, (2) use Elevator L1 in emergency mode to move the patient to the
basement, (3) after the basement has been reached, transport the patient along
the following route L1→O1 for Heli-1 and L1→O2 for Heli-2.1

Car-1 and Car-2 These use cases are triggered by a car ambulance arriving
at Entrance AM on Level 0 with a patient not prepared for surgery. Again, the
particular use case depends the assigned operating room. The goal is to bring
the patient as quickly as possible to the respectively adjacent preparation room.

The default route is: (1) put stretcher with patient on a cart with wheels, (2)
transport the patient to Elevator L1 via AM→L1, (3) use L1 in emergency mode
to move the patient to the basement, (4) after the basement has been reached,
transport the patient along L1→P1 for Car-1 and L1→P2 for Car-2.

Re-Supply This use case is triggered at regular intervals and in case the supply
in the supply room SP has reached a critical level. The goal is to ensure sufficient
supply in SP for quickly re-stocking the two operating rooms between surgeries.

In this use case, the supply cart enters the floor plan from the outside at
Level −1 using entry EL carrying the needed material. The default route is: (1)
push the supply cart along the route EL→ML, (2) continue along ML→L1→SP.
1 We use L1→O1 to denote the shortest path from L1 toO1 according to the floor plan.
To denote the next shortest route, we disambiguate by using L1→ML→MR→O1.
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Re-Locate-1 and Re-Locate-2 These use cases are triggered when a stretcher
shall be removed from an operating room and be moved to some other part of
the hospital. Which use case is chosen depends on the location of the stretcher.
The goal is to re-locate the empty stretcher to its destination.

The default route for Re-Locate-1 is: (1) push the stretcher out of O1, (2)
move it along O1→L1→L2. (3) use Elevator L2 to transport the stretcher to
the destination level in the hospital. The default route for Re-Locate-2 is: (1)
push the stretcher out of O2, (2) move it along O2→MR→L2. (3) use Elevator
L2 to transport the stretcher to the destination level in the hospital.
Note that the above use cases comprise ones that are more critical than others.
Logistics within a hospital typically distinguish between high-priority tasks (or
emergencies) and low-priority tasks (or normal operation). Our use cases Heli-1,
Heli-2, Car-1, and Car-2 correspond to high-priority tasks. We view the use
cases Re-Supply, Re-Locate-1, and Re-Locate-2 as low-priority tasks.2

3 Re-Engineering Case Studies

We perform three case studies in the hospital scenario from Section 2.2. In each
case study,we perform a systematic re-engineering using our method. Each re-
engineering is motivated by an incident resulting from resource conflicts (e.g., by
the use of an elevator or of a section of an aisle) encountered in daily operation.
We consider conflicts between tasks of different priorities in the first two case
studies and a conflict between two high priority tasks in the third case study.

Throughout this section, we remain at a conceptual level. We skip steps
involving implementation (i.e., Steps 3b, 3c, 4a, 4c, and 5c) and validation (i.e.,
Steps 3d, 4d, and 5d). The starting point of each case study is our hypothetical
hospital as the legacy system and a requirement motivated by some incident.

3.1 Preventing Avoidable Delays of High-Priority Tasks

The transportation of a patient from the helipad to an operating room and a re-
supply of the supply room might interfere with each other. Consider an incident
where a patient in critical condition arrived via the heli-ambulance and shall
be transported to the second operating room (i.e., use case Heli-2). Shortly
before, a re-supply was ordered (Re-Supply). Unfortunately, the supply cart
broke down on Level −1 between P1 and O1, blocking the default route of
Heli-2. This caused a delay of the transportation of the critical patient to O2.

To avoid such incidents in the future, hospital management decided to prevent
the use of the shared resource (i.e., the section of the aisle between L1 and O2)
in use case Re-Supply if this resource is about to be needed in one of the high-
priority use cases Heli-1 or Heli-2. To signal to the supply cart that it must
not proceed, a traffic light shall be installed, signaling red if the supply cart must
not enter the critical section of the aisle, and signaling green, otherwise.

We illustrate how to apply our MBRE Method in this re-engineering.
2 In case of an urgent supply shortage, delivering this supply deserves higher priority.
We refrain from specifying a use case for such a high-priority task in this article.
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Global Analysis [Step 1]: The use cases Heli-1, Heli-2, and Re-Supply are
relevant [1a]. For enforcing the requirement, one needs sufficient information for
deciding whether the aisle between L1 and O2 must be reserved for Heli-1 or
Heli-2, and whether this critical section may be made available to the supply
cart. Finally, a possibility is needed to alter the behavior of the supply cart such
that it does not enter the critical section when reserved [1b]. We choose to use
information retrievable from the state of Elevator L1 as the basis for deciding
whether the critical section must be reserved or not. This information about L1’s
state is available to L1’s controller and, hence, can be accessed by a run-time
monitor added to this controller [1c]. Thus, there is no need to add sensors to the
legacy system.3 The requirement specification already mandates how to block
the critical section, namely, by a combination of an actuator (traffic light) and
an organizational policy (supply cart must not proceed if the traffic light signals
red). We decide to complement the traffic light with a simple controller that acts
as communication point for run-time monitors [1d]. We introduce adaptations
of the use cases Heli-1, Heli-2, and Re-Supply in the following [1e]:

Heli-1′ and Heli-2′ are triggered in the same way as Heli-1 and Heli-2,
respectively. The goals of the original use cases also remain unmodified.

Step 2 of the default routes is refined, resulting in: (1) put the stretcher with
the patient on a cart with wheels, (2a) enter L1, (2b) use L1 in emergency mode
to move the patient to the basement, (2c) exit L1, and (3) transport the patient
along the route L1→O1 for Heli-1 and L1→O2 for Heli-2.

Re-Supply′ has the same trigger and goal as Re-Supply. One action and two
preconditions are added to the default route, resulting in: (1) push the supply
cart along EL→ML, (2a) wait if the traffic light signals red, (2b) if the traffic
light signals green, continue along ML→L1→SP.

Note that the supply cart waits at ML if the traffic light signals red. This
decision is motivated by an existing organizational policy, namely, to not wait
unnecessarily on aisles to avoid congestion, but rather to wait at intersections.

Decomposition [Step 2]: We decide that the critical section of the aisle shall be
reserved for Heli-1 or Heli-2 when Step 2a of the respective use case occurs,4
In addition, we decide that the critical section may be unblocked after Step 2c of
Heli-1 or Heli-2 has been completed. Thus, the monitor added to the controller
of L1 must be able to observe at which level L1 is, in which mode L1 is, which
buttons are pressed to move L1, whether L1 is in use, and whether the doors of
3 Should it not be possible to add a run-time monitor to the elevator’s controller, then a
different design decision must be made at this step. For instance, a run-time monitor
could alternatively be added to a system managing the arrivals and departures on
the helipad. Another alternative would be to add sensors elsewhere, e.g., within the
elevator or onto the stretchers used for patients arriving at the helipad.

4 This is not the only sensible design choice. Alternatively, one could reserve the
critical section earlier (e.g., when L1 is called to Level 15) or later (e.g., when L1 is
in emergency mode and passes Level 7 on its way to the basement). Which choice is
best depends on multiple factors such as the speed of the elevator, the speed of the
supply cart, and the willingness to take risks, and the acceptability of delays.



10 M. Gehring and H. Mantel

L1 are open or closed. This information is also needed by the elevator’s controller
and, hence, can be retrieved from it. The monitor does not need any capability to
alter the elevator’s behavior [2a]. The monitor tracks the state of the elevator and
decides whether to send signals to the traffic light. The monitor signals to reserve
the critical section if L1 is on Level 15, in emergency mode, and requested from
the inside to move to the basement. The monitor signals to unblock the critical
section if L1 reached the basement, returned to normal mode, and its doors have
closed. We decide to complement the traffic light with a simple controller that
acts as communication point for the run-time monitor added to the elevator’s
controller [2b]. We decide to use a point-to-point communication between the
monitor and the controller of the traffic light [2e]. Since there is only one monitor
and no sensors were added, nothing needs to be done in Steps 2c and 2d.

Monitor Integration [Step 3]: We decide to integrate the monitor by in-lining its
code into the controller code [3a]. As stated before, we abstract from implemen-
tation issues and validation [3b, 3c, and 3d].

Device Integration [Step 4]: We decide to place the traffic light on the wall on the
basement at ML, which is suitable for the default route of Re-Supply′. Again,
we abstract from implementation and validation [4a, 4c, and 4d].

Policy Definition and Instantiation [Step 5]: We define the policy of the monitor
on the elevator’s controller by a finite automaton with two states, restricted and
unrestricted , where unrestricted is the initial state. If L1 is on Level 15 in emer-
gency mode and requested to move to the basement, then this causes a transition
to state restricted . If L1 is on the basement, in normal mode, and the doors have
been closed, then this causes a transition to state unrestricted . A transitions to
state restricted causes a signal to turn red to the traffic light controller, and a
transition to state unrestricted causes a signal to turn green [5a and 5b]. Again,
we abstract from implementation and validation [5c and 5d].

In this case study, we illustrated how our MBRE Method can be used for a sys-
tematic re-engineering. After filling in the implementation and validation steps,
one arrives at a distributed IoT system that satisfies the requirement that moti-
vated the re-engineering. Note that the run-time monitor added to the elevator’s
controller may be re-used in any future re-engineering. For instance, this monitor
could be re-used in the case studies presented in Sections 3.2 and 3.3.

3.2 Eliminating Unnecessary Interferences between Tasks

The re-engineering in Section 3.1 was motivated by an accident (supply cart
broke down) in one use case (i.e., Re-Supply) that caused a delay in another
use case (i.e., Heli-2). Such interferences between use cases might also happen
without accidents, and they might cause delays for both use cases. Consider an
incident where a patient is transported from the helipad to the second operating
room in Heli-2 and a stretcher is removed from the first operating room in
Re-Locate-1. Assume that the stretcher with the patient has just left Elevator
L1, and the empty stretcher has just left O1. That is, both stretchers are in
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the region between L1 and O1 moving towards each other. Although the two
stretchers should fit next to each other in this part of the aisle, in principle, they
collided because they passed each other without slowing down.

This incident can be addressed in a similar way as the incident in Section 3.1.
A key difference is that a sensor needs to be added to realize the blocking of
the critical section of the aisle. Because the two stretchers move in opposing
directions, the critical section must be blocked longer than in Section 3.1 to avoid
a collision. A sensor needs to be added because none of the existing IT devices
has sufficient information to decide that the critical section may be unblocked.
Global Analysis [Step 1]: Like in the previous case study, we decide to place a
monitor on the controller of L1 [1c] and use a traffic light in combination with
an organizational policy to block the critical section [1e]. The traffic light will
be placed in O1 [4b]. It signals red if the door of the room must remain closed
because the critical section is currently blocked for Heli-2. Accordingly, use
case Re-Locate-1 is modified by adding that the traffic light signals green as a
precondition to Step (1) [1e]. A sensor is needed to learn that the critical section
can be unblocked because the patient transport has left it [1d].
Decomposition [Step 2]: We decide to give the monitor at L1 the final say about
the blocking and unblocking of the critical section [2b]. This means that the
monitor must receive information from the added sensor [2d] and must be able
to trigger state changes of the traffic light [2e].

We skip all other steps of the MBRE Method. They can be performed analo-
gously to Section 3.1 due to the deliberate similarities between the case studies.

In this re-engineering case study, we provided an example for when a sensor
needs to be added to a legacy system. Moreover, this case study offers the possi-
bility to re-use previously integrated monitors. That is, the monitor at L1 could
be re-used from a prior re-engineering, e.g., the one presented in Section 3.1.

3.3 Progressing High-Priority Tasks Despite Collisions

The transportation of patients from the helipad might interfere with the trans-
portation of patients delivered by car ambulance. Consider an incident, where
L1 is transporting a patient from the helipad to the basement when a patient
arrives at L1 on Level 0 for transportation to an operating room. The delay in
the transportation of the latter patient was avoidable, because L2 could have
been used for reaching the basement instead of waiting for L1. As a reaction to
this incident, hospital management requested a solution for re-routing patients
who arrived by a car ambulance from L1 to L2, if L1 is in use and the alternative
route likely results in a speed up of the transport. In particular, the availability
of Elevator L2 shall be ensured before a patient transport is re-routed to it.

Again, we apply our MBRE Method in this re-engineering case study.
Global Analysis [Step 1]: The use cases Car-1, Car-2, Heli-1, and Heli-2
are relevant [1a]. For enforcing the requirement, one needs sufficient informa-
tion about the state of both elevators to decide whether patients arriving on the
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ground floor shall be re-routed to L2. Moreover, an ability is needed for remotely
calling L2 to the ground floor and for reserving L2 for the re-routed transport.
Finally, an ability to trigger the use of the alternative route is needed [1b]. We
retrieve the needed information from the controllers of L1 and L2 by two mon-
itors running on these controllers [1c]. We decide to add a display for signaling
that the alternative route shall be taken. Again, no sensors need to be added
[1d]. With our design choices, Heli-1 and Heli-2 can remain unchanged. We
introduce adaptations of the use cases Car-1 and Car-2 in the following [1e]:

Car-1′ and Car-2′ have the same trigger and goal as Car-1 and Car-2, re-
spectively. We modify the default routes by refining Step 3, and we add an alter-
native route to each use case. The modified default routes are: (1) put stretcher
with patient on a cart with wheels, (2) transport the patient to Elevator L1 via
AM→L1, (3a) request L1 in emergency mode, (3b) wait until L1 can be used or
until the display signals to use the alternative route, (3c) if L1 is available, use it
to move the patient to the basement, (4) after the basement has been reached,
transport the patient along L1→P1 for Car-1 and L1→P2 for Car-2.

The following alternative routes may be used after Step 3b: (3c) if L1 is not
available and the display signals to re-route to L2, then transport the patient to
Elevator L2 via L1→L2 on Level 0, (3d) use L2 in emergency mode to move the
patient to the basement, (4) after the basement has been reached, transport the
patient along: L2→L1→P1 for Car-1 and L2→MR→P2 for Car-2.

Decomposition [Step 2]: When L1 is requested from the ground floor in emer-
gency mode, we consider a re-routing if the following condition is fulfilled:
COND-1: L1 is in use, in emergency mode, and located at or above Level 4.5

To trigger a re-routing the following condition must be fulfilled in addition:
COND-2: L2 is available on the ground floor and reserved.
We use MON-1 and MON-2 to refer to the monitors running on the controller
of L1 and of L2, respectively. MON-1 must be able to determine whether L1 is
in use, at which level L1 is, and L1’s mode. MON-1 must also be able to notice
when L1 is called from the basement in emergency mode. MON-1 does not need
any abilities to alter the behavior of L1. MON-2 must be able to determine at
which level L2 is and whether it is in use. In addition, MON-2 must be able to
call L2 to the ground floor and to reserve it for a patient transport [2a].

MON-1 and MON-2 track the state of L1 and L2, respectively. We decide
that MON-1 shall have the final say about whether a patient transport is re-
routed. Thus, MON-1 needs to retrieve the information about the state of L2
needed for this decision from MON-2. If L1 is requested from the ground floor
in emergency mode and COND-1 is fulfilled, then MON-1 asks MON-2 to
establish COND-2. To fulfill COND-2, MON-2 calls L2 to the ground floor
(unless the elevator is already available on the ground floor), reserves L2, and
signals to MON-1 that L2 is reserved. In addition, MON-2 blocks all requests
for L2 until the patient has been transported to the basement [2b and 2c]. If

5 There are manifold alternatives to defining this pre-condition. We perform the re-
engineering such that COND-1 can be easily adapted to a different pre-condition.
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COND-1 and COND-2 are fulfilled, then MON-1 triggers the display to show
a message that the transport shall be re-routed [2e]. Since no sensors were added,
nothing needs to be done in Step 2d.

Monitor Integration [Step 3]: We decide to integrate the monitors by in-lining
their code into the code of the controllers for L1 and L2 [3a]. We abstract from
implementation issues and validation [3b, 3c, and 3d].

Device Integration [Step 4]: We place the display for re-routing next to L1 on
the ground floor, as this fits the location of the patient in Car-1′ and Car-2′.
Again, we abstract from implementation and validation [4a, 4c, and 4d].

Policy Definition and Instantiation [Step 5]: We define a simplified policy for
MON-1 by a finite automaton with three states default , enable, and trigger ,
where default is the initial state. If L1 is requested from the ground floor in
emergency mode and COND-1 is satisfied, then a transition to enable occurs. If
COND-2 and COND-1 are satisfied, then a transition to trigger occurs. Should
COND-1 be violated before, then a transition to default occurs. A transition
to enable causes a request to MON-2 to establish COND-2. A transition to
trigger causes a signal to the display to show a message that the transport shall
be re-routed. After this message has appeared, a transition to default occurs.

This policy clarifies how the cooperation with MON-2 and the triggering of
the display can be specified. To better clarify these aspects, we omitted how the
state of the display and a reservation of L2 are reset. We assume it to be clear
at this point how to enrich the the policy with such additional aspects and also
how to define a policy capturing the logic of MON-2 [5a and 5b].

Again, we abstract from implementation issues and validation [5c and 5d].

In this re-engineering case study, we have illustrated how to use our MBRE
Method when multiple run-time monitors cooperate with each other. Note that
already existing monitors could be re-used. Monitors can be re-used by replacing
their current policies or by integrating the new policy with the current policy.

4 Implementation and First Performance Evaluations

Having a legacy system is a prerequisite for any re-engineering. We implemented
parts of the hospital scenario from Section 2.2 in our testbed for IoT applications.
This test-bed features a spectrum of hardware platforms, ranging from simple
controllers to more powerful controllers to laptops and servers.

Having an implementation of the hospital scenario under our control enables
us to perform repeatable experiments. In our implementation, we chose an archi-
tecture that resembles the architecture of our hypothetical hospital, i.e., different
components of the legacy system are realized by different hardware components
in our test-bed. This approach shall facilitate meaningful experimental results
and shall ease a transfer of insights from the test-bed to real-world systems.

In Section 4.1, we describe the implementation of selected components of the
legacy system in our test-bed. We also explain how the sensors and actuators
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from our three case studies in Sections 3.1, 3.2, and 3.3 can be realized, which
corresponds to Step 4a of the MBRE Method that we skipped in Section 3.1.

In Section 4.2, we show how to integrate run-time monitors and how to
instantiate them with policies at the example of the monitor on the controller of
L1 from Section 3.1. This corresponds to Steps 3c and 5c of our MBRE Method.
In Section 4.3 we investigate the overhead caused by our implementations of
run-time monitors. Interestingly, we found that this overhead differs for different
hardware platforms not only in absolute numbers, but also when normalized.

4.1 A Test-bed for the Hospital Scenario

We used two controller boards in our implementation of the legacy system:
PICO platform consisting of a Raspberry Pi Pico W with an RP2040 ARM

Cortex-M0+ micro-controller with a clock speed of up-to 133 MHz, 264 kB
on-chip RAM, and a Wi-Fi module

4B platform consisting of a Raspberry Pi 4B single-board computer with a quad-
core 1.8 GHz BCM2711 ARM System on a Chip (SoC) and 8 GB RAM

The 4B platform is more powerful than the PICO platform, in both, processing
speed and available RAM. In particular, the 4B platform is powerful enough to
run a Java virtual machine, while the PICO platform is not. However, the PICO
platform is powerful enough to run a Python interpreter. To provide manual
input, we added a touch-screen to the 4B platform. Since the PICO platform is
not powerful enough to drive this touch-screen, we added physical buttons. Both
platforms enjoy wide-spread use and are popular for IoT applications.

We implemented the controller for elevators on both platforms to enable
experimental comparisons. We first describe the I/O interfaces:
PICO We used physical push buttons to model the buttons on the outside and

inside of the elevator. This includes buttons for requesting the elevator from
the outside, for directing the elevator to a particular level from the inside,
for switching the mode of the elevator from the inside, and for requesting
the elevator in emergency mode from the outside.
We used an LED to indicate the mode of the elevator (normal or emer-
gency). Further information about the internal state of the elevator can be
retrieved from the serial console like, e.g., the mode, the current level and
the destination level to which the elevator is moving.

4B We attached a 7-inch touch-screen and implemented buttons virtually. The
range of buttons supported is the same in both implementations. We used
the touch screen also to display the internal state of the monitor.

The logic of the elevator controller is implemented in Python on PICO. It consists
of one module, 22 functions, and it has 160 lines of code (LoCs). We used Java
for the implementation on 4B. This implementation consists of one class, 24
methods (11 private, 10 public, 3 protected), and it has 242 LoCs.

In addition, we used three types of devices as sensors and actuators: LEDs
of multiple colors, a motion sensor, and two 7-inch displays. As explained in
Section 3, we complemented these devices by controllers (either 4B or PICO)
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that act as communication points. We chose Python to program the logic on
these controllers and HTTP for the communication with run-time monitors.

Figure 3 summarizes the mapping of devices mentioned in Section 3 to hard-
ware devices in our test-bed. We chose the PICO platform as controller for all
devices, except for the display, for which we chose the more powerful 4B platform.

Sect. Device Sensor Actuator Hardware

3.1 Traffic Light
7

red and green LED
Controller PICO platform

3.2 Traffic Light
7

red and green LED
Controller PICO platform

3.2 Sensor
7

motion sensor
Controller PICO platform

3.3 Display
7

7-inch display
Controller 4B platform

Fig. 3. Mapping of devices from the re-engineering case studies to our test-bed.

4.2 Two Monitor Implementations

We implemented the run-time monitor on the PICO platform as a Python mod-
ule. The monitor is activated when its target executes a Python function. As an
optimization, the monitor is only activated by function calls that are relevant
for the elevator’s state and behavior. For each function call, the monitor obtains
information about the actual arguments of the function call. The monitor is also
able to retrieve further information from the state of the target. The monitor can
retrieve additional information by communicating with sensors and other run-
time monitors. The monitor can influence the behavior of its target by modifying
its state, and it can trigger actuators. The monitor is parametric in the policy.
To support efficient decisions based on a given policy, the relevant information
about a function call is packaged into a dedicated data structure.

Our implementation of the run-time monitor for the 4B platform has the
same structure. However, the monitor is implemented as a Java class, and the
run-time monitor is activated when its target executes a Java method. For a
function call, the monitor obtains the arguments and can access the state of the
target to retrieve further information. To support efficient decision making, the
relevant information is packaged into an object from a dedicated Java class.

The PICO platform only offers one layer for integrating a run-time monitor,
because there is no operating system or virtual machine. We chose the in-lining
technique for coupling a monitor with the source code of its target, i.e., the code
implementing an elevator controller. In-lining the monitor into machine code
would not be a sensible option as Python is interpreted and not compiled.

For the 4B platform, we also used in-lining on the source-code level to inte-
grate the run-time monitor into the implementation. In principle, this platform
offers further layers into which a monitor could be integrated, e.g., the operat-
ing system and the Java virtual machine. Since our goal in this section is a fair
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performance comparison, we used the same abstraction level (i.e., source code)
and technique (in-lining) for integrating the monitor into the code of the target.

We specified the policy as a finite state machine with two states as described
in Step 5a of the case study in Section 3.1. The only notable difference between
the two platforms is the programming language in which the policy is defined,
namely in Python for PICO and in Java for 4B. In addition to this policy, we
specified no-op policies for both platforms, i.e., in Python and in Java.

Due to our design choices, the instantiation of a generic run-time monitor
with a given policy technically corresponds to inserting the code specifying the
policy into the monitor’s code. This principle applies to both platforms.

The behavior of a monitored system depends on the target component of
the legacy system (e.g., the elevator controller), the selection of functions or
methods that activate the monitor, and the policy. The design choices we made
in this section aimed for a quick comparison of the performance of monitor
implementations on different platforms. We will re-visit the design choices in the
future, in particular, to ensure that policies can, indeed, be exchanged at run
time, which is not yet the case with our prototypical implementation.

4.3 Performance Evaluation and Comparison

We focus on the Steps 2a and 2c of Heli-1′ and Heli-2′ in our performance
evaluation. Our experimental setup is described at the end of this section.

In Step 2a, a patient transport entered the elevator on Level 15, the eleva-
tor is in emergency mode, and is requested internally to move to the basement.
The pressing of the button inside the elevator causes a signal to the elevator’s
controller, which results in a call of the function internalCall on the PICO
platform and in a call of the method internalCall on the 4B platform. In the
body of the function/method, the state of the controller is updated to reflect
the change of the elevator’s state. We measure the time from when the func-
tion/method internalCall is called to when its execution is completed.

In Step 2c, the patient transport left the elevator on the basement and the
doors are closing. This results in a call of the function doorClose by the eleva-
tor’s controller on the PICO platform and of the method doorClose on the 4B
platform. In the body of the function/method, the state of controller is updated
to reflect the change of the elevator’s state. We measure the time from when
doorClose is called to when its execution is completed.

Steps 2a and 2c appear quite similar, and one might expect similar perfor-
mance results. However, the controller’s internal data structures that need to
be updated in these steps have different performance characteristics. Since the
internal update is faster for Step 2c, we present our evaluation of it first.

For PICO, our performance evaluation results for Step 2c and Step 2a are
summarized in the table on the left-hand side and on the right-hand side, respec-
tively, of Figure 4. Note how substantial the difference of the run time for the
original implementations is in the tables (see first row of the two tables). Step 2c
takes 32.97µs, while Step 2a takes 68.76µs. This is the result of the difference
in the data structures that are updated. The second row of both tables shows
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the run time if the elevator’s controller is supervised by a run-time monitor, the
delay caused by the monitor (absolute overhead), and the delay normalized by
the run time of the un-monitored controller (relative overhead). Note that the
absolute overhead is slightly larger for Step 2a. This is due to the differences in
the parts of the policy that need to be evaluated in these two steps.

For 4B, our performance evaluation results are summarized in Figure 5.
Again, the difference of the run time for the original implementations is sub-
stantial. Step 2c takes 0.74µs, while Step 2a takes 2.61µs. This is the result of
the difference in the data structures that are updated. The second row of both
tables shows the run time if the elevator’s controller is supervised by a run-time
monitor, the delay caused by the monitor, and the delay normalized by the run
time of the un-monitored controller. Note that the absolute overhead is larger for
Step 2a. Again, this is due to the differences in the relevant parts of the policy.

(2c) run time absolute
overhead

relative
overhead

original 32.97µs

revised 231.17µs 198.21µs 601.26%

(2a) run time absolute
overhead

relative
overhead

original 68.76µs

revised 288.00µs 219.25µs 318.87%

Fig. 4. Time measurements on PICO for (2c) doorClose and (2a) internalCall

(2c) run time absolut
overhead

relative
overhead

original 0.74µs

revised 2.95µs 2.21µs 296.40%

(2a) run time absolut
overhead

relative
overhead

original 2.61µs

revised 5.82µs 3.22µs 123.39%

Fig. 5. Time measurements on 4B for (2c) doorClose and (2a) internalCall

A comparison of the run time across the two platforms reveals a substan-
tial difference for the original implementations (32.97µs vs 0.74µs for 2c and
68.76µs vs 2.61µs for 2a). This difference shows how much more powerful the
4B platform is, in particular, as Linux and a Java virtual machine are running
on this platform, while the code runs on the bare PICO platform. Accordingly,
the absolute overhead on the PICO platform exceeds the absolute overhead on
the 4B platform roughly in the same order of magnitude.

What we found rather surprising is the substantial difference in the relative
overhead across the two platforms (601.26% vs 296.40% for 2c and 318.87% vs
123.39% for 2a). We have not found a convincing explanation yet for where this
difference originates from. As these are normalized numbers, the difference in
the power of the platforms does not serve as a natural explanation.

Experimental setup and measurements. For our performance measurement, we
disabled the communication of the monitor with sensors and actuators to avoid
that the measurements are corrupted by non-deterministic delays due to net-
work communication. Technically, we replaced the function/method calls for
such communication with stub functions with an empty body. Consequently,
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the measured performance overhead originates only from the invocation of the
monitor, from the policy evaluation, and from the monitor’s internal logic.

For our experiments with the Java implementation on 4B, we employed the
Java Microbenchmark Harness (JMH) [2], which is popular and part of the
OpenJDK project. Compared to JMH’s default parameters, we increased the
number of warm-up and measurement iterations to 10 (from 5) with a time of
10s (from 5s) each. This resulted in more consistent measurements. Moreover,
we disabled some JVM optimizations (JIT compilation and some intrinsics).

Due to the absence of a similar framework for the PICO platform, we im-
plemented our own measurement functionality. In this implementation, we used
a strategy analogous to the one of JMH. In particular, we also warm up the
Python interpreter until it has stabilized before taking measurements.

5 Related Work

Integrating run-time monitors to create flexibility in system design shares its mo-
tivation with other approaches to making software-based systems more flexible.
For instance, software product lines [16] address variability by distinguishing
components appearing in all variants, in some variants, or only in individual
components. By managing them throughout the software life cycle, re-usability
of variation can be maximized, and the use of software product lines has proven
rather beneficial in software development [13]. Dynamic software product lines
offer the possibility to bound variation points at run-time [7], which bears sim-
ilarities to adaptations caused by run-time monitors. While the construction of
software product lines by re-engineering legacy systems has received attention
by the research community (e.g., [11, 4]), the integration of run-time monitor-
ing into legacy systems, surprisingly, has received relatively little attention so
far. To our knowledge the MBRE Method proposed in this article is the first
run-time-monitoring-based re-engineering method for distributed systems.

MAPE-K offers an approach for engineering systems that are adaptable and
possibly self healing [9]. To achieve flexibility, a control loop with four steps is
used: monitor, analyse, plan, and execute. Different instances of the control loop
share a common knowledge base, i.e., have a persistent state. Our MBREMethod
might provide an alternative to MAPE-K with lower overhead. However, we have
not yet performed experiments on how the control loop of MAPE-K compares
to our selective integration of run-time monitors.

Use cases play a crucial role in our MBRE Method. The adaptation of se-
lected use cases in Step 1e can be viewed as a special case of business-process
improvement [3]. While monitoring plays a central role in the execution of busi-
ness processes by engines like, e.g., Camunda BPM [1], such monitoring focuses
mostly on obtaining metric data about the process execution. The monitors used
in our method not only observe but can also influence their target’s behavior.

In IT-security research, the ability of run-time monitors to influence a tar-
get’s behavior evolved incrementally, starting with security automata [19], which
prevent policy violations by terminating a target’s run. Edit automata [12] have
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the additional ability to suppress steps, to insert steps into a run, and to modify
steps. Service automata [6] add the ability to coordinate the actions of decentral-
ized monitors in distributed systems. The enforcement capabilities of dynamic
enforcement mechanisms is studied more generally in [8] and [5].

Usage control [15] and distributed usage control [17] can be viewed as gener-
alizations of access control in centralized and distributed systems, respectively.
Usage control bears close ties to run-time monitoring. For instance, in [18], a run-
time monitoring framework is proposed for usage control in business processes. In
recent years, the integration of business process languages and business process
engines with the IoT and cyber-physical systems, more generally, has received
much attention [20, 10]. In such a combination, the business process engine can
act as a run-time monitor of the entire system, but this is centralized monitor-
ing. We are not aware of any solutions that integrate run-time monitors in a
decentralized fashion with the ability to cooperate, like in our approach.

6 Conclusion

To our knowledge, the MBRE Method is the first systematic method for run-
time-monitoring-based re-engineering of distributed systems. We illustrated our
method in three case studies in a hospital scenario in Section 3, where the goal
was to avoid problematic incidents experienced in daily operation. For presenta-
tion purposes, we chose re-engineering tasks of low conceptual complexity. The
need for a systematic re-engineering becomes clearer when considering more
complex re-engineering tasks. Our method does not mandate the granularity of
a re-engineering, it can be applied for major changes and also for small changes.

When applying the MBRE Method repeatedly, monitors that have been in-
tegrated can be re-used in subsequent applications of the method. Imagine that
our example legacy system were re-engineered three times by performing the
case studies from Section 3 subsequently. In this case, the monitor added to the
controller of L1 in the first re-engineering case study could be re-used in the sub-
sequent two case studies. However, it might also happen that a monitor needs to
be replaced, e.g., because the monitor observes steps of its target at a too coarse
granularity to define a policy that establishes the given requirements.

Based on our implementation of selected components, we presented first re-
sults regarding the performance overhead caused by run-time monitors and made
an interesting observation that deserves further investigations. We plan to exper-
imentally study the trade-off between improvements gained by monitoring-based
re-engineering and the overhead caused by the monitors also in case studies of
realistic size. Our test-bed for IoT applications from Section 4 will provide suf-
ficient flexibility for performing case studies also in other application domains.
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