
Composing Access Control Policies for Semantic
Web Services

Sudhir Agarwal
Institute of Applied Informatics and
Formal Description Methods (AIFB),

University of Karlsruhe, Germany
agarwal@aifb.uni-karlsruhe.de

Barbara Sprick and Sandra Wortmann
Information Systems and Security,
Department of Computer Science,
University of Dortmund, Germany
barbara.sprick@udo.edu

Abstract— Semantic web services promise a lot of new features
like automatic discovery, composition, simulation and verfication
to name a few. However, several security related issues have
to be resolved before semantic web services can be employed
in typical business scenarios. In this paper, we present an
approach to enable access control for semantic web services. Our
approach builds on the idea of autonomous granting of access
rights, decision making based on independent trust structures
and respects privacy requirements of the users. Our framework
allows the specification and computation of complex access
control policies in a manageable and efficient way. Therefore, our
approach is useful not only in web services based applications
(typically client-server architecture) but also in peer to peer and
agent based applications.

I. I NTRODUCTION

With the advent of the Semantic Web [1], [2], [3], Web
services have gained even more importance [4]. Semantic
Web techniques, especially ontologies, allow to describe Web
services with machine understandable semantics, thus enabling
new features like automatic composition, simulation and dis-
covery of Web services [4], [5]. The vision of the Semantic
Web is to make the current Web more like an information
system. In such an information system Web services play the
role of operations available to the users. However, the use
of Web services is not restricted to access information, but
also in many other areas, for example electronic business and
enterprise application integration.

Because of the vast heterogeneity of the available infor-
mation, information providers and users, security becomes
extremely important. Security related aspects are mostly clas-
sified in three categories, namely confidentiality, integrity and
availability [6], [7], [8]. Access control, which means the
users must fulfill certain conditions in order to access certain
functionality plays an important role in all three fields. For
example, a student must show her library card to borrow a
book from the university library. In context of confidentiality,
it means that a student has access to the information relevant
to only her own library account and thus can not know which
other students have borrowed which books. In context of
integrity, it means that a student may not change or cause
a change in information relevant to the library account of
another student. In context of availability, access control helps
to prevent denial of service attacks that can take place if the

access is uncontrolled.
In this paper, we present a Semantic Web compatible

approach for specifying and composing access control policies
of Semantic Web Services. First we identify a number of
requirements for access control policies for semantic Web
service. We then combine two well founded techniques,
namely DAML-S [4] for describing Web services and the
policy algebra for composing access control polices introduced
by Bonatti et al. in [9]. The process model of DAML-S
allows to specify semantic Web services that are composed
of other semantic Web services by operations likesequence,
choice, parallel, iteration, etc. We show, how access control
policies for composite Web services can be computed from
the access control policies of the component Web services
and from contracts that the provider of an composite service
may have with providers of the component Web services.
We also allow the use of partial access control policies for
component services if, for example, only partial behaviourof
the component Web service is employed for the composite
Web service.

The paper is structured as follows: in section II, we motivate
a few important requirements for access control of semantic
web services. In sections III and IV we give short introductions
to DAML-S [4] and the policy algebra introduced by Bonatti
et al. in [9] respectively. In section V we present our main
contribution by introducing an approach for specifying access
control for semantic web services. In section VI , we show
how our approach can be implemented with SPKI/SDSI. In
section VII, we discuss some related work and finally we
conclude in section VIII.

II. A CCESSCONTROL REQUIREMENTS FORSEMANTIC

WEB SERVICES

Current access control is mostly based on authentication
which often requires proof of identity. Since this is not
compatible with the obvious privacy requirements of users,
we identify the following requirement.

Requirement 1:Access control should be based on capa-
bilities rather than on identities.

Often access control requires central control, for example
registration or for specification and verification of the access
rights. Central control retards the spontaneity and reuse of

access control policies and is thus inappropriate for highly
distributed systems like the semantic Web. We thus identify
the following requirement.

Requirement 2:Access control mechanism may not re-
quire central control.

In a dynamic and distributed environemt like the semantic
web, web service providers act spontaneously and indepen-
dently of each other. Hence, we identify the following require-
ment.

Requirement 3:Each Web service provider must be able
to specify the access control policy of her Web service
autonomously.

The access control policy of a Web service is specified by
the provider of the Web service description (mostly identical
with the provider of the Web service). An end user knowing
some web services may combine few of them in some way
to solve a certain task at hand. Prior to executing such a
combination or plan she may want to know whether she can
fulfill the access control policy of the combination (plan).
Hence we identify the following requirement for specifying
access control for Semantic Web services.

Requirement 4:The framework must allow an end user
to check and prove her eligibility for a Web service.

Consider a Web service that offers electricity contracts and
requires that the customer is at least 18 years of age. This
requirement can be specified as access control policy of the
Web service rather easily. However, the access control policies
of most of the Web services are not so simple. For example,
it is quite realistic that an electricity company offering such a
Web service requires that the customer is at least 18 years of
age as well as lives in a particular geographical region. The
access control policy becomes even more complex when the
access control requires not only that a user must have certain
properties but also that a user maynot have certain properties.
For example, the customer may not have any outstanding
accounts with the electricity company. We identify further
requirements for specifying access control for Semantic Web
services.

Requirement 5:The framework must support the speci-
fication of complex access control requirements.

Now consider that the electricity selling Web service
has two input parameters, namelydeliveryAddress
andnoticePeriod. The ”functional” precondition for the
deliveryAddress is that it must be a valid address in
Germany and fornoticePeriod is that it must be either1
month or3 months. Further, the Web service’s access control
policy requires that contracts with one month notice periodand
delivery address outside a particular geographical regionare
closed only with users who can prove their Greenpeace mem-
bership. Hence, we see that the access control requirements
of a Web service may depend on the requested functionality
(controlled by the values of the input parameters) and that
the provided functionality may depend on the access control
conditions fulfilled by the requester.

Functional and access control related aspects are not always
separable from each other. A composite Web service offers

multiple functionalities (e.g. if it contains “choice”). These
functionalities can have different access contol requirements.
That is, it is not realistic to say that a composite Web service
has one global access control policy and if a user fulfills the
access control policy she has access to all the functionalities
offered by the Web service and to none, if she does not.

Thus we identify that access control and functional aspects
are not always independent of each other and consequently
following requirement.

Requirement 6: The framework must support the inter-
play of the access control and functional aspects of the
Web services.

Web services are typically distinguished inatomic and
compositeWeb services. As the terms suggest, an atomic
Web service is one that can not be further broken into parts,
whereas a composite Web service is one that is decomposable
into atomic and composite Web services, which are often
referred to as component Web services. In addition to the set
of component Web services, a composite Web service has a
control flow and a data flow graph that contain information
about how the component Web services are connected and how
the data flows from one component Web service to another
respectively.

Consider the following two Web services: (1) a Web service
w1 that offers Greenpeace membership and (2) our previous
electricity selling Web servicew2 which requires Greenpeace
membership for contracts with one month notice period for
delivery addresses outside a particular geographical region.
Now consider a composite Web servicew3 that first executes
Web servicew1 and then Web servicew2, that is, it closes a
Greenpeace membership before closing an electricity contract.
Obviously, the access requirement ”Greenpeace membership”
of Web servicew2 is fulfilled after the execution of Web
servicew1 and hence Greenpeace membership is not required
to access the composite Web servicew3 although it is required
by its component Web servicew2.

While the access control policy of an atomic Web service
can be specified directly, the access control policy of a
composite Web service depends on those of its component
Web services and thus must be computed by the provider of
the composite Web service. Hence, we identify the following
requirements for specifying access control for Semantic Web
services.

Requirement 7:The framework must support a Web
service provider in computing the access control policy of
a composite Web service.

During the execution of a composite Web service, a com-
ponent Web service can certify that the requester of the
component Web service has certain attributes. To do so,
the component Web service issues appropriate credentials by
which the requester can prove the aforementioned attributes.
If these attributes are required for the access of any of the
subsequent component Web services, the requester does not
need to be able to prove them at the beginning of the execution
of the composite Web service. Rather, the composite Web
service can pass the newly issued credentials that prove the

required attributes on to the other Web service.
Requirement 8:The framework must be able to deal with

the capabilities that are certified to the requesteron the fly,
that is, during the execution of a composite Web service.

Consider two Web servicesA and B and that A uses
B. That is, A is composite Web service andB one of its
component Web services. Assuming that the providers ofA

andB specify and manage the access control policies of their
respective Web services autonomously (cf. requirement 3),we
identify the problem, that the provider ofA cannot know at
the time of specification of the access control policy ofA,
that the access control policy ofB will not be change in the
future. Hence the provider ofA may not wish to embed the
access control policy ofB hard-coded in that ofA but rather
in a more dynamic fashion that is compatible with the later
changes in the access control policy ofB. Consider the Web
servicesw1, w2 andw3 from our previous example. Suppose,
that after the Web servicew3 has specified its access control
policy the Web services Web servicew2 changes its access
control policy by adding a further requirement that the user
must be at least 18 years of age. If the access control policy
of w3 has embedded the access control policy ofw2 in a
hard-coded fashion, it becomes inconsistent because it does
not reflect the current requirements.

Requirement 9:The specification of access control poli-
cies of composite Web services must be immune to the
changes in the access control policies of its component
Web services.

Web services, especially composite Web services may offer
different functionalities depending on the values of the input
parameters. A provider of a composite Web service may wish
to embed another Web service only partially, that is she may
be interested in only a subset of its functionalities. Consider
our previous example in the motivation of the requirement 6.
If there is a composite Web service that offers water only
to those who have a electricty contract with 3 months notice
period, then the water selling composite Web service may wish
to embed the electricty selling Web service so that the users
can close an electricity contract with 3 months notice period,
if the do not have it already. Obviously, the water selling Web
service is not interested in electricity contracts with 1 month
notice period and hence wishes to embed only the part of
the electricity selling web service that sells contracts with 3
months notice period.

Requirement 10:The framework must allow to identify
the required partial behaviour of a composite Web service
and to compute and integrate the access control require-
ments of the partial behaviour of a component Web service.

A provider of a Web serviceA may have a contract with
an other Web serviceB that has an impact on the access
control policy of Web serviceB. If Web serviceA now embeds
serviceB as a component service, then the contract between
the service providers of Web servicesA andB, respectively,
may lead to a substitution of a part of the access control
policy of Web serviceB by a partial policy agreed on in the
respective contract.

Requirement 11:The framework must be able to deal
with contracts that have impact on the access control policy
of a component Web service.

Consider a Web servicea for paying the electricity bill and
another Web serviceb that allows access to the contents of a
magazine. Suppose, that everytime a user pays her electricity
bill, she gets some points for every KWh she saves. The
magazine Web services offers access to the magazine contents
only in return for such points. When a user has collected
enough such points she can show them tob and gain access to
the magazine contents. However, if the shown points are not
“consumed” byb, a user can show the “same” points again
and again and gain access to the magazine contents, which
is certainly not in the interest ofb. Therefore we identify the
following requirement

Requirement 12:The framework must be able to specify
consumable credentials. It must be possible to specify in
an access control policy that a web service consumes some
credentials.

Often, the credentials that a user possesses have certain
validity. A component Web service of a composite Web service
verifies the credentials and makes an access decision right
before it starts executing. This leads to the problem that ifthe
previous component Web services consumes too much time
then the credentials that were valid at the time of checking
whether the user fulfills the access control policy may not be
valid at the time of actual execution of one of its component
Web services.

Requirement 13:The framework must be able to specify
the validity and reason about the execution time of a Web
services.

When a composite Web service acts as a mediator between a
user and a component Web service, the output delivered by the
component web service may contain (sensitive) information,
that can be misused by the the composite Web service or it
may not be compatible with the privacy requirements of the
user. Consequently, the user may not want that the composite
Web service experiences the contents of the outputs.

Requirement 14:The framework must make sure that
any information delivered by a component Web service is
not misused by the composite web service.

When a composite Web service acts as mediator between a
user and a component Web service, and passes on credentials
of the requester to the component Web service, the composite
Web service acts on behalf of the requester. The requester as
well as the component Web service want to ensure, that the
transmitted credentials are not misused by the composite Web
service, for example by using them multiple times without
notifying the requester.

Requirement 15:The framework must make sure that
the credentials shown by a requester are not misused by
a composite Web service.

III. I NTRODUCTION TODAML-S

DAML-S is a DAML+OIL ontology for describing Web
services with the objective of making Web services computer-

interpretable and hence enabling tasks like discovery, compo-
sition, simulation, interoperation and execution monitoring of
Web services. DAML-S complements the various industrial ef-
forts that are low-level, by providing Web service descriptions
at application level [4], [5], [10]. DAML-S has three main
parts, namelyServiceProfile, ServiceModel and
ServiceGrounding. ServiceProfile contains prop-
erties related to the functionality a service offers and answers
the questionwhat does a service do?, ServiceModel con-
tains properties related to the operation of a Web service
and answers the questionHow does a service work?and
ServiceGrounding contains properties related to the ac-
cess to a Web service and answers the questionHow can a
service be accessed?

A service profile provides a high-level description of a
service and its provider. It is used to request or advertise ser-
vices with discovery services and capability registries. Service
profiles consist of three types of information: adescriptionof
the service and the service provider; thefunctional behavior
of the service and severalfunctional attributestailored for
automated service selection.

The operation of a Web service is described in terms of a
process model, which details both the control structure and
data flow structure of the service. Two main components of
the process model are theprocess ontology, which describes
a service in terms of its inputs, output, preconditions, effects
and where appropriate, its component subprocesses; and the
process control ontologywhich describes each process in
terms of its state, including initial activation, execution and
completion. The primary kind of entity in the process ontology
is process. DAML-S distinguishes betweenatomic, simpleand
compositeprocesses. Atomic processes are directly invocable
and execute in a single step. Simple processes, on the other
hand, are not directly invocable and are not associated with
a grounded. They are rather used as elements of abstrac-
tion. Composite processes are decomposable into other (non-
composite or composite) processes. Their decompositions are
specified by control constructssequence, split, split+join, if-
then-else, choice, while, repeat-untiletc. For details regarding
operational semantics of the control constructs refer to [10],
[11]

Conditions play a central role in service profile as well as
service model. Currently, a condition in DAML-S is not further
specified but used at various places, for example in theif-then-
elseconstruct. Further, DAML-S allows web services to have
conditional outputs. Conditional outputs are parameters with a
condition property and are not delivered always but only when
the condition is true.

A grounding can be thought of as a mapping from an
abstract to concrete specification of those service description
elements that are required for interacting with a service. The
grounding of a service has mainly to do with the protocol and
message formats, serialization, transport and addressing. For
more detailed information on DAML-S, refer to [4], [5], [10],
[11].

IV. I NTRODUCTION TO POLICY-ALGEBRA

In this section we introduce the algebra for composing
access control policies as it is described in [9].

A ground authorization termis a triple of the form(s, o, a)
where s denotes a subject,o denotes a Web service anda
denotes of conditional output of the Web serviceo. The tuple
<o, a> is called an interface. The expressed relationship is
considered as a permission for s to use the interface<o, a>.
An (access control)policy is a set of ground authorization
terms.

The algebra allows policies to be restricted by posing
constraints on their authorizations. For this purpose, Bonatti
et al. make their algebra parametric with respect to a con-
straint languageLacon. Policy expressions are syntactically
built from policy identifiers and algebra operators as follows:

E ::= id | E + E | E & E | EC | o(E,E,E) |
E ∗ R | T (E) | (E)

T ::= τ id.E
Here, id is the token type of policy identifiers,E is the

nonterminal describingpolicy expressions, T is a template,
that represents partially specified policies,C ∈ Lacon is a
restriction on policies. Note, that the templates are not policy
expressions, only templates with actual parameters are.

The semantics of the described policy algebra is described
as a function that maps each policy expression onto a set
of ground authorization terms, and each template onto a
function over policies. Here, the addition operator (+) is
interpreted as set-theoretic union. Similarly, the conjunction
operator (&), and the subtraction operator (−) are interpreted
as set-theoretic intersection and difference, respectively. The
scoping restriction (C), where the constraint ”C ⊆ Con”
is a set of interfaces, is interpreted as selection of those
authorization terms that satisfyC. Overriding (o(E,E1, E2))
is interpreted as the policy that results from policyE when a
part ofE, which is specified by means of a third policyE3 is
overridden by policyE2. This operator is a derived operator:
o(E,E1, E2) = (E − E2) + (E1&E2).

Policy identifiers are interpreted by an environment that
maps policy identifiers to policies. The semantics ofthe policy
algebra is a functione that maps each policy expression to
a policy, inductively extending an environment by using the
pertinent interpretation of the operators.

V. SPECIFICATION OFACCESSCONTROL FORSEMANTIC

WEB SERVICES

In this section we show how the described policy algebra
can be integrated in DAML-S and how it can be used to
compute access control policies of composite Web services.

A. Integration of access control with DAML-S

In this section, we show how the policy algebra introduced
in section IV can be integrated with DAML-S to enable access
control for semantic web services.

In figure 1, the conceptGroundAuthorizationTerm
with propertiessubject, object and authorization
represents a triple of the form(s, o, a). Setting the range

of the propertysubject to Capabilities allows to
specify users of a Web service based on their properties
(e.g. public key) and not on their identities. Theobject is
the Web service itself. Hence, we set the range ofobject
to Process. We set the range ofauthorization to
ConditionalOutput since a conditional output corre-
sponds to a functionality offered by a Web service.

ConceptAccessControlPolicy represents an access
control policy. The propertygoundAuthorizationTerm
with range GroundAuthorization represents the
set of ground authorization terms, the access control
policy consists of. We view an access control policy
of a Web service as a condition that a user has to
fulfill to get access to the Web service. Hence, we
model a concept AccessControlCondition as
subclass ofCondition. AccessControlCondition
has properties accessControlPolicy of type
AccessControlPolicy and inputParameter.
A precondition of type AccessControlCondition
means that the input parameter referred to by the property
inputParameter should prove the satisfiability of
the access control policy referred to by the property
accessControlPolicy. The policy algebra operators
and constructs can be modeled rather straightforward and are
not shown in figure 1.

B. Computation of access control policies for compsite Web
services

In this section we show how the introduced policy algebra
can be used to compute access control policies of (composite)
Web services.

We distinguish between atomic Web services and composite
Web services as described in section III. Composite Web
services are composed from component Web services by
operationsSequence (;), Choice (+), Parallel (||), Iteration
(∗).1

The provider of an atomic Web service can specify the
access control policy of her service autonomously and in-
dependently. As described in section IV, the access control
policy Π(w) of a Web servicew is defined as a set of ground
authorization terms of the form(s, o, a).

The provider of a composite Web service computes the
access control policy of the composite Web service from the
access control policies of the component Web services. As
stated in requirement 7, the framework should support the Web
service provider in computing the access control policies.

We will now show, how this can be done in the described
framework. For the computation, the access control policies
of the desired functionalities of the component Web services,
the type of their composition and possible contracts between
the provider of the composite Web service and the component
Web services need to be taken into account.

1DAML-S support more control constructs, for exampleif-then-else,repeat-
until, unordered, split, which we do not consider any further in this paper.

Fig. 1. Integration of DAML-S and Policy Algebra

1) Support of partial functionality of a Web service:
According to requirement 10, a composite Web service does
not always need the full functionality of a component Web
service, but rather a subset of the functionalities (conditional
outputs). Each functionality of a Web service is specified asan
interface<o, a>. The access control policy of the component
Web services will contain authorization terms for several
interfaces, i.e. for several conditional outputs. In section IV we
introduced the policy algebra parameterised with a constraint
languageLacon. We use the scoping operator for restricting the
access control policies of a Web service to the access control
policy of thedesired functionality, i.e. the conditional outputs
of the Web service. Therefore, we instantiate the parameter
Lacon as follows: LetCon ⊆ P(O × A)2 be a set of sets
of interfaces. We then defineLacon := Con, i.e. each set of
interfacesC ∈ Con is a constraint and thereby a possible
scoping restriction for a policyΠ. We say, a policyΠ satisfies
a restrictionC iff the following holds: If (s, o, a) ∈ Π then
<o, a> ∈ C.

Consider, for example, a component Web servicew with
conditional outputs{co1, co2}. The access control policyΠ(w)
of Web servicew will contain authorizations for interface

2P(A) denotes the powerset ofA

<w, co1> as well as for interface<w, co2>. If composite
Web servicew′ only requires conditional outputco1 of Web
servicew, the access control policy of Web servicew′ should
contain authorization terms only for interface<w, co1> and
not for interface<w, co2> too. The restriction of access
control policyΠ(w) to the interface<w, co1> is then defined
asΠ(w){<w,co1>}.

2) Support for independently specified access control poli-
cies: According to requirement 3, a Web service provider must
be able to specify and modify the access control policies of his
Web services autonomously and independently. This implies
that a provider of a composite Web service does not know at
design time how the access control policy of a component
Web service will look like at the instantiation time. This
requirement can be fulfilled by using the template operator of
the introduced policy algebra. The template operator allows to
specify that access control policy of a composite Web service
contains the access control policy of a component Web service
without actually inserting the current access control policy of
the component Web service at the design time. The templates
will be instantiated when the access control policy needs to
be computed at the time of instantiation of the composite Web
service.

Consider for example a Web servicew that is specified as a
sequence of component Web servicesw1 andw2. Obviously,
the access control policies of the Web servicesw1 andw2 must
be contained in the specification of the access control policy of
the the Web servicew. However, since the providers of Web
servicesw1 and w2 can specify and modify access control
policies of their respective Web service without notifyingthe
provider of w, it is more appropriate if the provider of the
composite Web servicew uses templateτ.X1,X2.(X1&X2).

3) Support for Contracts between Web Services:According
to requirement 11, the framework should support contracts
between Web service providers. These contracts may affect the
access control policies of the Web services. In such a case, the
provider of the composite Web service does not employ the
full access control policy of the component Web service, but
may want to replace a part of it with a policy the providers
agreed upon in a contract. We consider following types of
contracts.

1) The simplest case is to simply remove a part of the
access control policy of the component Web service.
Consider for example a composite Web servicew that is
composed of the component Web servicew1 and some
other Web services. The access control policy of the
Web servicew1 requires users to have a credit card. The
providers of Web servicesw andw1 may have a contract
that says that the provider of Web servicew will pay a
monthly lumpsum to the provider of Web servicew1 and
because of that, users who user Web servicew1 via w

need not show their credit card. LetΠ(CreditCard) be
an access control policy that requires users ofw1 to show
their credit card. LetΠ(w1) to the access control policy
of w1. Then the access control policy of Web service
w, Π(w), is calculated from the access control policy

of the other involved Web services and fromΠ(w1) and
Π(CreditCard)

2) In the second scenario a part of the access control
policy of the component Web servicew is supposed
to substituted by a new policy. Consider for example
the case when the contract specifies that user who
use component web sercicew1 via composite Web
service w may give the bank account details instead
of showing a credit card. The access control policy
of Web servicew is then calculated by the access
control policies of the other involved Web services
and (Π(w1) − Π(CreditCard))&(Π(CreditCard) +
Π(BankAccount)).

3) In a third scenario, users who are principally entitled
for a web serb servicew1 but are listed on a revocation
list might still be allowed to user Web servicew1 by
the Web servicew if they fulfill some constraintπ. In
this case, the overriding operator of the algebra can be
used to specify their modifications of the access control
policy causes by the contract. LetΠ(w1) denote the
access control policy of Web servicew1. Let CRL

denote the mentioned revocation list and letπ denote
the additional requirements for users that are on the
revocation list to be allowed forw1 via Web servicew.
Theno(Π(w), π, CRL) = (Π(w1)−CRL)+(π&CRL)
denotes the access control policy that allows users that
either fulfill Π(w1) and are not on the revocation list
CRL or are on the revocation listCRL but fulfill the
conditionπ.

4) Computation of Access Control Policy:According to
requirement 7, the framework must support the provider of
a composite Web service in computing the access control
policy from the access control policies of the component Web
services. In this section, we show how this can be done.

In DAML-S description of a Web service, a Web service
can be composed by using the control constructsSequence
(;), Choice (+), Parallel (||), Iteration (∗)3. The table in
Figure 2 shows for each control construct how a preliminary
access control policy of the considered part of the composite
Web service is computed from the component access control
policies4.

w1;w2 τ.X1,X2.(X1&X2)(Π(w1),Π(w2))
w1 + w2 τ.X1,X2.(X1 + X2)(Π(w1),Π(w2))
w1;w2 τ.X1,X2.(X1&X2)(Π(w1),Π(w2))
w∗ τ.X1.(X1)(Π(w))

Fig. 2. Computation of composed access control policies

In case, Web services are composed sequentially or in
parallel, the access control policy of the composite services

3DAML-S allows other types of composition operations likeif-then-else,
repeat-until, unordered, splitwhich we do not consider any further in this
paper.

4Note that we assume that the component Web serviceswi are already
relevant parts of the web services̄wi already identified by scoping, overriding,
contracts etc.

is simply the conjunction of the component services, the
requester of the composite Web service needs to fulfill the
access control policies of both component services. In case, the
Web service is composed as a choice between two component
Web services, the requester needs to fulfill at least one the of
the component services. In case, the composite Web service
is an iteration of the component Web service, the requester
needs to fulfill the access control policy of the component
service. Note, that we assumed a capability based access
control system where capabilities do not get revoked by using
them.

The problem with the preliminary access control policy
is that the interfaces of its ground authorization terms grant
access to the components of the composite Web services but
not to the composite Web service itself. We thus calculate the
composite access control policy from the considered condi-
tional output by substituting all interfaces of the component
Web services by the interfaces for the considered condtional
output. if Πco

prelim is the preliminary access control policy for
the conditional outputco, andw is the name of the composite
Web service, then the access control policyΠco is computed
as follows:

Πco(w) := {(s, w, co) | there exists(s, w′, co′) ∈ Πco
prelim}

Finally, we calculate the access control policy of the
composite Web service as the union of the access control
policiesfor the conditional outputs:

Π(w) :=
⋃

Πco(w)

VI. I MPLEMENTATION

In requirement 1 we suggested that access control should
be based on capabilities rather than on identities. Thus, the
subjects in a ground authorization term specifies a capability
a user must have to get access to the interface<o, a>. The
interface<o, a> of a ground authorization term specifies a
Web serviceo and a conditional outputa of Web service
o. Hence, the ground authorization term(s, o, a) specifies,
that users having capabilitys have access to the functionality
(conditional output)a of web serviceo.

We implement the policy algebra introduced in section IV
with an extension of SPKI/SDSI as proposed in [12].

SPKI/SDSI is a credential based public key infrastructure
resulted by merging SDSI (Simple Distributed Security Infras-
tructure) and SPKI (Simple Public Key Infrastructure). The
main advantage of SPKI/SDSI compared to other credential
based systems is that it does not require central control and
allows users, e.g., Web service providers to specify their own
trust structures independent of each other.

SPKI/SDSI supports two kinds of credentials, namelyname
certificates to bind principals to names andauthorization
certificates to bind authorizations to names. Besides name
certificates and authorization certificates, SPKI/SDSI also pro-
vides access control lists (ACL) for specifying access control
policies for some interface [13], [14], [15], [16].

We distinguish between atomic Web services and composite
Web services. A provider of an atomic Web service specifies

• the functionality of her servicew1 as an interface(w1, f)
and

• the access control policy of her service autonomously by
defining a set of authorization terms (p,w1, f).

To specify the access control policy the provider defines an
access control listacl1 with respect to her Web servicew1.
The access control listacl1 consists of several entries. Each
entry defines the authorised principals for a single functionality
(w1, f) and is implemented as an unsigned authorization
certificate of the form

<Self,Subject,Authorization,Delegation,Validity>

1) Self represents the issuing principal, i.e. the provider
of the Web service.

2) Subjectdenotes authorized principals.
3) Authorizationspecifies the granted permission, i.e. the

functionality f of the Web servicew1.
4) Delegationis a boolean flag that specifies whether the

authorised principals are allowed to forward the granted
permission.

5) Validity denotes the validity of the certificate.

Authorised principals are defined by proven capabilities. In
the simplest case the provider of the Web Sevice demands one
capability. According to the extension of SPKI/SDSI,Subject
may provide algebra expressions that allow the provider of
the Web service to denote combined capabilities. Therefore
the provider may use some operators, namely Addition (+),
Conjunction (&) and Subtraction (−). During verification, an
algebra expression is evaluated to a set of authorized princi-
pals. Furthermore the provider of the Web service gives trusted
participants whom she trusts to state demanded capabilities.

A provider of a composite Web servicewcomp composes
her service from functionalities of atomic (component) Web
services. Afterwards she computes the access control policy
of wcomp from those of its components. The first step is
adaption of the interface that results in a “new” interface
(wcomp, fcomp).

To specify the access control policy the provider defines an
access control listaclcomp with respect to her Web service
wcomp. The access control listaclcomp consists of several
entries for each interface(wcomp, fcomp). Again each entry is
implemented as an unsigned authorization certificates of the
form

<Self,Subject,Authorization,Delegation,Validity>

1) Self represents the issuing principal, i.e. the provider
of the Web service.

2) Subject denotes the authorized principals, which are
specified as shown in Figure 2.

3) Authorizationspecifies the granted permission, i.e. the
interface(wcomp, fcomp).

4) Delegationis a boolean flag that specifies whether the
authorised principals are allowed to forward the granted
permission.

5) Validity denotes the validity of the certificate.

During verification, the specification given inSubjectmust be
evaluated to a set of authorized principals. Therefore, theWeb
service provider instantiates each occurence of a Template
operator by inserting the current access control policy of
the component Web Services. To do so, the Web service
provider needs to communicate with the component Web ser-
vice providers. We have not considered secure communication
of access control policies between Web service providers yet.
AfterwardsSubjectis an algebra expression as introduced and
is evaluated as already mentioned.

VII. R ELATED WORK

In our knowledge, the first work that addressed the issue of
security and DAML-S is [17]. In the mentioned work authors
focus on developing security-related ontologies and give sev-
eral security-related ontologies that are designed to represent
well-known security concepts. They introduce a reasoning
engine for a two step matchmaking. In [18], authors introduce
a policy language that allows policies to be described in
terms deontic concepts and models speech acts, which allows
the dynamic modification of existing policies, decentralized
security control and less exhaustive policies. However, itis
not yet clear, how this policy language can be integrated and
used with a Web service description language e.g., DAML-
S. In [19], authors propose adding privacy and authentication
annotations, for example, cryptographic type, to input and
output parameters to aid in selection of semantic web services.

VIII. C ONCLUSION

In this paper, we have presented an approach for specifying
access control policies for semantic web services. We have
identified some important requirements for an access control
enabled semantic web services framework. We integrated a
policy algebra with the semantic web service description lan-
guage DAML-S at the specification level and show how access
control policies of composite web services can be computed
from the structure of the composite web service and the
access control policies of its component web services. Then
we presented how such specifications can be implemented by
using SPKI/SDSI.

REFERENCES

[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The semanticweb,” Scien-
tific American, May 2001.

[2] D. Fensel, J. Hendler, H. Lieberman, and W. Wahlster, Eds., Spinning
the Semantic Web. MIT Press, 2002.

[3] P. Patel-Schneider and D. Fensel, “Layering the semanticweb: Problems
and directions,” inISWC2002: Ist International Semantic Web Confer-
ence, Sardinia, Italy, ser. Lecture Notes in Computer Science. Springer,
June 2002, pp. 16–29.

[4] A. Ankolekar, M. H. Burstein, J. R. Hobbs, O. Lassila, D. Martin, D. V.
McDermott, S. A. McIlraith, S. Narayanan, M. Paolucci, T. R. Payne,
and K. Sycara, “DAML-S: Web Service Description for the Semantic
Web,” in ISWC2002: Ist International Semantic Web Conference, Sar-
dinia, Italy, ser. Lecture Notes in Computer Science. Springer, June
2002, pp. 348–363.

[5] M. Burstein, G. Denker, J. Hobbs, L. Kagal, O. Lassila, D.Martin,
D. McDermott, S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia,
T. Payne, E. Sirin, N. Srinivasan, and K. Sycara, “Daml-s: Semantic
markup for web services, version 0.9,” DAML-S Services Coalition,
Tech. Rep., 2003.

[6] M. Bishop, Computer Security – Art and Science. Addison Wesley,
2003.

[7] P. Samarati and S. Capitani di Vimercati, “Access control:policies,
models, and mechanisms,” inFoundations of Security Analysis and De-
sign (FOSAD), ser. Lecture Notes in Computer Science, R. Focardi and
R. Gorrieri, Eds., vol. 2171, FOSAD 2000, Bertinoro, Italy.Springer
Verlag, Berlin, October 2001, pp. 137–196.

[8] D. E. Denning,Cryptography and Data Security. Addison Wesley,
1982.

[9] P. Bonatti, S. de Capitani di Vimercati, and P. Samarati, “An algebra for
composing access control policies,”ACM Transactions on Information
and System Security (TISSEC), vol. 5, no. 1, pp. 1–35, February 2002.

[10] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan, “Automated
discovery, interaction and composition of semantic web services,”Jour-
nal of Web Semantics, vol. 1, no. 1, pp. 27–46, 2003.

[11] S. Narayanan and S. A. McIlraith, “Simulation, verfication and auto-
mated composition of semantic web services,” inEleventh World Wide
Web Conference, WWW02, May 2002.

[12] J. Biskup and S. Wortmann, “Towards a credential-based implementation
of compound access control policies,” University of Dortmund, Tech.
Rep., 2003, http://ls6-www.cs.uni-dortmund.de/issi/publications.

[13] C. M. Ellison, B. Frantz, B. Lampson, R. L. Rivest, B. M.
Thomas, and T. Ylonen, “Simple public key certificate,”
http://world.std.com/c̃me/html/spki.html, July 1999.

[14] ——, “SPKI certificate theory,” Internet RFC 2693, September 1999.
[15] R. L. Rivest and B. Lampson, “SDSI - a simple distributed security

infrastructure,” http://theory.lcs.mit.edu/c̃is/sdsi.html, April 1996.
[16] S. Agarwal, B. Sprick, and S. Wortmann, “Credential based access

control for semantic web services,” inAAAI Spring Symposium 2004
- Semantic Web Services (To appear), March 2004.

[17] G. Denker, L. Kagal, T. Finin, K. Sycara, and M. Paolucci, “Security
for daml web services: Annotation and matchmaking,” inSecond In-
ternational Semantic Web Conference, ser. Lecture Notes in Computer
Science, vol. 2870. Springer, October 2003.

[18] L. Kagal, T. Finin, and A. Joshi, “A policy based approach to security
for the semantic web,” in2nd International Semantic Web Confer-
ence (ISWC2003), ser. Lecture Notes in Computer Science, vol. 2870.
Springer, October 2003.

[19] G. Denker, L. Kagal, T. Finin, M. Paolucci, N. Srinivasan, and K. Sycara,
“Sowl: A security infrastructure for owl-s - an approach to confidentiality
and integrity,” inAAAI Spring Symposium 2004 - Semantic Web Services
(To appear), March 2004.

