
A Tableau Proof System for aMazurkiewicz Trace Logic with FixpointsPeter Niebert1 and Barbara Sprick21Institut f�ur Informatik,Universit�at Hildesheim, Germanyniebert@informatik.uni-hildesheim.de 2Fachbereich Informatik, Lehrstuhl 6Universit�at Dortmund, Germanysprick@ls6.informatik.uni-dortmund.deAbstract. We present a tableau based proof system for �TrTL, a trace basedtemporal logic with �xpoints. The proof system generalises similar systemsfor standard interleaving temporal logics with �xpoints. In our case specialattention has to be given to the modal rule: First we give a system with aninterleaving style modal rule, later we use a technique similar to the sleep setmethod (known from �nite state model checking) to obtain a more e�cientproof rule. We briey highlight the relation of the improved rule with recentadvances in tableau systems for classical propositional logic, the tamed cutof the system KE.The treatment of �xpoints leads to possibly in�nite tableaux, which howevercan be �nitely represented, yielding treelike structures with back loops: weshow this using an automata construction. Indirectly we obtain a (known)decidability result.1 IntroductionTemporal logics are a widely accepted speci�cation and veri�cation formalism inseveral areas of computer science, in particular in the �eld of reactive systems . Themost widely known logic in this area is linear time temporal logic, LTL: this logicassumes a discrete and totally ordered time structure (natural numbers as timeinstances) and is based on two modalities, \Next" and \Until". This framework isappropriate for the speci�cation of systems based on global states.On the other hand a lot of e�ort went into the development of semantic frame-works for distributed systems, typically consisting of several subsystems (locations),which work independently and collaborate using a communication mechanism. Insuch a setting it is more appropriate to use partially ordered or distributed runs(which coincide with in�nite Mazurkiewicz traces [Maz95]) as paradigm.Recently Thiagarajan has de�ned TrPTL [Thi94] as a seemingly natural tracebased generalisation of LTL to partially ordered runs. The key idea is to interprettemporal operators such as \Until" and in particular \Next" only relatively to the\view" of one location (local time), and it allows to change the point of view in orderto express properties of several locations. In [Nie95, Huh96] �TrTL, a �xpoint exten-sion of TrPTL has been developed. This logic combines the local Next modality withthe possibility of �xpoint de�nitions (recursion in formulae), so that e.g. Thiagara-jan's local Until can be de�ned as a derived operator. Similar �xpoint extensions areknown for standard temporal logics (e.g. �TL [Var88]). The structure of �TrTL isadvantageous over TrPTL in that it allows a semantically cleaner changing of the

point of view: �TrTL formulae only look into the future behaviour of a system, whilethe changing of the point of view in [Thi94] results in an uncontrolled jump into thepast. This property of our logic is also essential for the proof system.There are more reasons to be interested in �TrTL: it is well known, that �TL(the �xpoint extension of LTL) is expressively equivalent to B�uchi-automata andto the monadic second order theory of the temporal frames. It is conjectured (workin progress), that an analogous result also holds for �TrTL, i.e. that this logic isexpressively equivalent to the monadic second order theory of distributed runs.In this work we develop a tableau based proof system for �TrTL. The structuralproperties of �TrTL allow an elegant formulation of proof rules. Since the treatmentof �xpoints in proof systems requires lengthy constructions (see e.g. [Wal95] for thetreatment of the propositional �-calculus), we put the emphasis on the particularaspects of �TrTL. We treat the �xpoints in a system with in�nite (depth, not width)tableaux. Using automata constructions it can be shown, that the in�nite proofscan be �nitely represented (as trees with back loops) and automatically constructed.Thus indirectly we obtain a decision procedure for the satis�ability problem (alreadydirectly addressed in [Nie95]).The most important rule of our proof system is the modal rule, i.e. the rule for thetreatment of the Next modalities. This rule uses a case analyses about the possiblenext steps occuring at some point in a distributed run and leads to branching in thetableaux similar to the rule for disjunction.An observation concerning the modal rule interesting in two ways is that thetableau system can be made more e�cient by making the cases of the previouslymentioned case analysis mutually exclusive. On the one hand, we relate this modi�edmodal rule to the tamed cut of D'Agostino's and Mondadori's system KE [DM94].On the other hand, the construction we use to make the modal rule more e�cientoperationally behaves similarly to a reduction method used to make �nite statemodel checking more e�cient: the sleep set method [GW91].Sleep sets are one way to exploit the independence of actions in the systemin the search for particular states (e.g. a deadlock). Technically, during the depth�rst search, a set of actions (called sleep set), the exploration of which would beredundant (because they already occurred in another order), is carried around.The analogy in the tableau system is the exploration of sub tableaux at appli-cations of the modal rule: instead of actions we now have to deal with modalities.However instead of externally keeping track of modalities not to be explored any-more, the modi�ed modal rule introduces formulae like [a]false (a cannot occur)into the sequents. The interplay with the other (standard) rules then operationallystops the expansion of redundant tableau parts.The rest of the paper is structured as follows: In section 2 we give a simplisticexample of a distributed system and formally introduce the notion of distributedruns, which constitute the semantic models over which �TrTL is interpreted. Insection 3 we give the syntax and semantics of �TrTL and illustrate its use in a smallexample. In section 4 the tableau system is given, the proof of the soundness andcompleteness is given in section 5. In section 6 we discuss two aspects of automaticproof search: the �nite representation of in�nite rules and the improved modal rule.The paper is based on the diploma thesis of the second author [Spr96], whichcontains a detailed presentation of the present work.

2 Runs of distributed programsDistributed programs. The location based approach to Mazurkiewicz-Traces con-siders parallel systems of sequential processes, which communicate via joint actions
R1 R0

MessageSend
ReceiveMessage SendAcknowledgment

AcknowledgmentReceive
rec0sack1rec1 rtimeoutsack0rec0Senderstimeoutsend1S1rack0rack0rack1send0S0 rack1
rec1Receiversend0send1 rec1rec0

stimeout
rtimeoutMessage Channel

losemlosem sack1sack0Ack Channelrack1rack0losealosea
Fig. 1. Alternating Bit Protocol

[Thi94]. Let us �rst have a lookat the Alternating Bit Protocol(ABP) [Mil89] as a small ex-ample of a concurrent program:The idea is that two compo-nents, a sender S and a receiverR communicate over two (un-reliable) channels. The MessageChannel transfers messages fromS (send) to R (receive) and theAck(nowledgement) Channel de-livers acknowledgements from R(sack) to S (rack), both chan-nels can lose (losem, losea) pack-ets. Each data message sent by Scontains a protocol bit, either 1 or 0 (send1/0). Let us assume the sender sends a0-message (send0). Before receiving the corresponding acknowledgment (rack0) itcan send the 0-message again after a timeout and ignore 1-acknowledgments. Afterreceiving the corresponding ack (rack0) S stops transmitting the current message(send0) and ips the protocol bit to 1 for the next message. The receiver basicallyworks in the same manner: After receiving a message (rec0), R returns an ack to S(sack0). Afterwards R can either resend the ack (sack0) after a timeout or ignoremore messages with protocol bit 0 (rec0) before it �nally receives a new messagewith the alternated protocol bit (rec1).Distributed runs. We will now introduce distributed runs to represent the be-haviour of distributed programs. A run is one possible execution of a distributedprogram, e.g. �gure 2 shows one possible run of the ABP example given above.We will �rst de�ne the alphabet for distributed runs as the set of actions, whichcan take place in such a run. Some of these actions are local to only one component(e.g. stimeout, rtimeout in �gure 1), while others may belong to more than onecomponent (e.g. send0, rack1). The latter we call "synchronisations" between thecomponents involved in these actions. Actions which take place at di�erent locationssuch as "send0" and "sack1" are called independent of each other: there is no naturalway to observe a causal order between these actions.De�nition 2.1 (alphabet) Let K 2 IN be �xed. Then Loc = f1; : : : ;Kg denotes aset of locations and e� = (�1; : : : ; �K) a distributed alphabet, where each �iis a �nite, nonempty set of actions of location i. The sets �i may overlap. We de�ne� := S1�i�K �i as the global alphabet of the system. An action a with a 2 �i\�j iscalled a synchronisation between the locations i and j and Loc(a) := fi 2 Locja 2�ig denotes the set of locations which are synchronised by action a.Two actions a and b are independent, (aIb); i� Loc(a) \ Loc(b) = ;.

It is easy to see, that the independence relation given in 2.1 is irreexive and sym-metric. Thus (�; I) is a concurrent alphabet in the sense of Mazurkiewicz [Maz95]and we give here a location based approach to Mazurkiewicz traces.Let us now de�ne distributed runs as a tuple of a frame and interpretations ofthese frames. A distributed run stands for an execution of a distributed program:De�nition 2.2 (frame) Let e� be a distributed alphabet. A frame over e� is alabelled poset F = (E;�; l), where E is a countable set of events, � a partial orderon E and l : E ! � a labelling-function. Let Ei = fe 2 E j l(e) 2 �ig be theset of i-events. For each i the restriction � \(Ei � Ei) is total, (i.e. the events ofone location are causally ordered), and the global order � is the least partial ordercontaining the local (total) orders.Note that runs can either be �nite or in�nite. To talk about dynamic behaviour ofthese static frames we use the notion of con�gurations. A con�gurations of a framegives informations about a certain state of a distributed program. The con�gurationc1 in our example run in �gure 2 represents the state of the program, in which onlythe sender and the message channel have performed the action send0, but the othercomponents are still in their initial state. So a con�guration contains all the actionsof a distributed run, that have occurred so far in the computation.De�nition 2.3 A con�guration c of a frame F is a �nite, with respect to �downward closed set of events. CF denotes the set of all con�gurations of F . Twocon�gurations c; c0 are i-equivalent (c �i c0), i� c \ Ei = c0 \ Ei. They are A-equivalent (�A) for A � Loc i� they are i-equivalent for each i 2 A. We de�ne asuccessor relation so that c a! d i� d = c] feg with l(e) = a.
Message Channel send0 stimeoutlosem send0 stimeout send0rec0 sack0 rack0 ReceiverAck ChannelMessage ChannelSenderSenderAck ChannelReceiver

c2 c3 c4c1
Fig. 2. One distributed run of the alternating bit protocolLet us have a look at the example again: The con�gurations c2 and c3 in 2 areequivalent with respect to the receiver (c2 �Receiver c3) but not with respect to thesender (c2 6�Sender c3): c2 evolves into c3 by performing an action which is local tothe sender. From the receivers \point of view" the con�guration did not change, thereceiver does not \know" whether any of the other components has performed anaction or not. Each con�guration matches a certain state of the distributed program.At di�erent states of the program, di�erent properties might hold. We call theseproperties atomic propositions. Each location has its own atomic propositions. E.g.

we could take S0 as an atomic proposition for \the sender is in S0" or R0 as \thereceiver is in R0". Looking at our example, these propositions are satis�ed at thecon�guration c3 but not at the con�guration c2 (R0 is still true, but S0 is not). Notethat atomic propositions belonging to one location cannot be changed by actionswhich take place at other locations: The action which leads from c2 to c3 is local tothe sender and thus does not have any e�ect to the proposition R0, which is localto the receiver. We will now de�ne an interpretation of a frame as a mapping fromatomic propositions to the set of con�gurations:De�nition 2.4 Let eP = (P1; : : : ;PK) be a distributed set of local propositions. Here,Pi and Pj are disjoint for i 6= j and Pi denotes the set of propositions a�liated withlocation i.An interpretation of a frame is a mapping I : eP �! 2CF such that c �i c0 impliesthat c 2 I(P) i� c0 2 I(P) for all P 2 Pi, i.e. the interpretation of propositions oflocation i depends only on i-events.Now we are �nally able to de�ne a distributed run as one execution of a dis-tributed program together with an interpretation:De�nition 2.5 A frame F together with an interpretation I is called a distributedrun M = (F; I).3 A logic for distributed programsWe will now de�ne a logic for the speci�cation of distributed program executionsas given in the previous section. The logic, called �TrTL, is the revised version of alogic �rst given in [Nie95] and later in [Huh96].Syntax and Semantics. Let Loc, e� = (�1; : : : ; �K) and eP = (P1; : : : ; PK) bede�ned as in section 2.The propositions from the sets Pi will form a part of the atomic formulae of thelogic. Similarly to these propositional constants, the meaning of which is given bythe interpretation I of a distributed run (F; I), we also need propositional variables,written as X;Y; Z; : : : 2 V . Just as I gives a meaning to the propositions we further-more need a valuation function v : V �! 2CF , i.e. each variable stands for a set ofcon�gurations, which is given by v.The key idea of the logic itself - and of the presentation given here - is that theformulae of the logic look at the con�gurations, i.e. the global state during a run,from a local point of view: Some formulae look at the state of the system from thepoint of view of a single location (e.g. in the case of local propositions), others mayinvolve a joint look from several locations (e.g. at the very beginning of a run or aftera joint action of these locations). This idea is reected in the syntax by a family ofsets of formulae �A (looking from the point of view of A � Loc):De�nition 3.1 (Syntax) The syntax of the logic �TrTL consists of sets �A offormulae, where A � Loc denotes the type of the formulae in �A, i.e. a set oflocations (to which the formulae directly refer). We also write type(�) = A for

� 2 �A. The set of all formulae is denoted by � := SA�Loc �A.The sets �A are de�ned to be the least sets, such that:ftrue; falseg [V � �;P;:P 2 �fi; P2Pig� 2 �A; 2 �B) � ^ ; � _ 2 �A[Bi 2 Loc(a); A � Loc(a); � 2 �A) haii�; [a]i� 2 �fig�[X := �] 2 �A) �X:�; �X:� 2 �AThe operators � and � bind the variables. By �[X :=] we denote the formulaobtained by substituting all free occurrences of X in � by . A formula that does notcontain any free variables is closed.Note that for A;B � Loc with A 6= B we have �A \ �B = ;, i.e. every formula hasa unique type. We will give some examples of �TrTL formulae later.Further note that using sets �A of formulae there is a subtle restriction on thethe way formulae can be constructed: e.g. within a formula [a]i� the formula � mayonly directly refer to locations from Loc(a). Hence changing the point of view in aformula is only possible via a modality refering to a common action of the old andthe new point of view. We will further comment this issue at the example section.For convenience we only allow negation of atomic propositions. However the logicis closed under negation, because every operator has its dual, and negations can bedrawn inside down to the atomic propositions. Let not(�) denote the negation of �.The operator � de�nes the least and � the greatest �xpoint. Since both kinds of�xpoints are often treated equally, we use � as wild card for both operators.De�nition 3.2 (Semantics of the logic �TrTL) Let (F; I) be a distributed runand v a valuation function. The semantics of a formula � 2 � with respect to (F; I)and v is denoted by [[�]](F;I)v . It is inductively de�ned by:{ [[true]](F;I)v = CF ; [[false]](F;I)v = ; (all con�gurations satisfy true, none false){ [[P]](F;I)v = I(P), [[:P]](F;I)v = CF n [[P]](F;I)v ; [[X]](F;I)v = v(X) for P 2 P, X 2 V{ [[� ^]](F;I)v = [[�]](F;I)v \ [[]](F;I)v , [[� _]](F;I)v = [[�]](F;I)v [[[]](F;I)v{ [[haii�]](F;I)v = fc j 9r; c0 with (c �i c0) and c0 a! r and r 2 [[�]](F;I)v g{ [[[a]i�]](F;I)v = fc j 8c0; r with (c �i c0) and c0 a! r implies r 2 [[�]](F;I)v g{ [[�X:�]](F;I)v = SfA j A � [[�]](F;I)v[X:=A]g, [[�X:�]](F;I)v = TfA j [[�]](F;I)v[X:=A] � Agwhere v[X := A](X) = A and for Y 6= X we have v[X := A](Y) = v(Y).A con�guration c 2 CF satis�es a formula � i� c 2 [[�]](F;I)v . A distributed run(F; I) satis�es a formula � i� the initial con�guration does, i.e. i� ; 2 [[�]](F;I)v . Adistributed program satis�es a formula, i� all of its distributed runs do.The following observation [Koz83] eases the formulation of our proof-system:Proposition1 (guarded formulae). A formula is guarded i� in each subfor-mula of the form �X:� of all free occurrences of the �xpoint variable X lie in thescope of a modality haii� or [a]i�. Every formula is equivalent to a guarded formula.

Sample Properties. In this subsection we want to illustrate the way the logiccan express properties of distributed runs. Consider the example run in �gure 2.In section 2 we have already shown at which con�gurations propositions (assimpliest formulae) hold, so let us now look at a formula with a single modality:hrec0iReceiverR0. Informally we should read this formula as \From the point of viewof the receiver the next action to occur is rec0 and afterwards it will be in stateR0". Formally this formula holds for instance at the con�guration c1, because thatcon�guration (where the receiver has not even started) is equivalent to c3 from thereceiver's point of view, and in c3 the action rec0 is enabled leading to con�gurationc4, where (according to the interpretation) R0 holds. Note that the formula doesnot say, that rec0 is immediately enabled in c1, but will rather be enabled by somepreparatory events (timeout; losem; send0) of the other locations.Next we will build up a more complex formula to illustrate the use of �xpointsin formulae. We want to formalise the following property (of all runs of the ABP):AlwsAckMeansRcvd: \Whenever the sender participates in a send0-event andeventually (after �nitely many stimeout and repeated send0 actions) receives arack0, then (after the �rst send0) the message channel will only �nitely often lose amessage (and receive another send0-request) before transmitting rec0 to the receiver.The receiver then will enter the R0 state (indicating the reception of a 0-taggedmessage)".We formulate the property using several abbreviations for subformulae (for betterreadability we use �! as an abbreviation for not(�) _ , S for Sender and MCfor MessageChannel):AlwsAckMeansRcvd = �X: AckMeansRcvd ^ ^a2�S[a]SX!!AckMeansRcvd = (hsend0iStrue ^ EvtllyRcvsAck)! ChanWillT ransmtEvtllyRcvsAck = �Y:hrack0iStrue _ hstimeoutiShsend0iSY _ hrack1iSYChanWillT ransmt = �Z:hrec0iMCR0 _ hlosemiMChsend0iMCZ:Note how recursion is used in the above formulae: to formulate \always" we use agreatest �xpoint, which corresponds to an in�nite unfolding of the formula. In theother cases we deal with �nite recursion, i.e. we use a least �xpoint to allow anarbitrary but �nite expansion of the formula: e.g. we may only cycle �nitely oftenthrough the losem�send0-cycle in ChanWillTransmt until �nally we have to committo the action rec0.In the formulation of the property we walk along a causal chain (i.e. a maximaltotally ordered set) of events, which is typical for this logic. Also note that the logicdoes not directly allow us to say things involving changes of the point of view exceptvia common actions (in the example via send0 from Sender to Message Channel,and via rec0 from Message Channel to Receiver). For instance we cannot directlysay \when the sender receives a rack0 the receiver is in state R0".This does not mean a general restriction of the expressiveness of the logic forthe speci�cation of properties of complete runs, only it may not be possible to writedown \global" invariants (for example) in a compositional way.

4 A tableaux systemLet us now de�ne a tableau proof system for the validity of formulae of �TrTL. Let� be a �nitary set of formulae. We will call � ` a sequent. Given a distributed run(F; I) and a con�guration c 2 CF , the con�guration c satis�es a sequent � ` i� aformula 2 � exists such that c 62 [[]](F;I)v .For these sequents we want to de�ne a tableau proof system, which accepts a sequenti� the sequent is valid and rejects it otherwise. Here validity is de�ned as follows:De�nition 4.1 A sequent � ` is valid i� 8(F; I); v : T2� [[]](F;I)v = ;De�nition 4.2 (rules) In the following let �h i (�[]) � � denote the set of for-mulae in � of the form haii� ([a]i�) 2 � , and let �P be the set of propositions in � .Let T be the following set of tableau-rules, which are divided into three groups: ax-ioms, logical rules and a modal rule.Axioms and logical rules�; P;:P ` (1) �; false ` (2) �; true `� ` (3)�; � ^ `�; �; ` (4) �; � _ `�; � ` �; ` (5) �X:�; � `�[X := �X:�]; � ` (6)Modalities �P ; �h i; �[] `�a1 `; �a2 `; : : : �an ` (7)In the modal rule �h i must be non-empty and �0 and �a are de�ned as follows:{ ai 2 �0; �0 := fa 2 �j9� 2 �[]; �h i s.t. type(�) 2 Loc(a)g{ [a]i� 2 �[]) � 2 �a; haii� 2 �h i) � 2 �a{ [b]i� 2 �[]; i 2 Loc(a)) true 2 �a; hbii� 2 �h i; i 2 Loc(a)) false 2 �a{ [b]i� 2 �[]; i 62 Loc(a)) [b]i� 2 �a; hbii� 2 �h i; i 62 Loc(a)) hbii� 2 �a{ P 2 �P ; P 2 Pi; i 62 Loc(a)) P 2 �aThe axioms and logical rules are standard. The goal of such a rule is valid, iff all thesubgoals are valid. In rule 6 we unwind a �xpoint; only the use of this rule can leadto in�nite tableau-paths.Let us now have a more detailed look at the rule 7. While the rules 1-6 are localto one con�guration (a con�guration c satis�es the goal of a rule, if it satis�es at leastone of the subgoals), the modal rule refers to a step from one con�guration c to thenext con�guration c0 by adding one event. This explains, why the modal rules mayonly be applied after none of the other (local) rules is applicable any more. In thecase of �h i = ; every con�guration in which no more actions can occur can satisfy� (depending on the interpretation) Thus we have to make sure, that �h i 6= ;.Note that the �xpoints are guarded. Thus, always after applying a �nite number ofrules 1{5, a modal rule has to be applied. Just as the or-rule 5 investigates the twopossibilities to satisfy a disjunction, the modal rule does a case-analysis depending onwhich actions could be performed next in an arbitrary con�guration of an arbitrary

run. According to this choice and the semantics of the logic each formula in the goalis linked to a corresponding formula in each subgoal.In a modal step a with i 2 Loc(a), propositions P 2 Pi will be deleted becausetheir interpretation in c0 can become di�erent from the one in c. Propositions P 62 Piare not concerned by such a step and will thus not be deleted.De�nition 4.3 (tableaux) Given a set of formulae � . A tableau T for � is alabelled tree < K;L >, where K is a tree and L is the labelling function, such that- the root of K is labelled with � `,- if L(n) is a tableau-axiom, then n is a leaf of K- if L(n) is not an axiom, then the children of n in K are created and labelledaccording to the tableau-rules. L(n) is the goal and the labels of the children thesubgoals of a tableau-rule.An acceptance condition is needed such that a tableau is accepted i� the sequentis valid. In the case of �nite tableaux, we can accept, if all leaves are labelled withaxioms. Hence the proof-system is already sound and complete for logic �TrTLwithout �xpoints. Because of the induction-rule 6 which unwinds �xpoints, we canalso create in�nite paths. These paths require a di�erent acceptance condition. Forthis we have to face two problems: One is the satisfaction of �xpoint-formulae, thesecond is a particular fairness problem.To solve the �rst problem we need the following de�nition which allows us toobserve a particular formula over a path:De�nition 4.4 (trace, �-trace) Let T be a tableau for� ` and � = v1; v2; : : : bean in�nite path in the tableau, i.e. vi+1 is a child of vi. A trace on the path � is eachsequence of formulae (�1; �2; : : : ; �n) such that �j 2 L(vk) and �j+1 is either1. �j , if the formula �j is not reduced by the rule applied in node vk or2. if �j was reduced, then �j+1 is one of the formulae produced out of �j .A least �xpoint formula �X:� = �i is regenerated from �i to �j ; i < j on a trace,if �X:� = �i derives �X:� = �j in such a way, that �X:� is a subformula ofeach �k; i < k � j. We call a trace on which a least �xpoint formula is regeneratedin�nitely often, a �-trace.Considering the second problem, we de�ne a particular notion of fairness for paths.Paths in which a formula haii is never evaluated are called unfair:De�nition 4.5 (fair tableau paths) A tableau-path � = (v0; v1; v2; ::::) is calledfair, i� for each i and for each haii� 2 vi there exists a node vj 2 � with j � i, suchthat the modal rule is applied to vj and there exists a b-child of vj with b 2 �i. Apath, which is not fair, is called unfair.De�nition 4.6 (acceptance-condition) Given a tableau T for a sequent � `.The tableau will accept, i� every leaf is labelled with an axiom, and every in�nitetableau-path is either unfair or contains an in�nite �-trace.The requirement for �nite paths is easy to see, for in�nite paths we will give adetailed explanation a bit further on in this paper. The given rules together with theacceptance condition form a sound and complete proof-system for the logic �TrTL.We will prove this in the next section.

Theorem2 (soundness and completeness). Let � be a set of formulae and letT be a tableau for the sequent � `. The tableau T accepts � ` i� � ` is valid.5 Soundness and CompletenessWe will now give the outline of the soundness and completeness proofs of the proof-system given above (for more details see [Spr96]). In the \standard" way, the sound-ness and completeness proofs are done by induction over tableau paths: a leaf isvalid i� it is an axiom, and an inner goal is valid, i� all its subgoals are valid.In the case of the proof system without the rules for �xpoints (i.e. a proof system fora reduced logic without the �xpoint operators) we could have applied the inductionmethod for the soundness and completeness proof. But due to the �xpoint rules wehave to deal with possibly in�nite paths (which might be accepted as well) in thetableau. Thus this induction method cannot be used here.Instead we will give a global proof based on the correspondence of tableau pathsand distributed runs. As a formal framework we use an established tool for �xpointlogics, the Streett/Emerson theorem [ES89]: it gives a di�erent characterisation forthe logical satisfaction of �xpoints in the propositional �-calculus, and it can beadapted to several �xpoint-frameworks. The idea is �rst to weaken the semanticsof � and � to arbitrary (not least or greatest) �xpoints, represented in derivationgraphs (vaguely corresponding to the interleaved representation of distributed runs)and to then regain the proper semantics by a separate criterion.We will now use this characterisation to prove soundness and completeness.De�nition 5.1 (derivation graph) A derivation graph DG((F; I); d0; �) for a dis-tributed run (F; I) with the con�guration d0 and a set of formulae � is a tuple (V;;),with V � ���; ;� V �V , where (V;;) is minimal, such that the following holds(we implicitly assume (c; �); (c0; �0) 2 V when we write (c; �); (c0; �0)):{ (d0;) 2 V 8 2 �{ For (c; P) 2 V; P 2 P and c 62 I(P) we get (c; P); (c; false){ For (c;:P) 2 V; P 2 P and c 2 I(P) we get (c;:P); (c; false){ For (c; � _) 2 V we either get (c; � _); (c; �) or (c; � _); (c;){ For (c; � ^) 2 V we get (c; � ^); (c; �) and (c; � ^); (c;){ For (c; [a]i�) 2 V; c a! c0 we get (c; [a]i�); (c0; �){ For (c; [b]i�) 2 V; c a! c0; a 2 �i we get (c; [a]i�); (c0; true){ For (c; [b]i�) 2 V; c a! c0; a 62 �i we get (c; [a]i�); (c0; [a]i�){ For (c; haii�) 2 V; c a! c0 we get (c; haii�); (c0; �){ For (c; hbii�) 2 V; c a! c0; a 2 �i we get (c; hbii�); (c0; false){ For (c; hbii�) 2 V; c a! c0; a 62 �i we get (c; hbii�); (c0; hbii�){ For (c; �X:�(X)) 2 V we get (c; �X:�(X)); (c; �(�X:�(X)))De�nition 5.2 (correct) A derivation graph is called correct, i�1. it does not contain a node (c; false) 2 DG((F; I); d0; �),2. for each node (c; haii�) 2 DG((F; I); d0; �) we have (c; haii�) ;� (d; haii�) ;(d0; �0) and (d0; �0) 2 DG((F; I); d0; �) with haii� 6= �0,

3. it does not contain any path with an in�nite regeneration of a least �xpoint.This correctness de�nition of derivation graphs needs some further explanations.Item 1 makes sure that all leaves of the derivation graph are satis�ed. Since theconditions on derivation graphs are necessarily local (single step), but the semanticsof h ii refers to global (multi step) jumps, we need the additional condition 2 forresolving h ii formulae. Condition 3 is the heart of the original Streett/Emersontheorem ensuring the proper semantics of least �xpoints.Thus we recast the Streett/Emerson theorem to our framework as follows:Theorem3 (Streett/Emerson [ES89]). A con�guration d0 of a distributed run(F; I) satis�es a formula � i� there exists a correct derivation graph for ((F; I); d0; �)The proof of theorem 2 will be divided into two parts. We will show both di-rections separately. First we will show that if a tableau � ` accepts a sequent, thesequent is valid. Then, in a second part, we will show that a sequent rejected bythe tableau is not valid. Note that for every sequent there exists either a rejectingor an accepting tableau. For �nite tableaux the soundness and completeness caneasily be shown by induction over the length of the tree. Showing the soundness andcompleteness for in�nite tableaux requires some more work.Lemma4. For � ` not valid there exist rejected paths in any tableau for � `.Proof (sketch): Let �0 be a set of formulae and let (F; I) be a distributed run.The con�guration d0 of (F; I) satis�es all formulae in �0.Now we choose a fair execution of the distributed run, e.g. using round robin. Withtheorem 3 we know, that there exists a correct derivation graph for (F; I); d0; �0.We then have to show that the tableau T built for �0 either contains a leaf whichis not labelled with an axiom or it has at least one in�nite fair path without a� � trace. With the help of the derivation graph we will inductively identify eitherthis leaf or the in�nite path � = v0; v1; v2; : : : in the tableau. During this processwe assume that each vi corresponds to a con�guration ci 2 CF which is given asinterleaving in the sequence of actions taken in modal rules along the path fromthe root to vi. Further more we assume that for each 2 � (vi); (ci;) belongs toDG((F; I); d0; �0). This invariant is easily seen to carry over for rule applicationswith only one subgoal vi+1 (the rules 1, 4, 6). For rules with several subgoals wechoose the successor vi+1 according to the derivation graph. Let � (vi) = �i; � _ and let the or-rule be applied next. Depending on � (vi+1) = �i; � or � (vi+1) = �i; we either choose the left or the right successor of vi.Similarly, we proceed for the modal rule. If this process ends at a leaf v of T , itcannot be an axiom (with P;:P 2 � (v)) because our invariant would obviously leadto a violation of condition 1 of de�nition 5.2. On the other hand the path � wouldbe fair by construction, and from the invariant and because of condition 3 of 5.2 thepath would not contain an in�nite �-trace. Hence, the tableau will not accept � `.Lemma5. Let �0 be a �nite set of formulae and let T be a tableau starting from�0. If T contains a rejected path then �0 ` is not valid and there exists a distributedrun (F; I) such that the initial con�guration d0 of (F; I) satis�es �0 `.

Proof (sketch): The proof of this lemma requires a bit more e�ort. Let �0 be�xed and let � = v1; v2; : : : be a rejected path in a tableau T for �0. The idea is toconstruct a distributed run (F; I) with a correct derivation graph DG((F; I); d0; �0):First, we have to construct a distributed run (F; I) such that its initial con�gurationsatis�es �0 `.{ From � we �rst construct the frame F by considering the sequence of actionstaken in applications of the modal rule in � as one interleaving of the dis-tributed run. This interleaving also corresponds to a sequence of con�gurations� = c1; c2; c3; : : :.{ To construct the interpretation of con�gurations occurring in � it is su�cient toset all propositions occurring just before the next application of a modal rule totrue. Unfortunately, not all con�gurations c 2 CF are met along the path. Butfor each i 2 Loc there exists at least one i-equivalent con�guration c0 2 � fromwhich the interpretation of propositions P 62 Pi can be adopted consistently.The main part now is the construction of the derivation graph.{ For con�gurations c 2 � and formulae �, such that (c; �) already belongs to thederivation graph, the de�nition of successor nodes is basically the reverse of theidenti�cation of the successor goal in the soundness proof. For other con�gu-rations c0 62 � a similar method as for the interpretation construction is used:If the type of � is A, it is possible to show that there exists an A-equivalentcon�guration c 2 �.{ A problem not mentioned so far occurs with the de�nition of successors of nodes(c; �1 _ �2): While there can only exist one successor (c; �l); l 2 f1; 2g in thederivation graph, it can happen that the or-rule 5 is applied di�erently on severaloccurrences of �1 _ �2 on the section of the tableau path relevant to (c; �l).However, it is easy to construct from any rejected path in the tableau anotherrejected path in the same tableau, where disjunctions �1_�2 are always resolvedin the same way between two applications of the modal rule. Hence, in the aboveconstruction we can assume to have such a path.{ Finally we observe that the constructed derivation graph is correct: condition 1in de�nition 5.2 is satis�ed as the derivation graph and the interpretation areconstructed consistently. Condition 2 is satis�ed because for a �nite path we geta �nite derivation graph without h ii at the leaves, whereas for an in�nite paththe condition follows from the fairness of �. Condition 3 is inherited from theabsence of �-traces in the path.6 Automated proof searchThe taming of the modal rule. Although the logic is de�ned on traces, theproof system works in an interleaving fashion (in particular the modal rule). Thusthe question arises whether we can apply partial order reductions as known frommodel checking ([Pel93, GW91]) to the proof-search. Obviously each tableau pathrepresents one interleaving of a distributed run. Thus equivalent interleavings shouldeither both accept or both reject the path. Consider two actions a; b 2 �; aIb, and acon�guration c. As a and b are independent, the order in which a and b are executedshould not make any di�erence, since both ways lead to the same con�guration c0 in

a distributed run. Thus, to investigate, whether c0 satis�es an arbitraty formula �,it is not necessary to follow both paths leading to the same con�guration. In modelchecking the so called sleep-set algorithm ([GW91]) is developed to keep track ofthis problem. There, a sleep-set belonging to a node v in the state-graph of a systemspeci�es all directions, which do not have to be developed from that node. An actiona in the sleep-set of a node v means, that the a-path outgoing from v need not beinvestigated. Instead of actually adding sleep-sets to tableau-nodes, we can naturally(i.e. logically) incorporate an equivalent of the sleep-set method into the modal rule.Consider the modal rule as given in rule 7. In this rule we do a case analysis betweenall actions in �: a1 or a2 or : : : or an. By using the modal rule like this we producesome redundant paths in the tableau, as each interleaving of a trace is representedin the tableau. But now we can change this case analysis to an exclusive one byde�ning a total order on actions a1 < a2 < : : : < an. The case analysis will now be:a1 or not a1 but a2 or : : : or not � n fang but an. This order needs to be �xed forone application of the modal rule. Due to a particular fairness problem which wewill discuss below we have to change the order in a fair way (e.g. Round Robin) tomake sure, that we do not produce unfair paths.We can logically code this in the modal rule by the following modi�cation (where�ai ; �0 are de�ned as before): Let Ai = fa 2 �0j(a; ai) 2 I; a < aig. And let[a]false abbreviate Wi2Loc(a) [a]ifalse and [A]false abbreviate Va2A [a]false. Thenthe reduced modal rule 8 is de�ned as:�P ; �h i; �[] `�a1 ` [A2]false; �a2 ` : : : [An]false; �an ` (8)This modi�cation turns out to be the logical encoding of sleep-sets into the modalrule. Consider a modal step with action aj . Any action ai < aj ; (ai; aj) 2 I, whichwas not enabled before the execution of aj is not enabled after the modal step either.Thus we add action ai to the set Aj which can be viewed as the \sleep-set".The method we use here is not only the logical encoding of the sleep-sets which area partial order reduction method known from model-checking. The idea, to make thebranches mutually exclusive, is similar to the one shown in [DM94]. There, a tableau-system (called KE) with an analytic cut-rule (PB) is given, where the cut-rule doesnot contradict the subformula principle. The idea of that paper is to separate thebranching from the logical rules, such that the rule for disjunction is linear and thebranching takes place only in the cut-rule(PB):A j :A (PB) A _ B; :AB (E _ 1) A _B; :BA (E _ 2)Our reduced modal rule could also be seen as the combination of a built-in analyticcut-rule PB (only there the case analysis is done on subformulae and not on actions,as we do it here) and a modi�ed modal rule.Let hbitrue be an abbreviation for Vi2Loc(b) :hbiitrue and [b]false an abbreviationfor Wi2Loc(b) :[b]ifalse. Then in our system the analogue of the cut-rule PB wouldbe for b 2 �0: \do b or (do) not do b" (rule 9). We can then immediately apply themodi�ed modal rule 10 to the left subgoal of rule 9 (modi�ed in the sense, that wehave separated the case-analysis from the modal rule such that we now only havegot one subgoal):

� `hbitrue; � ` [b]false; � ` (9) hbitrue; �P ; �h i; �[] `�b ` (10)Here �b is constructed as de�ned in 7. To the right subgoal we would apply rule 9again for the \next" action in �0. The following �gure will illustrate how our newmodal rule 8 can be seen as a combination of the rules 9 and 10.� `ha1itrue; � `�a1 ` [a1]false; � `[a1]false; ha2itrue; � `[A2]false; �a2 ` [a1]false; [a2]false; � `... ...[An]false; �an `In rule 9 we only create a subgoal for an action a 2 �0.A particular fairness problem occurs on in�nite paths: we must �nd a fair methodfor �nding a representative for an in�nite trace. Consider e.g. an in�nite trace within�nitely many a's but only one b. Let a and b be independent. With a < b the aboverule would put a asleep forever on every b-path such that there is no representationof the trace [a!b] We can take care of this problem by rede�ning the total orderingof actions in each modal step with a fair method (e.g. Round Robin).It seems that this reduction will often lead to signi�cantly smaller proofs (withthe usual worst case exceptions). However, we have not practically checked this.Handling in�nite tableaux. Our tableau system often requires in�nite proofs,so one might ask for practical use of the system. With the help of tree automata(see [Tho90] for an introduction) we can give a decision method for the existenceof accepting tableaux. More precisely we can construct tree automata running ontableaux by regarding them as trees with sequents as node labels1 in the obviousway. The construction is sketched in the appendix, for further details see [Spr96].Theorem6. For each sequent � ` we can canonically construct a Rabin-tree-auto-maton AT recognising exactly the accepting tableaux for � `.These automata give us a �nitary representation of proofs: instead of constructingtableaux with in�nite paths we now represent the proof as a tree with backloops.De�nition 6.1 (regular tableaux) An in�nite tree T is said to be regular if thereare only �nitely distinct non-isomorphic subtrees T 0 in T . An in�nite tableau is calledregular, i� it is a regular tree.Obviously regular trees and tableaux can be �nitely represented. Since the emptinessproblem for tree automata is decidable (see [Tho90]) and moreover in the nonemptycase the decision procedure returns a regular tree, we can deduce the following:Corollary 7. The set of sequents � ` with an accepting tableau is decidable. If thereexists any accepting tableau for � `, then there also exists a regular one.1 Note that for an initial sequent �0 ` only a �nite and easy to determine set of sequents� ` can occur in any tableau, the Fischer-Ladner closure.

AcknowledgemetsWe thank Michaela Huhn, R. Ramanujam and P.S. Thiagarajan for fruitful discus-sions. Rajeev Gor�e made very valuable comments to the presentation of the paperand has pointed us to the connection with tamed cut. Part of this work was �nan-cially supported by the Human Capital and Mobility Cooperation Network \EX-PRESS" (Expressivity of Languages for Concurrency).References[Dam92] Mads Dam. Fixpoints of B�uchi automata. In International Conferenceon the Foundations of Software Technology and Theoretical Computer Science(FST&TCS), Lecture Notes in Computer Science, pages 39{50, 1992.[DM94] Marcello D'Agostino and Marco Mondadori. The taming of the cut. Classicalrefutations with analytic cut. Logic and Computation, 4(3):285{319, 1994.[ES89] E. Allen Emerson and Robert S. Streett. An automata theoretic decision proce-dure for the propositional mu-calculus. Information and Computation, 81:249{264, 1989.[GW91] Patrice Godefroid and Pierre Wolper. A partial approach to model checking. InIEEE Symposium on Logic in Computer Science, volume 6, pages 406{415, 1991.[Huh96] Michaela Huhn. Action re�nement and property inheritance in systems of sequen-tial agents. In U. Montanari and V. Sassone, editors, International Conference onConcurrency Theory (CONCUR), volume 1119 of Lecture Notes in Computer Sci-ence, pages 639{654. Springer-Verlag, 1996.[Koz83] Dexter Kozen. Results on the propositional �-calculus. Theoretical ComputerScience, 27:333{354, 1983.[Maz95] Antoni Mazurkiewicz. Introduction to trace theory. In Volker Diekert and Grze-gorz Rozenberg, editors, The Book of Traces, chapter 1, pages 1{42. World Scien-ti�c, 1995.[Mil89] Robin Milner. Communications and Concurrency. Prentice-Hall, 1989.[MP92] Manna and Pnueli. The Temporal Logic of Reactive and Concurrent Systems.Springer-Verlag, 1992.[Nie95] Peter Niebert. A �-calculus with local views for systems of sequential agents. InMFCS, volume 969 of Lecture Notes in Computer Science, 1995.[Pel93] Doron Peled. All from one, one for all: on model checking using representatives. InInternational Conference on Computer Aided Veri�cation (CAV), Lecture Notesin Computer Science, 1993.[Spr96] B. Sprick. Ein Beweissystem f�ur die modale Tracelogik �-TrTl und seineOptimierung durch Halbordnungsreduktionen. Master's thesis, Universit�atHildesheim, 1996.[Thi94] P.S. Thiagarajan. A trace based extension of Linear Time Temporal Logic. InIEEE Symposium on Logic in Computer Science (LICS), volume 9, 1994.[Tho90] Wolfgang Thomas. Automata on in�nite objects. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science, volume B, chapter 4, pages 133{191.Elsevier Science Publishers B.V., 1990.[Var88] Moshe Y. Vardi. A temporal �xpoint calculus. In ACM Symposium on Principlesof Programming Languages, pages 250{259, 1988.[Wal95] Igor Walukiewicz. A complete deductive system for the �-calculus. BRICS ReportSeries RS-95-6, Danish Center for Basic Research in Computer Science (BRICS),1995.

A Construction of automata recognising tableauxHere we give a brief description of a Rabin tree automaton which for input � ` recog-nises exactly the accepting tableaux for � `. The required automaton is a productof a nondeterministic tree automaton Atree recognising tableaux and a deterministicRabin-word-automaton AL recognising accepted tableau-paths.Tree-automaton recognising tableaux: Its states are sequents � `2 Seq(�0)and its transition relation is de�ned by the tableau-rules. Atree nondeterministically\guesses" a tableau and checks that the input tableau matches the guess. Any treemeeting the transition relation is accepted by the automaton.Word-automaton recognising accepting tableau paths: This automatonis constructed as the union of three sub-automata which all run on tableau-paths:A�n accepts �nite paths ending with an axiom, Aunfair recognises unfair paths, andA� accepts exactly all paths with a �� trace. As the construction of A�n is trivial,we only describe the construction of Aunfair and A� and show how to constructtheir union and the product with the tree automaton.Automaton recognising unfair paths: For Aunfair we need two states qiniand qi for each location i 2 Loc. In qini we check, if there exists a formula h ii in thenext input sequent � . If it does the automaton goes over to qi where it stays untilthe next action at location i is performed and then it goes over to qini+1 . Otherwiseit directly goes over to qini+1 . This automaton accepts, if it meets qi in�nitely oftenwhile it meets qini only �nitely many times for any i as there is no more action atlocation i though h ii is still in the input sequent.Automaton recognising �-traces: A� checks for the existence of a �-trace.Given here as a nondeterministic B�uchi-automaton A0� it can clearly be determinisedwith Safra's determinization construction. A0� \guesses" one formula from each se-quent along the input sequence so that the sequence of chosen formulae forms a traceand ensures the trace being a �-trace.Safras's construction can be used for determization or, as shown in [Wal95], adeterministic (Rabin) automaton can be constructed directly. Both ways lead to adeterministic Rabin-automaton for the acceptance of �-traces.Union of A�n, Aunfair,and A�: The states of this union-automaton (AL) arethe products of the sub-automata with the tuple of all three initial states as newinitial state. A state (q1; q2; q3) goes over to (q01; q02; q03) i� each state q1 in the subautomaton goes over to q0i with the same input. The Rabin-acceptance condition ofAL can be de�ned as a product of all three sub-acceptance conditions.Product-automaton recognising accepting tableaux: The idea is to let ALrun simultaneously on all paths of the tree. Thus we �rst convert the deterministicword-automaton AL into a tree-automaton Atree(L). Atree(L) is then running ontrees with each path in the tree being a sequence of sequents and accepts, i� allpaths of the tree are accepted by AL. Finally we compose the product of the treeautomaton Atree(L) and the tree automaton Atree, to obtain the intersection of bothtree languages. The states of this (�nal) product automaton are again sequents � `2Seq(�0). The acceptance condition is the same as for Atree(L) and the intersectionof the tranistion relations of both automata gives the new transition relation.This tree automaton �nally gives us a �nitary representation of a proof and thusa basis for the construction of a �nitary Hilbert-style proof system as in [Wal95].

