A Tableau Proof System for a
Mazurkiewicz Trace Logic with Fixpoints

Peter Niebert! and Barbara Sprick?

'nstitut fir Informatik, 2Fachbereich Informatik, Lehrstuhl 6
Universitat Hildesheim, Germany Universitiat Dortmund, Germany
niebert@informatik.uni-hildesheim.de sprick@ls6.informatik.uni-dortmund.de

Abstract. We present a tableau based proof system for v TrTL, a trace based
temporal logic with fixpoints. The proof system generalises similar systems
for standard interleaving temporal logics with fixpoints. In our case special
attention has to be given to the modal rule: First we give a system with an
interleaving style modal rule, later we use a technique similar to the sleep set
method (known from finite state model checking) to obtain a more efficient
proof rule. We briefly highlight the relation of the improved rule with recent
advances in tableau systems for classical propositional logic, the tamed cut
of the system KE.

The treatment of fixpoints leads to possibly infinite tableaux, which however
can be finitely represented, yielding treelike structures with back loops: we
show this using an automata construction. Indirectly we obtain a (known)
decidability result.

1 Introduction

Temporal logics are a widely accepted specification and verification formalism in
several areas of computer science, in particular in the field of reactive systems. The
most widely known logic in this area is linear time temporal logic, LTL: this logic
assumes a discrete and totally ordered time structure (natural numbers as time
instances) and is based on two modalities, “Next” and “Until”. This framework is
appropriate for the specification of systems based on global states.

On the other hand a lot of effort went into the development of semantic frame-
works for distributed systems, typically consisting of several subsystems (locations),
which work independently and collaborate using a communication mechanism. In
such a setting it is more appropriate to use partially ordered or distributed runs
(which coincide with infinite Mazurkiewicz traces [Maz95]) as paradigm.

Recently Thiagarajan has defined TrPTL [Thi94] as a seemingly natural trace
based generalisation of LTL to partially ordered runs. The key idea is to interpret
temporal operators such as “Until” and in particular “Next” only relatively to the
“view” of one location (local time), and it allows to change the point of view in order
to express properties of several locations. In [Nie95, Huh96] vTrTL, a fixpoint exten-
sion of TrPTL has been developed. This logic combines the local Nezt modality with
the possibility of fixpoint definitions (recursion in formulae), so that e.g. Thiagara-
jan’s local Until can be defined as a derived operator. Similar fixpoint extensions are
known for standard temporal logics (e.g. vTL [Var88]). The structure of vTrTL is
advantageous over TrPTL in that it allows a semantically cleaner changing of the

point of view: V'ITrTL formulae only look into the future behaviour of a system, while
the changing of the point of view in [Thi94] results in an uncontrolled jump into the
past. This property of our logic is also essential for the proof system.

There are more reasons to be interested in vTrTL: it is well known, that vTL
(the fixpoint extension of LTL) is expressively equivalent to Biichi-automata and
to the monadic second order theory of the temporal frames. Tt is conjectured (work
in progress), that an analogous result also holds for vTrTL, i.e. that this logic is
expressively equivalent to the monadic second order theory of distributed runs.

In this work we develop a tableau based proof system for vTrTL. The structural
properties of vTrTL allow an elegant formulation of proof rules. Since the treatment
of fixpoints in proof systems requires lengthy constructions (see e.g. [Wal95] for the
treatment of the propositional p-calculus), we put the emphasis on the particular
aspects of ¥TrTL. We treat the fixpoints in a system with infinite (depth, not width)
tableaux. Using automata constructions it can be shown, that the infinite proofs
can be finitely represented (as trees with back loops) and automatically constructed.
Thus indirectly we obtain a decision procedure for the satisfiability problem (already
directly addressed in [Nie95]).

The most important rule of our proof system is the modal rule, i.e. the rule for the
treatment of the Next modalities. This rule uses a case analyses about the possible
next steps occuring at some point in a distributed run and leads to branching in the
tableaux similar to the rule for disjunction.

An observation concerning the modal rule interesting in two ways is that the
tableau system can be made more efficient by making the cases of the previously
mentioned case analysis mutually exclusive. On the one hand, we relate this modified
modal rule to the tamed cut of D’Agostino’s and Mondadori’s system KE [DM94].
On the other hand, the construction we use to make the modal rule more efficient
operationally behaves similarly to a reduction method used to make finite state
model checking more efficient: the sleep set method [GW91].

Sleep sets are one way to exploit the independence of actions in the system
in the search for particular states (e.g. a deadlock). Technically, during the depth
first search, a set of actions (called sleep set), the exploration of which would be
redundant (because they already occurred in another order), is carried around.

The analogy in the tableau system is the exploration of sub tableaux at appli-
cations of the modal rule: instead of actions we now have to deal with modalities.
However instead of externally keeping track of modalities not to be explored any-
more, the modified modal rule introduces formulae like [a]false (a cannot occur)
into the sequents. The interplay with the other (standard) rules then operationally
stops the expansion of redundant tableau parts.

The rest of the paper is structured as follows: In section 2 we give a simplistic
example of a distributed system and formally introduce the notion of distributed
runs, which constitute the semantic models over which vTrTL is interpreted. In
section 3 we give the syntax and semantics of v TrTL and illustrate its use in a small
example. In section 4 the tableau system is given, the proof of the soundness and
completeness is given in section 5. In section 6 we discuss two aspects of automatic
proof search: the finite representation of infinite rules and the improved modal rule.

The paper is based on the diploma thesis of the second author [Spr96], which
contains a detailed presentation of the present work.

2 Runs of distributed programs

Distributed programs. The location based approach to Mazurkiewicz-Traces con-
siders parallel systems of sequential processes, which communicate via joint actions
[Thi94]. Let us first have a look

(-timeon =) :
at the Alternating Bit Protocol Nesage 0 Aok omledgment
(ABP) [Mil89] as a small ex- l

ample of a concurrent program: Message Channe &) G &) Ack Channel
The idea is that two compo- () :end

nents, a sender S and a receiver N —
R communicate over two (un-
reliable) channels. The Message Receiver
Channel transfers messages from

— ——)
S (send) to R (receive) and the sack
Ack(nowledgement) Channel de- @) o)
livers acknowledgements from R oo reet ? i
G rtimeout)

(sack) to S (rack), both chan- Message Aecrll(%owledgment
nels can lose (losem, losea) pack-

ets. Each data message sent by S Fig. 1. Alternating Bit Protocol

contains a protocol bit, either 1 or 0 (send1/0). Let us assume the sender sends a
0-message (send0). Before receiving the corresponding acknowledgment (rack0) it
can send the 0-message again after a timeout and ignore 1-acknowledgments. After
receiving the corresponding ack (rack0) S stops transmitting the current message
(send0) and flips the protocol bit to 1 for the next message. The receiver basically
works in the same manner: After receiving a message (rec0), R returns an ack to S
(sack0). Afterwards R can either resend the ack (sack0) after a timeout or ignore
more messages with protocol bit 0 (rec0) before it finally receives a new message
with the alternated protocol bit (recl).

3

Sender

r
r

3

Distributed runs. We will now introduce distributed runs to represent the be-
haviour of distributed programs. A run is one possible execution of a distributed
program, e.g. figure 2 shows one possible run of the ABP example given above.

We will first define the alphabet for distributed runs as the set of actions, which
can take place in such a run. Some of these actions are local to only one component
(e.g. stimeout, rtimeout in figure 1), while others may belong to more than one
component (e.g. send0, rackl). The latter we call ”synchronisations” between the
components involved in these actions. Actions which take place at different locations
such as ”send0” and ”sack1” are called independent of each other: there is no natural
way to observe a causal order between these actions.

Definition 2.1 (alphabet) Let K € IN be fized. Then Loc = {1,...,K} denotes a
set of locations and ¥ = (X1,...,YKk) a distributed alphabet, where each X;
is a finite, nonempty set of actions of location i. The sets X; may overlap. We define
Y = <;j<r Zi as the global alphabet of the system. An action a with a € Z;NY; is
called a synchronisation between the locations i and j and Loc(a) := {i € Loc|a €
X} denotes the set of locations which are synchronised by action a.

Two actions a and b are independent, (aZb), iff Loc(a) N Loc(b) = ().

It is easy to see, that the independence relation given in 2.1 is irreflexive and sym-
metric. Thus (X,7) is a concurrent alphabet in the sense of Mazurkiewicz [Maz95]
and we give here a location based approach to Mazurkiewicz traces.

Let us now define distributed runs as a tuple of a frame and interpretations of
these frames. A distributed run stands for an execution of a distributed program:

Definition 2.2 (frame) Let X be a distributed alphabet. A frame over X is a
labelled poset F = (E,<,l), where E is a countable set of events, < a partial order
on E and | : E — X a labelling-function. Let E; = {e € E | l(e) € X;} be the
set of i-events. For each i the restriction < N(E; x E;) is total, (i.e. the events of
one location are causally ordered), and the global order < is the least partial order
containing the local (total) orders.

Note that runs can either be finite or infinite. To talk about dynamic behaviour of
these static frames we use the notion of configurations. A configurations of a frame
gives informations about a certain state of a distributed program. The configuration
¢1 in our example run in figure 2 represents the state of the program, in which only
the sender and the message channel have performed the action send0, but the other
components are still in their initial state. So a configuration contains all the actions
of a distributed run, that have occurred so far in the computation.

Definition 2.3 A configuration c of a frame F is a finite, with respect to <
downward closed set of events. Cr denotes the set of all configurations of F. Two
configurations c,c are i-equivalent (¢ =; ¢'), iff cN E; = ¢ N E;. They are A-
equivalent (=4) for A C Loc iff they are i-equivalent for each i € A. We define a
successor relation so that ¢ % d iff d = cW {e} with I(e) = a.

Sender~g i Y VN _= Sender
(enio), B
Message Channel” 7 4 S — - - *\> Message Channel
s g \
Ack Channel— — — 4 = Ack Channel
Receiver----- /oo L VT > Receiver

Fig. 2. One distributed run of the alternating bit protocol

Let us have a look at the example again: The configurations ¢; and c¢3 in 2 are
equivalent with respect to the receiver (ca =Receiver €3) but not with respect to the
sender (¢a ZSender €3): C2 evolves into ¢z by performing an action which is local to
the sender. From the receivers “point of view” the configuration did not change, the
receiver does not “know” whether any of the other components has performed an
action or not. Each configuration matches a certain state of the distributed program.
At different states of the program, different properties might hold. We call these
properties atomic propositions. Each location has its own atomic propositions. E.g.

we could take Sy as an atomic proposition for “the sender is in Sp” or Ry as “the
receiver is in Ry”. Looking at our example, these propositions are satisfied at the
configuration ¢z but not at the configuration co (Ry is still true, but Sy is not). Note
that atomic propositions belonging to one location cannot be changed by actions
which take place at other locations: The action which leads from ¢s to ¢3 is local to
the sender and thus does not have any effect to the proposition Ry, which is local
to the receiver. We will now define an interpretation of a frame as a mapping from
atomic propositions to the set of configurations:

Definition 2.4 LetP = (P, ..., Pk) be a distributed set of local propositions. Here,
Pi and P; are disjoint for i # j and P; denotes the set of propositions affiliated with
location i. B

An interpretation of a frame is a mapping I : P — 2°F such that ¢ =; ¢’ implies
that ¢ € I(P) iff ¢ € I(P) for all P € P;, i.e. the interpretation of propositions of
location i depends only on i-events.

Now we are finally able to define a distributed run as one execution of a dis-
tributed program together with an interpretation:

Definition 2.5 A frame F together with an interpretation I is called a distributed
run M = (F,I).

3 A logic for distributed programs

We will now define a logic for the specification of distributed program executions
as given in the previous section. The logic, called vTrTL, is the revised version of a
logic first given in [Nie95] and later in [Huh96].

Syntax and Semantics. Let Loc, ¥ = (¥1,...,%Xk) and P = (P, ..., Pg) be
defined as in section 2.

The propositions from the sets P; will form a part of the atomic formulae of the
logic. Similarly to these propositional constants, the meaning of which is given by
the interpretation I of a distributed run (F, I), we also need propositional variables,
written as X, Y, Z,... € V. Just as [gives a meaning to the propositions we further-
more need a valuation function v :V — 27 i.e. each variable stands for a set of
configurations, which is given by v.

The key idea of the logic itself - and of the presentation given here - is that the
formulae of the logic look at the configurations, i.e. the global state during a run,
from a local point of view: Some formulae look at the state of the system from the
point of view of a single location (e.g. in the case of local propositions), others may
involve a joint look from several locations (e.g. at the very beginning of a run or after
a joint action of these locations). This idea is reflected in the syntax by a family of
sets of formulae @ 4 (looking from the point of view of A C Loc):

Definition 3.1 (Syntax) The syntax of the logic vTrTL consists of sets P4 of
formulae, where A C Loc denotes the type of the formulae in ®4, i.e. a set of
locations (to which the formulae directly refer). We also write type(¢) = A for

¢ € Da. The set of all formulae is denoted by & == c1,.Pa-
The sets &4 are defined to be the least sets, such that:

{true, false} UV C &y
P,~P € By pep,y
PEPA,YEDPE= PNY, OV Y € PauB
i € Loc(a), A C Loc(a), ¢ € P4 = (a)id, [a]ip € Py
HIX =0l € Pa = uX.0,vX.0 € Py

The operators p and v bind the variables. By ¢[X := 1] we denote the formula
obtained by substituting all free occurrences of X in ¢ by . A formula that does not
contain any free variables is closed.

Note that for A, B C Loc with A # B we have $4, NP =), i.e. every formula has
a unique type. We will give some examples of v TrTL formulae later.

Further note that using sets @4 of formulae there is a subtle restriction on the
the way formulae can be constructed: e.g. within a formula [a];¢ the formula ¢ may
only directly refer to locations from Loc(a). Hence changing the point of view in a
formula is only possible via a modality refering to a common action of the old and
the new point of view. We will further comment this issue at the example section.

For convenience we only allow negation of atomic propositions. However the logic
is closed under negation, because every operator has its dual, and negations can be
drawn inside down to the atomic propositions. Let not(¢) denote the negation of ¢.

The operator u defines the least and v the greatest fixpoint. Since both kinds of
fixpoints are often treated equally, we use o as wild card for both operators.

Definition 3.2 (Semantics of the logic vTrTL) Let (F,I) be a distributed run
and v a valuation function. The semantics of a formula ¢ € & with respect to (F,T)

and v is denoted by [Py D 1t s inductively defined by:

[[true]]E,F = =Cp, |[false]|(FI =0 (all configurations satisfy true, none false)
— [PI"" = 1(p), [-P1"0 = e \ P17, X1 =0(X) for PEP, X €V
[oAvl"™" = [l N[l [ovuli™” = [l U]y
[
[
[

<

(a)i¢]|(FI) ={c|3Ir,d with (c =;c) and Srandre)]I(FI)}
aliplv o = ={c |V, r with (c=;c) and ¢ 5 r implies r € |[¢]|(FI)}
v XG0 = UTA | A C Al Lyt X ol = N{A | [1Y L, € 4}
where v|A = = A ana for we have v| X =
here v[X := A|(X) = A and for Y # X we h [X = A(Y) = (V).

—

A configuration ¢ € Cp satisfies a formula ¢ iff ¢ € [[¢]5,F’I) A distributed run

(F, 1) satisfies a formula ¢ iff the initial configuration does, i.e. iff O € |[¢>]|(F D
distributed program satisfies a formula, iff all of its distributed runs do.

The following observation [Koz83] eases the formulation of our proof-system:

Proposition1 (guarded formulae). A formula is) guarded iff in each subfor-
mula of the form o X.¢ of 1 all free occurrences of the fizpoint variable X lie in the
scope of a modality (a),¢ or [a];¢. Every formula is equivalent to a guarded formula.

Sample Properties. In this subsection we want to illustrate the way the logic
can express properties of distributed runs. Consider the example run in figure 2.

In section 2 we have already shown at which configurations propositions (as
simpliest formulae) hold, so let us now look at a formula with a single modality:
(rec0) peveiver Bo- Informally we should read this formula as “From the point of view
of the receiver the next action to occur is recO and afterwards it will be in state
Ry”. Formally this formula holds for instance at the configuration ¢;, because that
configuration (where the receiver has not even started) is equivalent to ¢z from the
receiver’s point of view, and in c¢3 the action recy is enabled leading to configuration
¢4, where (according to the interpretation) Ry holds. Note that the formula does
not say, that recy is immediately enabled in ¢;, but will rather be enabled by some
preparatory events (timeout,losem, send0) of the other locations.

Next we will build up a more complex formula to illustrate the use of fixpoints
in formulae. We want to formalise the following property (of all runs of the ABP):

AlwsAckMeansRcvd: “Whenever the sender participates in a send0-event and
eventually (after finitely many stimeout and repeated send0 actions) receives a
rack(, then (after the first send0) the message channel will only finitely often lose a
message (and receive another send0-request) before transmitting rec0 to the receiver.
The receiver then will enter the R, state (indicating the reception of a 0-tagged
message)” .

We formulate the property using several abbreviations for subformulae (for better
readability we use ¢ — 1 as an abbreviation for not(¢) V ¢, S for Sender and MC
for MessageChannel):

AlwsAckMeansRcvd = vX. (AckMeansRcvd A (/\ [a]SX>>
acXs

AckMeansRcvd = ((send0) gtrue A EvtllyRcvsAck) — ChanWillTransmt
EvtllyRcvsAck = pY .(rack0) strue V (stimeout) o (send0) ;Y V (rackl) Y
ChanWillTransmt = pZ.(rec0) ;- Ro V (losem) ;- (send0) ;- Z.

Note how recursion is used in the above formulae: to formulate “always” we use a
greatest fixpoint, which corresponds to an infinite unfolding of the formula. In the
other cases we deal with finite recursion, i.e. we use a least fixpoint to allow an
arbitrary but finite expansion of the formula: e.g. we may only cycle finitely often
through the losem —send0O-cycle in ChanWillTransmt until finally we have to commit
to the action rec0.

In the formulation of the property we walk along a causal chain (i.e. a maximal
totally ordered set) of events, which is typical for this logic. Also note that the logic
does not directly allow us to say things involving changes of the point of view except
via common actions (in the example via send0 from Sender to Message Channel,
and via rec from Message Channel to Receiver). For instance we cannot directly
say “when the sender receives a rack(the receiver is in state Ry”.

This does not mean a general restriction of the expressiveness of the logic for
the specification of properties of complete runs, only it may not be possible to write
down “global” invariants (for example) in a compositional way.

4 A tableaux system

Let us now define a tableau proof system for the validity of formulae of vTrTL. Let
I be a finitary set of formulae. We will call I" - a sequent. Given a distributed run
(F,T) and a configuration ¢ € Cr, the configuration c¢ satisfies a sequent I" | iff a
formula v € I' exists such that ¢ ¢ |[7]|£,F’I).

For these sequents we want to define a tableau proof system, which accepts a sequent
iff the sequent is valid and rejects it otherwise. Here validity is defined as follows:

Definition 4.1 A sequent I' - is valid iff V(F,I),v : nwer[[’Y]lng’I) =0

Definition 4.2 (rules) In the following let I'(y (It) € I' denote the set of for-
mulae in I' of the form (a),¢ ([a]ip) € I', and let I'p be the set of propositions in I'.
Let T be the following set of tableau-rules, which are divided into three groups: az-
ioms, logical rules and a modal rule.
Axioms and logical rules

I P,-PF

I, false - I, true -

(1) (2) T (3)
LoAvF LoVt sXa, Tk
DOAYE Sy _DOVYE s -,
Lopr ror Tor O smcoxairE ©
Modalities
Tp, Iy, 7 & -
Tu b, Toy Frola F

In the modal rule I'cy must be non-empty and X' and I, are defined as follows:
—a; €Y\ Y :={ac X3¢ €I, st type(p) € Loc(a)}
—lalipel1=>del,,{(a)pely=>pel,

— [bli¢ € ITy,i € Loc(a) = true € I, (b);¢ € I'\y,i € Loc(a) = false € I},
— [b]zgi) € F[],i € Loc(a) = [b]zgi) € Fa, z¢ S F(>,i € Loc(a) = z¢ erl,
— Pelp,PeP;i¢ Locla) = PeT,

The axioms and logical rules are standard. The goal of such a rule is valid, iff all the
subgoals are valid. In rule 6 we unwind a fixpoint; only the use of this rule can lead
to infinite tableau-paths.

Let us now have a more detailed look at the rule 7. While the rules 1-6 are local
to one configuration (a configuration c satisfies the goal of a rule, if it satisfies at least
one of the subgoals), the modal rule refers to a step from one configuration ¢ to the
next configuration ¢’ by adding one event. This explains, why the modal rules may
only be applied after none of the other (local) rules is applicable any more. In the
case of Iy = () every configuration in which no more actions can occur can satisfy
I' (depending on the interpretation) Thus we have to make sure, that I'\y # 0.
Note that the fixpoints are guarded. Thus, always after applying a finite number of
rules 1-5, a modal rule has to be applied. Just as the or-rule 5 investigates the two
possibilities to satisfy a disjunction, the modal rule does a case-analysis depending on
which actions could be performed next in an arbitrary configuration of an arbitrary

run. According to this choice and the semantics of the logic each formula in the goal
is linked to a corresponding formula in each subgoal.

In a modal step a with i € Loc(a), propositions P € P; will be deleted because
their interpretation in ¢’ can become different from the one in c. Propositions P & P;
are not concerned by such a step and will thus not be deleted.

Definition 4.3 (tableaux) Given a set of formulae I'. A tableau T for I' is a
labelled tree < K,L >, where K is a tree and L is the labelling function, such that
- the root of K is labelled with I" F,

- if L(n) is a tableau-aziom, then n is a leaf of K

- if L(n) is not an aziom, then the children of n in K are created and labelled
according to the tableau-rules. L(n) is the goal and the labels of the children the
subgoals of a tableau-rule.

An acceptance condition is needed such that a tableau is accepted iff the sequent
is valid. In the case of finite tableaux, we can accept, if all leaves are labelled with
axioms. Hence the proof-system is already sound and complete for logic vTrTL
without fixpoints. Because of the induction-rule 6 which unwinds fixpoints, we can
also create infinite paths. These paths require a different acceptance condition. For
this we have to face two problems: One is the satisfaction of fixpoint-formulae, the
second is a particular fairness problem.

To solve the first problem we need the following definition which allows us to
observe a particular formula over a path:

Definition 4.4 (trace, u-trace) Let T be a tableau forl' - and o = vy,vs,... be
an infinite path in the tableau, i.e. v;y1 is a child of v;. A trace on the path o is each
sequence of formulae (a1, o, ..., ay) such that a; € L(vk) and aji1 is either

1. aj, if the formula o is not reduced by the rule applied in node vy, or

2. if aj was reduced, then a1 is one of the formulae produced out of ;.

A least fizxpoint formula pX.¢ = «; is regenerated from oy to aj,i < j on a trace,
if pX.¢ = a; derives pX.¢p = «a; in such a way, that pX.¢ is a subformula of
each ap,t < k < j. We call a trace on which a least fizpoint formula is regenerated
infinitely often, a u-trace.

Considering the second problem, we define a particular notion of fairness for paths.
Paths in which a formula (a),;® is never evaluated are called unfair:

Definition 4.5 (fair tableau paths) A tableau-path o = (vo,v1,v2,....) is called
fair, iff for each i and for each (a),$ € v; there exists a node v; € o with j > i, such
that the modal rule is applied to v; and there exists a b-child of v; with b € X;. A
path, which is not fair, is called unfair.

Definition 4.6 (acceptance-condition) Given a tableau T for a sequent I' .
The tableau will accept, iff every leaf is labelled with an axiom, and every infinite
tableau-path is either unfair or contains an infinite p-trace.

The requirement for finite paths is easy to see, for infinite paths we will give a
detailed explanation a bit further on in this paper. The given rules together with the
acceptance condition form a sound and complete proof-system for the logic vTrTL.
We will prove this in the next section.

Theorem 2 (soundness and completeness). Let I' be a set of formulae and let
T be a tableau for the sequent I' . The tableau T accepts I' - iff I' - is valid.

5 Soundness and Completeness

We will now give the outline of the soundness and completeness proofs of the proof-
system given above (for more details see [Spr96]). In the “standard” way, the sound-
ness and completeness proofs are done by induction over tableau paths: a leaf is
valid iff it is an axiom, and an inner goal is valid, iff all its subgoals are valid.
In the case of the proof system without the rules for fixpoints (i.e. a proof system for
a reduced logic without the fixpoint operators) we could have applied the induction
method for the soundness and completeness proof. But due to the fixpoint rules we
have to deal with possibly infinite paths (which might be accepted as well) in the
tableau. Thus this induction method cannot be used here.
Instead we will give a global proof based on the correspondence of tableau paths
and distributed runs. As a formal framework we use an established tool for fixpoint
logics, the Streett/Emerson theorem [ES89): it gives a different characterisation for
the logical satisfaction of fixpoints in the propositional p-calculus, and it can be
adapted to several fixpoint-frameworks. The idea is first to weaken the semantics
of 4 and v to arbitrary (not least or greatest) fixpoints, represented in derivation
graphs (vaguely corresponding to the interleaved representation of distributed runs)
and to then regain the proper semantics by a separate criterion.

We will now use this characterisation to prove soundness and completeness.

Definition 5.1 (derivation graph) A derivation graph DG((F,I),dy,I") for a dis-
tributed run (F, I) with the configuration dy and a set of formulae I is a tuple (V,~»),
with V C & x &, ~»CV XV, where (V,~) is minimal, such that the following holds
(we implicitly assume (¢, @), (c',¢') € V when we write (¢,) ~ (c',¢")):

— (do,y) €V VyeT

— For (¢, P) € V,P € P and c ¢ I(P) we get (c, P) ~ (c, false)

— For (¢,mP) € V,P € P and c € I(P) we get (¢c,~P) ~ (c, false)
— For (c,p V) € V we either get (¢, V) ~ (¢,) or (c,p V1) ~ (1)
— For (¢, Ap) € V we get (¢, Ap) ~ (¢, 9) and (¢, p A1) ~ (¢,)
— For (c,[a];¢) € V,e % ¢ we get (c,[a]ip) ~ (¢, d)
— For (c,[b;i¢) € V,e 5 ¢'ya € X; we get (c,[a)ip) ~ (¢, true)
~ For (¢, [bi¢) € Ve % ¢ a & Z; we get (c,[a]id) ~ (¢, [a)i9)
— For (c,{(a);¢) € V,c = ¢ we get (c,(a);$) ~ (', 9)
— For (¢, (b);¢) € Ve = ¢/ a € Z; we get (c, (b);6) ~ (c', false)
— For (¢, (b);¢) € V,e = c'a & Zi we get (¢, (b);6) ~ (', (b),0)
— For (c,0X.a(X)) € V we get (c,0X.a(X)) ~ (c,a(c X.a(X)))

Definition 5.2 (correct) A derivation graph is called correct, iff

1. it does not contain a node (c,false) € DG((F,I),dy,I"),
2. for each node (c,(a),p) € DG((F,I),do,I") we have (c,(a),¢) ~* (d,(a),p) ~
(dla ¢I) and (dla ¢I) € DG((F’ I)7 dOaF) with (a’>z¢ # ¢I7

3. it does not contain any path with an infinite regeneration of a least fixpoint.

This correctness definition of derivation graphs needs some further explanations.
Item 1 makes sure that all leaves of the derivation graph are satisfied. Since the
conditions on derivation graphs are necessarily local (single step), but the semantics
of (), refers to global (multi step) jumps, we need the additional condition 2 for
resolving (), formulae. Condition 3 is the heart of the original Streett/Emerson
theorem ensuring the proper semantics of least fixpoints.

Thus we recast the Streett/Emerson theorem to our framework as follows:

Theorem 3 (Streett/Emerson [ES89]). A configuration do of a distributed run
(F, I) satisfies a formula ¢ iff there exists a correct derivation graph for ((F,I),dy, ®)

The proof of theorem 2 will be divided into two parts. We will show both di-
rections separately. First we will show that if a tableau I' F accepts a sequent, the
sequent is valid. Then, in a second part, we will show that a sequent rejected by
the tableau is not valid. Note that for every sequent there exists either a rejecting
or an accepting tableau. For finite tableaux the soundness and completeness can
easily be shown by induction over the length of the tree. Showing the soundness and
completeness for infinite tableaux requires some more work.

Lemmad4. For I' F not valid there exist rejected paths in any tableau for I' .

Proof (sketch): Let I be a set of formulae and let (F,I) be a distributed run.
The configuration dy of (F,I) satisfies all formulae in IG.

Now we choose a fair execution of the distributed run, e.g. using round robin. With
theorem 3 we know, that there exists a correct derivation graph for (F,I),dy, I.
We then have to show that the tableau 7 built for I either contains a leaf which
is not labelled with an axiom or it has at least one infinite fair path without a
u — trace. With the help of the derivation graph we will inductively identify either
this leaf or the infinite path m = wvg, vy, vs,... in the tableau. During this process
we assume that each v; corresponds to a configuration ¢; € Cr which is given as
interleaving in the sequence of actions taken in modal rules along the path from
the root to v;. Further more we assume that for each v € I'(v;), (¢;,7) belongs to
DG((F,I),dy, Ip). This invariant is easily seen to carry over for rule applications
with only one subgoal v;11 (the rules 1, 4, 6). For rules with several subgoals we
choose the successor v;11 according to the derivation graph. Let I'(v;) = I, ¢ V ¢
and let the or-rule be applied next. Depending on I'(v;+1) = I3, ¢ or I'(viy1) = [, ¢
we either choose the left or the right successor of v;.

Similarly, we proceed for the modal rule. If this process ends at a leaf v of T, it
cannot be an axiom (with P,—=P € I'(v)) because our invariant would obviously lead
to a violation of condition 1 of definition 5.2. On the other hand the path 7© would
be fair by construction, and from the invariant and because of condition 3 of 5.2 the
path would not contain an infinite p-trace. Hence, the tableau will not accept I F-.

Lemmab. Let Iy be a finite set of formulae and let T be a tableau starting from
Iy. If T contains a rejected path then Iy & is not valid and there exists a distributed
run (F,I) such that the initial configuration dy of (F,I) satisfies I F.

Proof (sketch): The proof of this lemma requires a bit more effort. Let I be
fixed and let m = vy, vs,... be a rejected path in a tableau 7 for Iy. The idea is to
construct a distributed run (F, I) with a correct derivation graph DG((F,I), dy, I).
First, we have to construct a distributed run (F, I) such that its initial configuration
satisfies Iy F.

— From = we first construct the frame F' by considering the sequence of actions
taken in applications of the modal rule in 7 as one interleaving of the dis-
tributed run. This interleaving also corresponds to a sequence of configurations
0= C1,C2,C3,y. ...

— To construct the interpretation of configurations occurring in @ it is sufficient to
set all propositions occurring just before the next application of a modal rule to
true. Unfortunately, not all configurations ¢ € Cr are met along the path. But
for each i € Loc there exists at least one i-equivalent configuration ¢’ € 6 from
which the interpretation of propositions P ¢ P; can be adopted consistently.

The main part now is the construction of the derivation graph.

— For configurations ¢ € § and formulae ¢, such that (¢, ¢) already belongs to the
derivation graph, the definition of successor nodes is basically the reverse of the
identification of the successor goal in the soundness proof. For other configu-
rations ¢ ¢ 0 a similar method as for the interpretation construction is used:
If the type of ¢ is A, it is possible to show that there exists an A-equivalent
configuration ¢ € 6.

— A problem not mentioned so far occurs with the definition of successors of nodes
(¢, 91 V ¢2): While there can only exist one successor (¢, ¢;),l € {1,2} in the
derivation graph, it can happen that the or-rule 5 is applied differently on several
occurrences of ¢; V ¢ on the section of the tableau path relevant to (c, ¢;).
However, it is easy to construct from any rejected path in the tableau another
rejected path in the same tableau, where disjunctions ¢, V ¢ are always resolved
in the same way between two applications of the modal rule. Hence, in the above
construction we can assume to have such a path.

— Finally we observe that the constructed derivation graph is correct: condition 1
in definition 5.2 is satisfied as the derivation graph and the interpretation are
constructed consistently. Condition 2 is satisfied because for a finite path we get
a finite derivation graph without (), at the leaves, whereas for an infinite path
the condition follows from the fairness of 7. Condition 3 is inherited from the
absence of u-traces in the path.

6 Automated proof search

The taming of the modal rule. Although the logic is defined on traces, the
proof system works in an interleaving fashion (in particular the modal rule). Thus
the question arises whether we can apply partial order reductions as known from
model checking ([Pel93, GW91]) to the proof-search. Obviously each tableau path
represents one interleaving of a distributed run. Thus equivalent interleavings should
either both accept or both reject the path. Consider two actions a,b € X', aZb, and a
configuration c¢. As a and b are independent, the order in which a and b are executed
should not make any difference, since both ways lead to the same configuration ¢’ in

a distributed run. Thus, to investigate, whether ¢’ satisfies an arbitraty formula ¢,
it is not necessary to follow both paths leading to the same configuration. In model
checking the so called sleep-set algorithm ([GW91]) is developed to keep track of
this problem. There, a sleep-set belonging to a node v in the state-graph of a system
specifies all directions, which do not have to be developed from that node. An action
a in the sleep-set of a node v means, that the a-path outgoing from v need not be
investigated. Instead of actually adding sleep-sets to tableau-nodes, we can naturally
(i.e. logically) incorporate an equivalent of the sleep-set method into the modal rule.
Consider the modal rule as given in rule 7. In this rule we do a case analysis between
all actions in X': a1 or as or ... or a,. By using the modal rule like this we produce
some redundant paths in the tableau, as each interleaving of a trace is represented
in the tableau. But now we can change this case analysis to an exclusive one by
defining a total order on actions a; < az < ... < a,. The case analysis will now be:
ay or not a; but as or ... or not X'\ {a,} but a,. This order needs to be fixed for
one application of the modal rule. Due to a particular fairness problem which we
will discuss below we have to change the order in a fair way (e.g. Round Robin) to
make sure, that we do not produce unfair paths.

We can logically code this in the modal rule by the following modification (where
I,;, X" are defined as before): Let 4; = {a € X'|(a,a;) € Z,a < a;}. And let
[a]false abbreviate \/;c ,.(,) [a]ifalse and [A]false abbreviate A\ [a]false. Then
the reduced modal rule 8 is defined as:

Ip, Iy, I -
I,, b [As)false, I, - ... [A,]false, [, +

a€A

(8)

This modification turns out to be the logical encoding of sleep-sets into the modal
rule. Consider a modal step with action a;. Any action a; < a;, (a;,a;) € Z, which
was not enabled before the execution of a; is not enabled after the modal step either.
Thus we add action a; to the set A; which can be viewed as the “sleep-set”.

The method we use here is not only the logical encoding of the sleep-sets which are
a partial order reduction method known from model-checking. The idea, to make the
branches mutually exclusive, is similar to the one shown in [DM94]. There, a tableau-
system (called KE) with an analytic cut-rule (PB) is given, where the cut-rule does
not contradict the subformula principle. The idea of that paper is to separate the
branching from the logical rules, such that the rule for disjunction is linear and the
branching takes place only in the cut-rule(PB):

(PB) AV B, -A
B

AV B, =B

A -A 1

(EV1) (EV?2)
Our reduced modal rule could also be seen as the combination of a built-in analytic
cut-rule PB (only there the case analysis is done on subformulae and not on actions,
as we do it here) and a modified modal rule.

Let (b)true be an abbreviation for A;c;,.) -(b);true and [blfalse an abbreviation
for ;e 1.oe(s) -[blifalse. Then in our system the analogue of the cut-rule PB would
be for b € X': “do b or (do) not do b” (rule 9). We can then immediately apply the
modified modal rule 10 to the left subgoal of rule 9 (modified in the sense, that we
have separated the case-analysis from the modal rule such that we now only have
got one subgoal):

Ik (bytrue, I'p, I'cy, I71 F
(bytrue, I' - [b)false, I" ©) I+
Here I}, is constructed as defined in 7. To the right subgoal we would apply rule 9

again for the “next” action in X'. The following figure will illustrate how our new
modal rule 8 can be seen as a combination of the rules 9 and 10.

I+
(ay)true, I' - [a1]false, I -
r,,+F [a1]false, (as)true, I' - [a1]false, [as]false, ' F
[As)false, I, F

(10)

[Ay)false, I, F
In rule 9 we only create a subgoal for an action a € X'.

A particular fairness problem occurs on infinite paths: we must find a fair method
for finding a representative for an infinite trace. Consider e.g. an infinite trace with
infinitely many a’s but only one b. Let a and b be independent. With a < b the above
rule would put a asleep forever on every b-path such that there is no representation
of the trace [a“b] We can take care of this problem by redefining the total ordering
of actions in each modal step with a fair method (e.g. Round Robin).

It seems that this reduction will often lead to significantly smaller proofs (with
the usual worst case exceptions). However, we have not practically checked this.

Handling infinite tableaux. Our tableau system often requires infinite proofs,
so one might ask for practical use of the system. With the help of tree automata
(see [Tho90] for an introduction) we can give a decision method for the existence
of accepting tableaux. More precisely we can construct tree automata running on
tableaux by regarding them as trees with sequents as node labels' in the obvious
way. The construction is sketched in the appendix, for further details see [Spr96].

Theorem 6. For each sequent I' F we can canonically construct a Rabin-tree-auto-
maton Ar recognising exactly the accepting tableauz for I' I-.

These automata give us a finitary representation of proofs: instead of constructing
tableaux with infinite paths we now represent the proof as a tree with backloops.

Definition 6.1 (regular tableaux) An infinite tree T is said to be reqular if there
are only finitely distinct non-isomorphic subtrees T' in T . An infinite tableau is called
reqular, iff it is a reqular tree.

Obviously regular trees and tableaux can be finitely represented. Since the emptiness
problem for tree automata is decidable (see [Tho90]) and moreover in the nonempty
case the decision procedure returns a regular tree, we can deduce the following:

Corollary 7. The set of sequents I' - with an accepting tableau is decidable. If there
exists any accepting tableau for I' b, then there also exists a reqular one.

! Note that for an initial sequent Iy only a finite and easy to determine set of sequents
I' - can occur in any tableau, the Fischer-Ladner closure.

Acknowledgemets

We thank Michaela Huhn, R. Ramanujam and P.S. Thiagarajan for fruitful discus-
sions. Rajeev Goré made very valuable comments to the presentation of the paper
and has pointed us to the connection with tamed cut. Part of this work was finan-
cially supported by the Human Capital and Mobility Cooperation Network “EX-
PRESS” (Expressivity of Languages for Concurrency).

References

[Dam92] Mads Dam. Fixpoints of Biichi automata. In International Conference

[DM94]

[ES89]

[GWO1]

[Huh96]

[Koz83]
[Maz95]
[Mil89]
[MP92]
[Nie95]

[Pel93]

[Spr96]

[Thi94]

[Tho90]

[Vargg]

[Wal95]

on the Foundations of Software Technology and Theoretical Computer Science
(FSTETCS), Lecture Notes in Computer Science, pages 39-50, 1992.

Marcello D’Agostino and Marco Mondadori. The taming of the cut. Classical
refutations with analytic cut. Logic and Computation, 4(3):285-319, 1994.

E. Allen Emerson and Robert S. Streett. An automata theoretic decision proce-
dure for the propositional mu-calculus. Information and Computation, 81:249—
264, 1989.

Patrice Godefroid and Pierre Wolper. A partial approach to model checking. In
IEEE Symposium on Logic in Computer Science, volume 6, pages 406—415, 1991.
Michaela Huhn. Action refinement and property inheritance in systems of sequen-
tial agents. In U. Montanari and V. Sassone, editors, International Conference on
Concurrency Theory (CONCUR), volume 1119 of Lecture Notes in Computer Sci-
ence, pages 639-654. Springer-Verlag, 1996.

Dexter Kozen. Results on the propositional p-calculus. Theoretical Computer
Science, 27:333-354, 1983.

Antoni Mazurkiewicz. Introduction to trace theory. In Volker Diekert and Grze-
gorz Rozenberg, editors, The Book of Traces, chapter 1, pages 1-42. World Scien-
tific, 1995.

Robin Milner. Communications and Concurrency. Prentice-Hall, 1989.

Manna and Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.

Peter Niebert. A v-calculus with local views for systems of sequential agents. In
MFCS, volume 969 of Lecture Notes in Computer Science, 1995.

Doron Peled. All from one, one for all: on model checking using representatives. In
International Conference on Computer Aided Verification (CAV), Lecture Notes
in Computer Science, 1993.

B. Sprick. Ein Beweissystem fiir die modale Tracelogik »v-TrTl und seine
Optimierung durch Halbordnungsreduktionen. = Master’s thesis, Universitit
Hildesheim, 1996.

P.S. Thiagarajan. A trace based extension of Linear Time Temporal Logic. In
IEEE Symposium on Logic in Computer Science (LICS), volume 9, 1994.
Wolfgang Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 4, pages 133-191.
Elsevier Science Publishers B.V., 1990.

Moshe Y. Vardi. A temporal fixpoint calculus. In ACM Symposium on Principles
of Programming Languages, pages 250-259, 1988.

Igor Walukiewicz. A complete deductive system for the p-calculus. BRICS Report
Series RS-95-6, Danish Center for Basic Research in Computer Science (BRICS),
1995.

A Construction of automata recognising tableaux

Here we give a brief description of a Rabin tree automaton which for input I" recog-
nises exactly the accepting tableaux for I' . The required automaton is a product
of a nondeterministic tree automaton Ay, recognising tableaux and a deterministic
Rabin-word-automaton Ay, recognising accepted tableau-paths.

Tree-automaton recognising tableaux: Its states are sequents I' =€ Seq([})
and its transition relation is defined by the tableau-rules. A;,.. nondeterministically
“guesses” a tableau and checks that the input tableau matches the guess. Any tree
meeting the transition relation is accepted by the automaton.

Word-automaton recognising accepting tableau paths: This automaton
is constructed as the union of three sub-automata which all run on tableau-paths:
Aﬁn accepts finite paths ending with an axiom, Aunfm-r recognises unfair paths, and
A, accepts exactly all paths with a p1 —trace. As the construction of Ag, is trivial,
we only describe the construction of A, f; and A, and show how to construct
their union and the product with the tree automaton.

Automaton recognising unfair paths: For Aunfai’r we need two states gin;
and g; for each location i € Loc. In g;,,, we check, if there exists a formula (), in the
next input sequent I'. If it does the automaton goes over to g; where it stays until
the next action at location i is performed and then it goes over to gy, ,. Otherwise
it directly goes over to g,,,,. This automaton accepts, if it meets g; infinitely often
while it meets ¢;,, only finitely many times for any 7 as there is no more action at
location ¢ though (), is still in the input sequent.

Automaton recognising p-traces: 4, checks for the existence of a p-trace.
Given here as a nondeterministic Biichi-automaton AL it can clearly be determinised
with Safra’s determinization construction. A), “guesses” one formula from each se-
quent along the input sequence so that the sequence of chosen formulae forms a trace
and ensures the trace being a u-trace.

Safras’s construction can be used for determization or, as shown in [Wal95], a
deterministic (Rabin) automaton can be constructed directly. Both ways lead to a
deterministic Rabin-automaton for the acceptance of y-traces.

Union of Ag,, Ay, fq-and A, The states of this union-automaton (Ar) are
the products of the sub-automata with the tuple of all three initial states as new
initial state. A state (g1, q2,q3) goes over to (¢},q5,q5) iff each state ¢; in the sub
automaton goes over to ¢; with the same input. The Rabin-acceptance condition of
Apr can be defined as a product of all three sub-acceptance conditions.

Product-automaton recognising accepting tableaux: The idea is to let Aj,
run simultaneously on all paths of the tree. Thus we first convert the deterministic
word-automaton Az, into a tree-automaton Aypee(r)- Atree(r) 18 then running on
trees with each path in the tree being a sequence of sequents and accepts, iff all
paths of the tree are accepted by Ap. Finally we compose the product of the tree
automaton Ay,c.(r) and the tree automaton Ay.ce, to obtain the intersection of both
tree languages. The states of this (final) product automaton are again sequents I" €
Seq(Ip). The acceptance condition is the same as for Ayy..(z) and the intersection
of the tranistion relations of both automata gives the new transition relation.

This tree automaton finally gives us a finitary representation of a proof and thus
a basis for the construction of a finitary Hilbert-style proof system as in [Wal95].

