Service Automata

Java Implementation Manual

Richard Gay

May 30, 2013

1 Introduction

Service Automata [GMS12| are a dynamic enforcement mechanism. Service
Automata particularly address dynamic enforcement on distributed programs.
For an introduction to the concept of Service Automata and a formal model of
Service Automata in the process algebra CSP [Hoa85|, we refer the reader to
[GMS12].

This document describes an implementation of Service Automata in Java and
how the implementation can be instantiated for enforcing a security requirement
on a distributed program.

1.1 Terminology

This manual makes use of several terms, for which the following list gives an

overview.

target program: A target program in the context of Service Automata is a
distributed program on which security requirements are supposed to be
enforced by using the Service Automata implementation.

agent: An agent is a non-distributed entity of a (distributed) target program.

Service Automaton: A Service Automaton is a non-distributed entity of the
Service Automata framework. A Service Automaton can be considered
to “encapsulate” one agent of a target program. That is, it ensures that the
operations that the agent attempts to perform are mediated in accordance
with the security requirements.

2 Framework Architecture

Service Automata have a modular architecture. Figure 2.1 shows this architec-
ture.

interceptor: fixed code, which first uses the event factory to turn a concrete
operation (join point) into an abstracted critical event representation and
second sends this event to the coordinator

event factory: a parametric component that has one factory method for each
pointcut that returns an abstracted critical event for every join point
matching the pointcut (see Section 3.4)

CE: critical event; an object of a data type

coordinator: a component that manages the communication between the com-
ponents

local policy: a parametric component that makes local decisions and is able to
delegate decisions (see Section 3.6)

DR: delegation request/response data type, used to determine the message
format for the communication between Service Automata

ED: enforcement decision data type (see Section 3.5)

enforcer executor: fixed code, which receives enforcement decisions, uses the
enforcer factory to turn a decision into a concrete enforcer, and runs the
enforcer

enforcer: an enforcer is a component that can be executed and whose execution
realizes enforcement decisions such as termination (see Section 3.5)

enforcer factory: an enforcer factory is a parametric component providing a
factory method that produces enforcer objects for enforcement decision
objects

unit starter: this fixed component bootstraps a Service Automaton by start-
ing the instrumented Java agent as well as the program containing the
coordinator and local policy components

agent of d’

the Java

application<—

‘ event factory ‘

operation & | CE

4

interceptor

enforcer
executor

A

ED y | enforcer
enforcer
factory

separate Java
program

N DR H H
} _____ CE coordinator |.°%-» communication
O ‘ DR network
CEU DR ED U DR

— sequential order
[fixed component

— call/return ---» TCP/IP
[parameter

Figure 2.1: Architecture of a Service Automaton in Java

3 Instantiation of the Framework

The implementation of Service Automata is parametric. The parameters de-
termine how the enforcement takes place and on which target program it takes
place.

The remainder of this section gives a list of steps, along which one can in-
stantiate the parameters for a concrete application scenario. Note that this is
not meant to be the only possible approach.

3.1 Determining the Agents of the Target Program

The concept of Service Automata stipulates encapsulating agents of the target
program with Service Automata. When instantiating the Service Automata
implementation, one thus has to determine the agents that are supposed to be
subject to dynamic enforcement. This leaves a design choice. In a client-server
system, for instance, it might suffice to consider only client agents, to consider
only server agents, or to consider both client and server agents.

Which agents are to be chosen may depend on several factors, such as

e which agents perform security-relevant operations,

e which agents are sufficiently controllable such that they can be encapsu-
lated by Service Automata, and/or

e by encapsulating which agents would the enforcement be particularly ef-
ficient (e.g., because local decisions can be made more often).

For the following, we assume that a set of agents has been chosen. For each
agent, a JAR file must be available. This JAR file will be used in Section 3.2.

3.2 Configuring the Instantiation

An instantiation of the Service Automata implementation is determined by sev-
eral parts. The parts are specified in the form of a configuration file. Listing 3.1
shows the syntax and the configuration file by example.

© 0 N 3 s W N

I T T S S S WP
v~ © © o N O kA W N = O

N
w

cfg.nodes = agentl, agent2, agent3, agent4
cfg.destdir = /tmp/target/

node.type = Java

node.target = path/to/agent.jar

node.target—javavm = /usr/bin/java

node.pointcuts = path/to/pointcuts.txt

node.policy = fqn.of.MyLocalPolicy

node.event—factory = fgn.of. MyEventFactory
node.enforcer—factory= fqn.of.MyEnforcerFactory
node.inline—classpath= path/to/inlined—classes.jar:log4j:jansi
node.policy—classpath= path/to/policy—classes.jar:log4;
node.loglevel = WARN

node.ext—port = 1901

node.cor—port = 1902

node.enf—port = 1903

node.cor—host = localhost

node.enf—host = localhost

agentl.ext—host = 192.168.100.1
agent2.ext—host = 192.168.100.2
agent3.ext—host = 192.168.100.3
agent4.ext—host = 192.168.100.4

Listing 3.1: Configuration file for an instantiation

Configuration files use the syntax of Java’s property files . The format is

line-based and assigns values to keys. Key names are structured into categories
with separating dots.

The key in Line 1 configures the nodes of the distributed encapsulated sys-
tem, which each consist of an agent of the target program as well as a Service
Automaton. The value in this line is a comma-separated list of unique names
for these nodes. Line 2 configures the directory in which the result of the
encapsulation shall be written. For each node, one subdirectory is created.

The keys in Lines 4 to 18 share the prefix “node”. These lines determine the
configuration that is the same for all nodes. On the other hand, the keys in
Lines 20 to 23 are prefixed with a node’s name and determine configuration
that applies to the respective node only. The following describes the purpose
of these configuration elements:

lsee, e.g., http://docs.oracle.con/javase/6/docs/api/java/util/Properties.html

type: type of the agent; currently supports only “Java”; the following configu-
ration elements assume agents of type Java

target: path to the JAR file containing the code of the agent; if the path is
relative, then it is considered relative to the configuration file

tagret-javavm: path to the Java VM on the machines where the respective agent
is supposed to be executed

pointcuts: list of pointcuts that determine security-relevant operations and, as
such, the points in the code at which the interceptor and enforcer are
inlined (see Section 3.3 for details)

policy: fully qualified name of the local policy class (see Section 3.6 for details)

event-factory: fully qualified name of the event factory class (see Section 3.4)

enforcer-factory: fully qualified name of the enforcer factory class (see Sec-
tion 3.5)

inline-classpath: colon-separated list of classpath entries that are added to the
JAR file of the target agent; the list must include the JAR file(s) that
contain the critical event classes, the critical event factory, enforcement
decision classes, enforcer classes, the enforcer factory

policy-classpath: colon-separated list of classpath entries that are added to the
Java program containing the local policy; the list must include the JAR
file(s) that contain the local policy, the critical event classes, and the
enforcement decision classes

loglevel: log level of log4j?

ext-host: host name, with which the node’s Service Automaton can be ad-
dressed by other Service Automata

ext-port: port number, with which the node’s Service Automaton can be ad-
dressed by other Service Automata

cor-host: host name, with which the Service Automaton’s interceptor compo-
nent can connect to the coordinator; can possibly be set to “localhost”
often, given that both components run on the same machine

cor-port: port number, with which the Service Automaton’s interceptor com-
ponent can connect to the coordinator

enf-host: host name, with which the Service Automaton’s coordinator compo-
nent can connect to the enforcer; can possibly be set to “localhost” often,
given that both components run on the same machine

enf-port: port number, with which the Service Automaton’s coordinator com-
ponent can connect to the enforcer

The remaining sections of this chapter describe how the values for the “point-

®see, e.g., http://logging.apache.org/logdj/1.2/apidocs/org/apache/log4j/Level.
html

PointcutSpec ::= ((PointcutDecl | Import) ’;’)*

PointcutDecl ::= PointcutMods ’pointcut’ Identifier
Formals ’:’ PointcutExpr

PointcutMods ::= (Ppublic’ | ’private’ | ’protected’)x*
Formals ::= ?(? ParamList? (’>’ FullyQualifiedName)7 ’)°
PointcutExpr = PointcutPrim

| >1!> PointcutExpr | >(’ PointcutExpr ’)°

| PointcutExpr ’&&’ PointcutExpr

| PointcutExpr ’||’ PointcutExpr
PointcutPrim = Identifier ’(’ JavaExpression ’)’
ParamList ::= FullyQualifiedName Identifier (’,’ ParamList)=*
Import ::= ’import’ FullyQualifiedName
FullyQualifiedName::= Identifier (’.’+ Identifier)x
Identifier 1= [Pa’-2z2 00 -02°] ([Pa’-2z2,°A%-227,°0°-29°])*

Figure 3.1: Language for specifying security-relevant operations

cuts” (Section 3.3), “policy” (Section 3.6), “event-factory” (Section 3.4), “enforcer-
factory” (Section 3.5) keys can be configured.

3.3 Declaring Security-Relevant Operations

This step consists of two parts: first, identifying security-relevant operations of
a given target program and, second, specifying these operations in a form that
is understandable by the Service Automata implementation.

Identifying security-relevant operations leaves a design space, similar to the
choice of the agents of the target program. Security-relevant operations may
be chosen at a low program level (e.g., single instructions) or at a more coarse-
grained level (e.g., whole method bodies). Concerning methods, one can in
principle choose API methods as well as program-defined methods.

Currently, the Service Automata implementation has been designed with
method calls as the security-relevant operations as the focus. In the following,
we assume that for each agent the set of security-relevant method calls has been
chosen. The next step is to specify these operations.

Security-relevant operations are specified as a PointcutSpec of Figure 3.1.
The language essentially is a list of pointcut specifications from AspectJ [KHHT01].
For this, any Identifier of PointcutPrim must be an identifier supported by
AspectdJ, such as “call”.

The language extends the AspectJ pointcut language by a return type, the
FullyQualifiedName in the Formals non-terminal. If this is omitted, void is

assumed as the return type.

3.4 Implementing Event Abstractions

The Service Automata implementation at runtime intercepts all attempts by
an agent to perform a security-relevant method that was specified as part of
Section 3.3. Whenever an agent attempts to perform a security-relevant method
call, then right before this attempt, the object on which the method is supposed
to be called as well as all parameter values are known. All this information could
be used for making a decision about the operation.

Since often not all information available at a method call are actually required
for making a decision, the Service Automata implementation supports event
abstractions. When instantiating the Service Automata implementation for a
concrete setting, one therefore has to perform the following steps for each agent:

(a) Identify relevant information for making decisions about events.

This step heavily depends on the security requirements to be enforced.
If, for instance, the security requirements speak about users’ activity,
then user names might be relevant information that should be present in
abstracted events.

(b) Define Java data types (by implementing the CriticalEvent interface) for
the events, such that all the information can be captured by the data

types.

(c) Implement a factory class that constructs critical event objects from con-
crete method calls.

For each security-relevant operation of the agent, specified in Section 3.3,
there must be a corresponding factory method of the same name (the
Identifier of PointcutDecl) in the factory class. This method must
have the same parameter list as the pointcut (ParamList in Formals)
and must return a CriticalEvent object.

3.5 Implementing Countermeasures

The goal of a dynamic enforcement mechanism is to impose appropriate coun-
termeasures against impending violations of security requirements by the target
program. Operations that would not constitute a violation should be permit-
ted. We first look at how countermeasures are specified and implemented and
afterwards, in Section 3.6, describe how countermeasures are decided.

The first step towards countermeasures is to define possible decisions that
shall lead to countermeasures. For this, an instantiation of the Service Au-
tomata implementation derives one or multiple Java classes from the EnforcementDecision

interface. These classes are used for storing decisions (such as “permit” or

“terminate”) as well as possible auxiliary information that is needed for car-
rying out the decision (such as an informative message to be displayed to a
user). Ideally, the decisions are technically independent from particularities of
the target program’s agent.

The second step is to define how decisions are translated to concrete exe-
cutable countermeasures. For this, an instantiation must provide an implemen-
tation of the EnforcerFactory interface, implementing

e public static Enforcer fromDecision(final EnforcementDecision ed)
o public static Enforcer fallback(final CriticalEvent ev)

Both methods return an Enforcer object. For this to be possible, an instantiation
must derive one or more classes from the Enforcer interface, which provides the
methods

e public boolean suppress(), which determines whether the original security-
relevant operation shall be performed (true return value) or not (false
return value),

e public void before(), which is code that shall be executed before the original
security-relevant operation is performed or suppressed,

e public void after(), which is code that shall be executed after the original
security-relevant operation is performed or suppressed, and

e public Object getReturnValue(Class ¢), which must return a substitute return
value if the security-relevant method has a return value and its execution
is suppressed.

3.6 Implementing (Coordinated) Deciding

For making decisions, an instantiation must derive a class from the abstract
LocalPolicy class. For a Service Automaton, deciding as part of a distributed
enforcement mechanism involves two aspects:

(a) deciding for operations that were attempted by the respective agent of
the target program that the Service Automaton encapsulates;

10

(b) deciding for operations that were attempted by a remote agent, which is
encapsulated by another Service Automaton.

For supporting these two cases, a LocalPolicy must implement the following two
methods

public abstract LocalPolicyResponse localRequest(CriticalEvent ev)
throws lllegal ArgumentException

public abstract LocalPolicyResponse remoteRequest(DelegationReqResp dr)
throws lllegalArgumentException

A LocalPolicyResponse can be one of EnforcementDecision or DelegationLocPolReturn,
where the latter comprises a DelegationReqResp and the identifier of the remote
Service Automaton that serves as the delegate. The two possible types of return
values correspond to the two kinds of decisions that a Service Automaton can
make upon a request:

(a) an EnforcementDecision that can be turned into a countermeasure as de-
scribed in Section 3.5;

(b) a (partial) decision that is to be delegated to a remote Service Automaton.

The latter must be an object of a class that implements the (empty) DelegationReqResp
interface. That is, when implementing an instantiation that uses coordination,

one or more classes implementing this interface must be provided. One may
define two classes, for instance, one for the requests (which could contain a
CriticalEvent as well as Strings for source and destination identifiers) and one for

the responses to requests (which could contain an EnforcementDecision as well as
Strings for source and destination identifiers).

11

4 Encapsulating Distributed Java
Programs

Chapters 2 and 3 describe the parametric architecture of a Service Automaton
as well as the instantiation of this architecture. Applying an instantiation to a
given distributed Java program is as easy as running

java —jar path/to/encaps.jar <config.cfg>

where the encaps.jar is a tool that is part of the Service Automata implementa-
tion.

12

Bibliography

[GMS12] R. Gay, H. Mantel, and B. Sprick. Service Automata. In Proceedings
of the 8th International Workshop on Formal Aspects of Security and
Trust (FAST), LNCS 7140, pages 148-163. Springer, 2012.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
Inc., 1985.

[KHH'01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An Overview of AspectJ. In 15th Furopean Con-

ference on Object-Oriented Programming, pages 327-353. Springer,
2001.

13

