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Abstract

Interrupt-driven communication with hardware devices
can be exploited for establishing covert channels. In this
article, we propose an information-theoretic framework for
analyzing the bandwidth of such interrupt-related channels
while taking aspects of noise into account. As countermea-
sures, we present mechanisms that are already implemented
in some operating systems, though for a different purpose.
Based on our formal framework, the effectiveness of the
mechanisms is evaluated. Despite the large body of work
on covert channels, this is the first comprehensive account
of interrupt-related covert channel analysis and mitigation.

1. Introduction

Application-level security necessarily relies on some
properties of the underlying system layers. The concept of
process separation is crucial in this respect as it provides
protection between application programs. While separation
is often taken for granted, it can be rather non-trivial to sep-
arate processes completely from each other. One problem
is that one must not only rule out communication via overt
channels like shared memory, but also via covert channels
[Lam73], which are not intended for communication.

Covert channels can be established based on shared re-
sources. For instance, a process can excessively access vir-
tual memory in order to increase the amount of physical
memory allocated to it, thereby increasing the likelihood of
paging for other processes. These processes measure the
delay caused by paging to establish a covert channel where
messages are encoded by the paging rate. Hard disks, net-
work cards, and the CPU itself are further examples of re-
sources that are possible sources of covert channels.

Covert channels and covert channel analysis have re-
ceived much attention by the research community over the
last 30 years. Nevertheless, the problem of covert channels

is not completely solved – neither in practice nor in theory.
This article focuses on covert channels that involve in-

terrupts. For instance, a process can access a file such that
the corresponding interrupt by the hard-disk controller oc-
curs while some other process is running. A covert channel
can then be established by encoding messages by the delay
caused by such interrupts. While interrupt-related covert
channels, in principle, could be avoided by polling devices
instead of using interrupt-driven communication, such so-
lutions are impractical in most cases (see Section 2). How-
ever, without sacrificing the communication paradigm, it
turns out to be difficult to completely eliminate interrupt-
related channels. If one cannot eliminate these channels
then one at least should be able to assess their dangers. For
this purpose, we developed methods for analyzing and lim-
iting the bandwidth of interrupt-related covert channels.

The novel contributions of this article are:

• a collection of mechanisms that can be adopted as
countermeasures against interrupt-related covert chan-
nels and that are already available in some systems,

• a formal framework for analyzing the bandwidth of
interrupt-related channels and of the effectiveness of
countermeasures against such covert channels, and

• an evaluation of the mechanisms in our information-
theoretic framework, resulting in a classification of the
various mechanisms under given conditions.

We found it somewhat surprising that interrupt-related
covert channels have received only very little attention so
far. A notable exception is [Tro98], where an analysis
is presented on how to exploit the duration of keyboard-
interrupts in order to deduce information about a secret
password while it is typed in. The scope of the current arti-
cle differs in that we focus on the intentional covert commu-
nication between processes and in that we strive for a more
formal evaluation for this class of covert channels.



2. Covert channels

McHugh defines a covert channel as “a mechanism that
can be used to transfer information from one user of a sys-
tem to another using means not intended for this purpose
by the system developers” [McH95]. Traditionally, one dis-
tinguishes timing channels from storage channels. A covert
channel is a timing channel if its usage involves a global
clock or a process’s local perception of time. If time is not
involved then a channel is referred to as storage channel.

2.1. Timing channels and quotas

In this article, we focus on timing channels. The follow-
ing example illustrates two possibilities for establishing a
timing channel based on the CPU usage of a process.

Example 1 Assume a Round-Robin scheduler and that only
two processes are active, the sender and the receiver. The
sender encodes messages by how much of a given time
quantum it actually uses. For sending the value 0, the
sender yields the CPU immediately at the beginning of the
quantum. For sending a 1, the sender uses its entire quan-
tum. The receiver can then re-construct the value based on
the starting time of its subsequent time quantum. Alterna-
tively, messages can also be encoded by the wake-up time
of the sender: Sender and receiver agree on fixed points in
time tk. If the sender sleeps at time ti, the ith bit sent is
0, otherwise it is 1. In [Hus78], these two channels are re-
ferred to as quantum-time channel and interquantum-time
channel, respectively. ♦

To rule out side effects of using a shared resource, one can
assign to each process a fixed quota for using this resource.
Within its quota, a process can utilize the resource at its dis-
cretion – but not beyond. Effectively, the resource is virtual-
ized, giving each process the impression of having exclusive
access to an unshared resource with lower performance.

Example 2 Assume that the CPU quanta are fixed for the
processes from Example 1, including the starting time and
the duration of each given time quantum. Then there is no
danger of quantum-time channels because yielding the CPU
does not cause the subsequent time quantum to start earlier.
Interquantum channels are avoided by allowing processes
to wake up only during their own time quanta. ♦

Analogously, quotas can be employed for virtualizing other
resources. For instance, the paging-based covert channel
from Section 1 can be excluded by assigning a fixed quan-
tum of physical memory to each process.

2.2. Interrupt-related channels

Unfortunately, the solution in Example 2 is not sufficient
for eliminating timing channels if the usual interrupt-driven

communication is used for interacting with hardware de-
vices. For instance, when a file transmission from the hard
disk into RAM is completed then the hard-disk controller
issues an interrupt. When the interrupt controller receives
the interrupt, it informs the CPU, and the currently running
process is stopped in order to handle the interrupt. This be-
havior can be exploited to establish a timing channel where
the sender encodes messages by the number of interrupts to
be handled during the receiver’s quanta:

Example 3 Assume a Round-Robin scheduler and three
active processes: an operating-system process OS, a pro-
cess A (the sender), and a process B (the receiver). For
sending a 1, the sender accesses a file such that the corre-
sponding interrupt occurs during the receiver’s subsequent
quantum, while, for sending a 0, no interrupt is initiated.
During its time-slots, the receiver measures the time to de-
tect delays caused by interrupt handling.

The following diagram illustrates the transmission of the
sequence 〈1, 1, 0〉 from A to B. In the diagram, time pro-
gresses from left to right, and the labeled boxes represent
the time quanta where the label indicates the process:

α

interrupt handler

β

interrupt handler

A B OS A B OS A B . . .

The labeled circles indicate the points in time when file
accesses occur. Process A performs a file access at α dur-
ing its first quantum, and the corresponding interrupt is
handled during B’s first quantum (indicated by the shaded
area in the box representing B’s first time quantum). Pro-
cess A issues another file access at time β. During its third
time quantum, A does not perform any file accesses. Pro-
cess B can then reconstruct the sequence by measuring the
delay caused by interrupts in its three time-slots. ♦

Interrupts are referred to as asynchronous interrupts if they
originate from a hardware device at some point in time after
the access to the device was requested (like, e.g., a keyboard
interrupt or the interrupts in Example 3). In contrast, syn-
chronous interrupts (or software interrupts) immediately oc-
cur after a given instruction (like, e.g., interrupts caused by
a division by zero or a system call). Apparently, interrupt-
related channels can only be created via asynchronous in-
terrupts that are not masked by the operating system.1

Exploitation scenarios like the one in Example 3 are re-
alistic threats. The access time of contemporary hard disks
is around 5–10 milliseconds, while a base time quantum of
a process with nice value 0 in the Linux Kernel (version
2.6) has a length of 100 milliseconds [BC06]. This allows
a sender to aim precisely at a time quantum of the subse-
quently scheduled process. If there are more than two active

1Note that masking blocks interrupts on a per-device basis, not on a
per-process basis. This is why one cannot mitigate interrupt-related covert
channels based on masking analogously to the solution in Example 2.
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processes and the time quantum of the receiver does not di-
rectly follow the sender’s time quantum then the sender can
increase the amount of data that is transferred in order to
delay the interrupt to the next time quantum of the receiver.

Besides hard disks, there are various other devices that
provide possibilities for covertly communicating based on
asynchronous interrupts. For instance, CD/DVD drives,
sound cards, network adapters, and sensors cause interrupts
that all can be the source of covert channels. In princi-
ple, one could eliminate interrupt-related covert channels
by changing the paradigm for communicating with devices.
Instead of a device informing a process that it needs atten-
tion, each process could actively poll devices for informa-
tion. However, there are good reasons for not migrating
to polling. Namely, delays in handling requests might lead
to data being lost, e.g., when no free buffer space is avail-
able for a packet that arrived on the network. Moreover,
polling increases the communication overhead between the
CPU and devices, which may lead to significant perfor-
mance penalties. This degradation of performance would
come on top of the one caused by using quotas. Conse-
quently, mechanisms against interrupt-related covert chan-
nels are attractive if they allow one to retain the main ad-
vantages of interrupt-driven communication.

As it is not always feasible to eliminate interrupt-related
covert channels completely, one might want to select the
countermeasure with the best cost-benefit ratio instead. For
determining the benefits of a given mechanism one needs
to calculate the limits that it imposes on the bandwidth of
the given channel. For answering, how dangerous a given
covert channel is, one needs a quantitative analysis. A
qualitative analysis (answering: Is there a covert channel?)
would not be sufficient as it is clear that the countermeasure
does not eliminate the channel. In the subsequent section,
we propose such a quantitative analysis.

3. The information-theoretic framework

We developed a quantitative covert channel analysis
based on Shannon’s information theory [Sha48]. We recall
the necessary basics from information theory in Section 3.1
(based on [CT91]) before we introduce a formal model of
the communication via interrupt-related covert channels.
This model provides the information-theoretic framework
for our quantitative analysis in later sections.

3.1. A primer on information theory

In this article, we consider discrete random variables,
i.e., random variables with a finite or countable range. The
probability that a random variable X has value x is denoted
by p(X=x) or, if the random variable is clear from the con-
text, by p(x). We use the symbolX also to denote the set of

possible values for the random variableX . As a convention,
we use X and Y to denote random variables.

The entropy of X (denoted by H(X)) is a measure for
the amount of information contained in X . It is defined by

H(X) = −
∑
x∈X

p(x) ∗ log(p(x)),

where log denotes the logarithm with base 2 (like in the rest
of the article). The entropyH(X) constitutes a lower bound
on the average number of bits needed to represent a value of
X . Consider, for instance, a representation where b(x) de-
notes the bit-string representing a value x. Then the number
of bits needed to represent a value of X on average can be
calculated by

∑
x∈X p(x) ∗ |b(x)| where |b(x)| denotes the

length of b(x), i.e., the number of bits. In general, we have
H(X) ≤

∑
x∈X p(x) ∗ |b(x)| and H(X) ≤ log(|X|). One

can also determine an upper bound on the length under an
optimal encoding: there always is an encoding (b(x))x∈X

such that
∑

x∈X p(x) ∗ |b(x)| < H(X) + 1 (see [CT91]).
The conditional entropy of X given Y (denoted by

H(X|Y )) is a measure for the amount of information con-
tained in X if the value of Y is known. It is defined by

H(X|Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) ∗ log(p(x|y)),

where p(x, y) is a short-hand notation for p(X=x∧Y =y),
i.e. the joint probability of X having value x and Y hav-
ing value y. Moreover, p(x|y) is a short-hand notation for
p(X=x |Y =y), i.e. the conditional probability of X hav-
ing value x given that Y has value y. Generally, we have
0 ≤ H(X|Y ) ≤ H(X). If the value of Y completely re-
veals the value of X then H(X|Y ) = 0. In the other ex-
treme case, the value of Y does not reveal anything about
the value of X , and H(X|Y ) = H(X) holds.

The mutual information of X and Y (denoted by
I(X;Y )) is a measure for the amount of information about
the value ofX that is revealed by learning the value of Y . It
can be calculated by H(X)−H(X|Y ). For instance, if X
is uniformly distributed and takes values from 0 to 255 then
a straightforward binary encoding is optimal, where each
value is encoded by a bit-string of length 8. If Y equals
the lowest two bits of X then I(X;Y ) = 2. Note that the
notion is symmetric, i.e., I(X;Y ) = I(Y ;X).

A memoryless discrete channel C is a triple
(IC , OC , PC) where IC is the input alphabet (i.e., the
set of values that can be sent on C), OC is the output
alphabet (i.e., the set of values that can be received from
C), and PC = (p(o|i))i∈IC ,o∈OC

is the probability matrix
where PC [i, o] = p(o|i) is the probability that the output
equals o given that the input equals i.

The capacity of the channel C (denoted by CAP(C)) is
an upper bound on the amount of information (in number
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Figure 1. An interrupt-related channel

of bits) that can be transmitted over C on average with an
arbitrarily small error probability [CT91]. It is defined by

CAP (C) = max I(X;Y ),

whereX is a random variable with range IC , Y is a random
variable with rangeOC , and the maximum is computed over
all possible probability distributions for X . Here, the prob-
ability distribution for Y is completely determined by the
probability distribution for X and PC :

p(Y =o) =
∑
i∈IC

p(X= i) ∗ PC [i, o]

For instance, a channel C with IC = OC = {0, . . . , 255},
PC [i, o] = 1 for i = o, and PC [i, o] = 0 for i 6= o has the
capacity CAP(C) = 8. In contrast, if PC′ [i, o] = 1 for o =
255 and PC′ [i, o] = 0 for o 6= 255, then CAP(C ′) = 0. The
first channel perfectly transmits the input, while the second
does not transmit any information at all.

3.2. Modeling the transmission

In order to transmit information via an interrupt-related
channel, the sender performs operations that initiate asyn-
chronous interrupts with the intention of influencing the re-
ceiver’s behavior such that the message can be decoded.
The receiver measures any delays that occur during his
time-slots and attempts to reconstruct the original message
from these measurements. Obviously, it is in the interest of
the receiver, both to maximize the precision of the measure-
ment and to maximize the reliability of the analysis. Unfor-
tunately, these goals are conflicting because any processing
time that the receiver dedicates to the analysis is lost for
measurements. The solution is to perform the analysis off-
line (as indicated in Figure 1). In our bandwidth analysis,
we assume this worst-case scenario.

In the remainder of this section, we make a number of
simplifying assumptions. We assume that the number of
active processes is fixed. Moreover, we assume a Round-
Robin scheduler ensuring that the starting time and length

for each time-slot is fixed. Consequently, quantum-time
and interquantum channels are prevented (see Examples 1
and 2). The input that a sender can provide to the channel
are the points in time during a time-slot when he performs
interrupt-initiating operations. The output is the delay that
the receiver measures during his time-slot. The channel it-
self is modeled as a memoryless discrete channel. Here, we
measure delays, and time in general, in abstract time units,
where executing an operation requires at least one time unit.
Moreover, we assume the transmission to be noiseless (a
proper treatment of noise will be integrated in Section 5).

In the remainder of this section, we detail our model of
the transmission via interrupt-related covert channels.

The sender. The input to the channel corresponds to the
sender’s operations that cause later occurrences of asyn-
chronous interrupts. Formally, an input can be viewed
as a set {t1, . . . , tk} where each element tj represents an
interrupt-initiating operation, and tj equals the time when
the respective operation is performed. All times are calcu-
lated relatively to the starting point of the given time-slot.
That is, 0 ≤ tj < s holds for all j ∈ {1, . . . , k}, where s
equals the duration of the time-slot. The input alphabet is

IC = {A | A ⊆ {0, . . . , s− 1}} .

For notational convenience, we alternatively represent the
input as a list [t1, . . . , tk], implicitly assuming that the ele-
ments occur in ascending order (i.e., j < j′ ⇒ tj < tj′).

Note that the input alphabet IC constitutes a worst-case
scenario. In reality, the sender might not be able to generate
all elements in the input alphabet. For instance, if it requires
more than one time unit to execute an interrupt-initiating
operation then inputs of the form [. . . , t, t + 1, . . . ] can-
not be generated. Moreover, there may be an upper bound
on the number of interrupt-initiating operations that can be
performed during a time-slot. For instance, the sender’s ex-
ecution is stopped after performing a synchronous/blocking
hard-disk access until the corresponding interrupt occurred
and was handled. With such operations, the sender can only
generate either the empty set or a singleton set as input. In
contrast, asynchronous/non-blocking I/O allows the sender
to generate input with more than one element [BC06].

The receiver. During the transmission, the sensor repeat-
edly records the points in time in a log (in RAM) while it is
running. The log provides the input to a later off-line analy-
sis, which attempts to re-construct the delays caused by in-
terrupts. A sensor output can be viewed as a set {t1, . . . , tk}
where each element ti is a point in time that the sensor
recorded. This output alphabet equals the input alphabet:

Osensor = IC ,
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but the interpretation differs. For instance, an off-line anal-
ysis of the output [0, 1, 2, 6, 7] would reveal the delay two
time units after the start of the time-slot. This delay can be
explained by the occurrence of interrupts, where the num-
ber of interrupts can be calculated from the measured delay
and the time required for handling a single interrupt.

Note that our sensor-output alphabet, again, constitutes
a worst-case scenario. Typically, many elements of the out-
put alphabet will be infeasible. For instance, if interrupt
handling requires 3 time units, the output [0, 1, 2, 6, 7] is
possible, while [0, 1, 2, 4, 6, 7] is impossible. Moreover, if
the sensor requires more than one time unit for probing
the clock and for recording the value in the log then out-
puts of the form [. . . , t, t + 1, . . . ] are impossible. More
generally, some interrupts might be disguised if the sensor
can measure time only coarsely. In fact, reducing the clock
resolution is one possible countermeasure against interrupt-
related covert channels (see Section 4).

We assume that the output of the off-line analysis is the
cumulative delay during each time-slot (i.e., the sum of all
time units during which the receiver was not active):

OC = {0, . . . , s} ,
where s is the duration of the receiver’s time-slot. We
needed such a simplification to make the detailed analysis
in Sections 5 and 6 technically feasible. However, this is
clearly not a worst-case scenario because some information
in the sensor’s log is not exploited (like, e.g., when the de-
lays occurred during the time-slot). Nevertheless, our anal-
ysis of the channel and of the countermeasures (here and in
Section 6) reveals a number of interesting insights and, we
believe, also gives a fairly realistic impression of the threat
and the effectiveness of the mechanisms.

Moreover, if the output of the off-line analysis is, indeed,
limited to the cumulative delay then the output alphabetOC

constitutes a worst-case scenario. In reality, some elements
of OC might be impossible (like for Osensor).

The channel. The transmission is modeled by a memo-
ryless discrete channel (see Section 3.1). The probability
matrix determines the likelihood that an output o ∈ OC oc-
curs given that the sender transmitted an input i ∈ IC . Con-
versely, the matrix can be used to determine the probability
that i ∈ IC was sent given that o ∈ OC is received.

Example 4 If each interrupt-initiating operation in the
sender’s time-slot results in an interrupt in the receiver’s
time-slot and each such interrupt induces a delay of c time
units, then one obtains the following probability matrix:

p(o|i) =

{
1 , if o = |i| ∗ c,
0 , otherwise.

However, if an interrupt occurs only within the receiver’s
time-slot if the interrupt-initiating operation was performed

at most t time units after the start of the sender’s time-slot,
then one obtains the following probability matrix:

p(o|i) =

{
1 , if o = |{x ∈ i | x ≤ t}| ∗ c,
0 , otherwise. ♦

The threat. Interrupt-related covert channels constitute a
threat that should not be neglected when constructing and
evaluating security-critical systems. The following example
illustrates that a 12-bit PIN (i.e. the order of magnitude used
in authentication mechanisms for banking machines) can be
easily transmitted in approximately one second.

Example 5 Assume that the Round-Robin scheduler sched-
ules a receiver’s time slot always immediately after a time-
slot of the sender. We assume a length of 100ms for a time-
slot and that one other process is active in addition to the
sender and the receiver (e.g., a system-level process). The
sender uses asynchronous/non-blocking I/O for accessing
the hard disk in order to generate interrupts where a hard-
disk access shall require exactly 10ms and handling an in-
terrupt shall take exactly 1ms (see Sections 5.1 and 5.2 on
how such strict assumptions can be relaxed).

For simplicity, we use the following alphabets:

IC = {A | A ⊆ {0, . . . , 99}} OC = {0, . . . , 99}

That is, here, time units correspond to milliseconds. Due
to the access time of the hard disk, an access by the sender
leads to an interrupt in the receiver’s time-slot only if it is
performed within the last 10ms of the sender’s time-slot.
This leads to the following probability matrix:

p(o|i) =

{
1 , if o = |{x ∈ i | x ≥ 90}|,
0 , otherwise.

Based on Section 3.1, one can calculate that the bandwidth
of the channel is at least 11.5 bits per second.2 ♦

4. Possible countermeasures

In the following, we present six mechanisms that can be
used against interrupt-related channels. These mechanisms
are implemented in some operating systems, but they were
not originally intended as a countermeasure against inter-
rupt-related covert channels. Here, we describe how each
mechanism works, postponing an evaluation to Section 6.

2Let X and Y be random variables on IC and OC , respectively. As-
sume that no interrupt-initiating operations are performed in the first 90ms
of the sender’s time-slot. Let X capture the number of interrupt-initiating
operations in the last 10ms of the sender’s timeslot. If X is uniformly
distributed then Y is uniformly distributed on {0, . . . , 10}. Hence, we
have I(X; Y ) = I(Y ; X) = H(Y ) − H(Y |X) = log(11). From
CAP(C) = max I(X; Y ), we obtain CAP(C) ≥ log(11), which refers
to the capacity for a single time-slot of the receiver. As, on average, there
are 3 1

3
time-slots of the receiver per second, at least 3 1

3
∗ log(11) ≡ 11.5

bits can be transmitted per second.
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Fuzzy time and reduced clock resolution are mecha-
nisms against covert timing channels, in general. Both
mechanisms reduce the bandwidth by modifying how pro-
cesses perceive time. These mechanisms are effective as all
interrupt-related channels are also timing channels. Polling
can be used to replace interrupt-driven communication, but
this is, in general, not acceptable (as discussed in Section 2).
However, there are cases where polling is a viable solution,
e.g., in some real-time systems polling is applied in order
to ensure reliable upper bounds on latency times. Interrupt-
initiated polling, interrupt-rate limiting, and strict software
scheduling all impose constraints on the number of inter-
rupts that can occur in a time-slot. These three mechanisms
are usually employed for preventing receive livelocks.3

4.1. Altering the perception of time

The exploitation of covert timing channels closely de-
pends on the ability to perceive time. It is the nature of
timing channels that they cannot be exploited without hav-
ing access to a system clock or some other source of timing
information. However, it is usually unrealistic to prevent the
access to all possible sources of timing information (includ-
ing, e.g., access to internal system clocks, clocks attached
to the network, and interleavings of event sequences that
could, otherwise, serve as relative clocks [Wra91]).

Fuzzy time provides a solution to mitigate timing chan-
nels while still giving processes access to the system clock
[Hu91]. This system clock, however, measures time im-
precisely where the duration of each clock tick is randomly
distributed around some average value. If a clock tick takes,
e.g., 10µs on average then the duration of a clock tick, e.g.,
could be uniformly distributed between 5µs and 15µs. The
VAX security kernel is an example of an operating system
that incorporates a fuzzy time mechanism [KZB+90].

One problem with fuzzy time is that, over time, the im-
precise system clock could deviate too much from real time.
However, this problem can be overcome by synchronizing
the imprecise clock at predefined intervals with a precise
clock (which is not directly accessible by processes).

There are fundamental limits on how far one can reduce
the bandwidth of timing channels by a fuzzy time mecha-
nism (see Section 6 for a detailed analysis). In particular, it
cannot eliminate interrupt-related channels completely.

Reduced clock resolution is a mechanism that also al-
ters the perception of time but does not share this limita-

3A receive livelock occurs if a device generates so many interrupts that
interrupt handling takes up all CPU time. For instance, if a network card
receives too many packets from a network then it may cause so many in-
terrupts for forwarding the packets into a buffer that no processing time
remains for properly processing the packets that are already in the buffer.

tion. Instead of altering the behavior of the accessible sys-
tem clock, one reduces the resolution of timing informa-
tion. This gives processes a coarser perception of the system
time and thereby reduces their capabilities to exploit timing
channels. Implementing this solution is fairly straightfor-
ward as one only needs to provide variants of system calls
that return timing information with the given resolution.

4.2. Change of communication paradigm

Besides mitigating interrupt-related covert channels, our
other goal is to retain the main advantages of interrupt-
driven communication. However, the latter goal becomes
obsolete if there are already other reasons for using polling-
based communication with hardware devices.

Polling can be used to ensure maximum latency times for
hardware device. Some real-time kernels (e.g., [The07]) of-
fer a polling mode for this purpose. In polling mode, the
operating system repeatedly checks whether the various de-
vices need any attention. In order to ensure a maximal la-
tency for a given device, the system must check this device
in shorter intervals than the maximal latency time.

Polling fundamentally differs from interrupt-driven com-
munication where devices actively inform the operating sys-
tem by interrupts that they need attention. If a device is not
checked frequently enough then there is a danger of data
being lost (e.g., if the buffer on a network card is too small
for storing all packets that arrive). If such dangers shall be
avoided then the intervals in which the device is checked
must not only be shorter than the maximal latency time but
also shorter than the minimal time needed to loose data.

Some care is needed in the implementation of polling,
if it shall not be the source of other covert channels. In
particular, the duration of polling should not have any in-
fluence on application processes. This can be achieved, by
dedicating fixed parts of the time-slots of operating system
processes to polling as illustrated in the following diagram:

A B OS A B OS A . . .
poll poll

When determining the size of the slots for polling, one must
take into account the execution times of the relevant device
drivers. Moreover, these slots themselves constitute shared
resources (as polling occurs on a per device basis and not on
a per process basis) and, hence, one must ensure that they
cannot be the source of additional covert channels.

4.3. Selective processing of interrupts

In interrupt-driven communication, the CPU is tradition-
ally interrupted each time some device needs attention. A
more selective processing of such situations can reduce the
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bandwidth of interrupt-related channels. On the implemen-
tation level, this can be achieved by creating interrupts more
selectively at the devices or, alternatively, by filtering inter-
rupts using the masking mechanism of the operating system.

Interrupt-rate limiting delays interrupts until certain
conditions are met. For instance, a network card would de-
lay interrupts until a certain number of packets has arrived
(rather than requesting an interrupt for each packet). This is
illustrated in the following diagram (where each arc on top
of the time-slots indicates the arrival of a packet):

interrupt handler interrupt handler

A B OS A B OS A . . .

Interrupt-rate limiting is, e.g., implemented in the Intel
82540EM Gigabit Ethernet Controller as a countermeasure
against receive livelocks [Cor03]. It indeed protects against
this threat because, if too many network packets arrive then
the network card overwrites old packets in its buffer, with-
out needing any processing time of the CPU.

Strict software scheduling is another mechanism for
avoiding receive livelocks [RD05]. The mechanism en-
forces a minimal time span D between any two successive
interrupts from the same device. This is implemented by
masking interrupts from a given device for D time units
after this device issued an interrupt request. If the mask
has not yet been reset then further interrupt requests from
this device are dropped or, alternatively, held back by the
interrupt controller as illustrated in the following diagram:

interrupt handler

A B OS A B OS A . . .

D D

Interrupt-initiated polling masks interrupts from a
given device immediately after this device caused an inter-
rupt, and the operating system switches to polling mode for
this device. This is illustrated in the following diagram:

interrupt handler pollpoll
A B OS A B OS A . . .

polling mode

To avoid the disadvantages of polling-based communica-
tion, the system switches back to interrupt mode after a
given time period or when some other condition is met.

In [MR96], interrupt-initiated polling is proposed as a
countermeasure against receive livelocks. To be effective,
the mechanism must be combined with an implementation
of the polling mode that avoids livelocks. A similar mecha-
nism can be found in the Linux kernel (the NAPI, [SO01]).

5. Refining the information-theoretic model

Before evaluating the countermeasures wrt. their effec-
tiveness against interrupt-related channels, we move to a
more realistic scenario. In Section 3.2, we introduced an
information-theoretic model of the transmission that leaves
out of consideration that the communication could be dis-
turbed by noise. In this section, we refine the model con-
sidering three possible sources of noise: varying response
times of devices, varying duration of interrupt handling, and
interrupts caused by other processes than the sender.

Fortunately, the refinement does not require any funda-
mental changes of the framework. A noisy interrupt-related
channel is, again, modeled as a memoryless discrete chan-
nel C = (IC , OC , PC). Formally, we define the probability
matrixPC by the multiplication of two matricesQC andRC

(i.e. PC = QC × RC). Consequently, the rows of QC are
indexed by the input alphabet IC and the columns of RC by
the output alphabet OC of the channel. Both alphabets are
taken from Section 3.2, i.e., IC = {A | A ⊆ {0, . . . , s−1}}
and OC = {0, . . . , s}. For accessing the columns of QC as
well as the rows of RC , we use a finite index set KC .

More concretely, we use QC to specify the probabil-
ity that a certain number k ∈ KC of interrupts occurs
during the receiver’s time-slot given that the sender per-
formed interrupt-initiating operations at the times specified
by i ∈ IC . The matrix RC specifies the probability that a
delay o ∈ OC occurs during a time slot of the receiver given
that a certain number k ∈ KC of interrupts occurred in this
time-slot. The probability that a delay o ∈ OC is caused
given that the input equals i ∈ IC can be determined by:

p(o|i) =
∑k=|K|

k=0 p(k|i) ∗ p(o|k)

=
∑k=|K|

k=0 Q[i, k] ∗R[k, o]
= (Q×R)[i, o] = P [i, o]

The following example illustrates that and how noiseless
channels can be represented in this refined framework.

Example 6 Assume that each interrupt-initiating operation
in the sender’s time slot causes one interrupt in the re-
ceiver’s time-slot and that no other interrupts occur. More-
over, let the time needed for handling a single interrupt be
a constant c. The resulting probability matrices are:

Q[i, k] = p(k|i) =

{
1 if k = |i|,
0 if k 6= |i|

R[k, o] = p(o|k) =

{
1 if o = c ∗ k,
0 if o 6= c ∗ k ♦

In the remainder of this section, we explain how aspects of
noise can be incorporated into our framework. The three
refinements presented are compatible and can be used in
combination with each other.

332



The probabilistic characterization of noise depends on
the particular system and on the system load. For a reliable
bandwidth analysis, the probability distribution must reflect
reality as precisely as possible. However, the precise proba-
bility distribution is usually rather difficult to determine an-
alytically for a complex system. Therefore, an experimental
element seems unavoidable in the analysis. Our approach is
to select some parameters for each possible source of noise.
For a concrete system, these parameters can be determined
by an experimental evaluation. In our formal treatment of
noise, we just assume that the respective parameters are
given and base the analysis on the probability distribution
with the maximal entropy (among the distributions satisfy-
ing the given parameters). This approach is known as the
principle of maximum entropy [Jay57, CT91].

5.1. Noise: varying response times

The response times of hardware devices are not con-
stant, but rather vary around some average value.4 We use
a random variable ∆T to characterize the duration between
performing an interrupt-initiating operation and the corre-
sponding interrupt. Let δ be the average value of ∆T and
σ2 be the variance of ∆T . Given δ and σ2, the normal dis-
tribution (denoted by N(δ, σ)) maximizes the entropy (see
[CT91, chapter 11]). Following the principle of maximal
entropy, we assume that ∆T is N(δ, σ)-distributed.

That is, the probability that performing an interrupt-
initiating operation at time t results in an interrupt between
time a and time b can be calculated by

p(a ≤ t+ ∆T ≤ b) = Φ
(
b− t− δ

σ

)
−Φ

(
a− t− δ

σ

)
,

where Φ is the cumulative distribution function of the nor-
mal distribution with parameters 0 and 1. The entries ofQC

are calculated as the sum of all probabilities that k interrupts
occur in the receiver’s time-slot (i.e., between a and b):

p(k|i) =
∑

A⊆i,|A|=k

(
∏
t∈A

p(a ≤ t+ ∆T ≤ b))

∗ (
∏

t∈i\A

1− p(a ≤ t+ ∆T ≤ b)).

For a given system, the parameter δ depends on the par-
ticular hardware devices accessed by the interrupt-initiating
operation, e.g., on the access time of a hard disk. For hard
disks, values between 5 ms and 15 ms are common (e.g.,
12.6 ms for the Seagate Barracuda 7200.7 [LLC05]). Ac-
cess times for CD-ROM drives are much higher (about 200
ms to 400 ms). If access times have been obtained for a de-
vice, the variance σ2 can be obtained, e.g., by a maximum
likelihood estimation ([Kay93]).

4The variation depends on many parameters. In particular, it can be
influenced by the sender. For instance, the sender can select specific disk
sectors for the disk accesses to keep the variations small.

5.2. Noise: varying duration of handling

The time needed for handling interrupts is not constant
in reality, but is more adequately characterized by a discrete
random variable HT . Let the minimal, maximal, and av-
erage duration needed for interrupt handling be denoted by
tmin, tmax, and t, respectively. Following the principle of
maximal entropy, the probability distribution is specified by

p(HT = t) =
βt∑tmax

j=tmin
βj
,

where 0< β (see [CT91]). The value of β is uniquely de-
termined by t as

∑tmax

t=tmin
t ∗ p(HT = t) is monotonically

increasing in β. The entries of RC can be calculated by

p(o|k) =
∑

(t1,...,tk)
t1+...+tk=o

p(HT = t1) ∗ . . . ∗ p(HT = tk).

This source of noise reduces the capacity as it makes it
harder for the receiver to guess the number of interrupts in
a time-slot based on the cumulative delay that he observes.
A delay of, e.g., eight time units could be explained by two
interrupts with a duration of four time units as well as by
four interrupts with a duration of two time units.

5.3. Noise induced by other processes

In reality, there will usually be further active processes
besides sender and receiver, and these processes might also
perform interrupt-initiating operations. We refer to the re-
sulting interrupts as noisy interrupts because they disturb
the covert communication between sender and receiver.

We use a discrete random variable N to characterize the
number of noisy interrupts in the receiver’s time-slot. Let
n be the average number of noisy interrupts in a time-slot
of the receiver. We assume that the probability that a noisy
interrupt occurs at a given point in time is independent from
this particular point in time as well as from the history of
prior interrupts. Under these assumptions, the distribution
of N is approximated by a Poisson distribution with param-
eter n (see [Bul79]), i.e., P (N=k) = e−n ∗ nk/k!.

The probability that k interrupts occur in the receiver’s
time-slot, given that k′ ≤ k of interrupt-initiating oper-
ations lead to interrupts in this time-slot of the receiver,
equals the probability that k−k′ noisy interrupts occur, i.e.,
P (N=k − k′). The entries of the matrix QC can be calcu-
lated by (where p′(k|i) refers to the entries of the original
matrix QC and p(k|i) to the entries of the modified matrix
taking noisy interrupts into account):

p(k|i) =
k∑

k′=0

p′(k′|i) ∗ P (N=k − k′).

Note that this treatment of noisy interrupts can be used in
combination with our treatment of varying response times
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(see Section 5.1) as it is specified as a transformation on the
matrix QC (rather than as an absolute definition of QC).

We measured the average number of interrupts on a De-
bian Linux System under normal system load. Clock inter-
rupts are requested regularly, and their frequency is there-
fore known to the sender and receiver. For this reason we
did not count them in our measurement. We obtained an
average number of four interrupts per 100 milliseconds.

6. Evaluation of countermeasures

We evaluate the mechanisms from Section 4 with respect
to their potential to mitigate interrupt-related channels. Our
information-theoretic framework serves as the basis of this
quantitative analysis. Before analyzing the mechanisms,
we show how each mechanism can be characterized in the
framework from Section 5 .

6.1. Embedding into the framework

Fuzzy time causes deviations of the system clock from
real time. We use a random variable ERR to capture the de-
viation of a given clock tick. Given a maximal deviation K,
ERR is uniformly distributed in the interval {−K, . . . ,K}.
Since the deviation for a given clock tick is chosen inde-
pendently from the deviation for previous clock ticks, the
maximal deviation increases over time (e.g., after 5 clock
ticks, the maximal deviation would be 5 ∗ K). For lim-
iting the maximal deviation, the fuzzy clock is periodi-
cally synchronized with a precise clock. Obviously, these
re-synchronizations reduce the effectiveness of the fuzzy
time mechanism against timing channels. For analyzing
the effectiveness of the mechanism against interrupt-related
channels, we make the worst-case assumption that a re-
synchronization occurs immediately before each clock tick
that is relevant for the analysis. The delay caused by fuzzy
time in the receiver’s time-slot can then be characterized as
the sum of two random variables (one for the starting point
and one for the endpoint of the time-slot) that are each uni-
formly distributed on {−K, . . . ,K}, i.e. by ERR+(−ERR).
We characterize the fuzzy time mechanism in the frame-
work from Section 5 by specifying the matrix RC (where
p(o|k) refers to the entries of RC without fuzzy time and
pfuz(o|k) refers to the entries with fuzzy time):

pfuz(o|k) =
+K∑

j1,j2=−K

(
p(ERR=j1) ∗ p(ERR=j2)
∗ p(o− j1 − j2|k),

)
where we assume p(o−j1−j2|k) = 0 if o−j1−j2 < 0.

Reduced clock resolution has the effect of making time
measurements less accurate than with full clock resolution.
E.g., if the time resolution is ten time units, the measured
cumulative delay is a multiple of ten. In this case we

assume that, instead of time t, the receiver measures the
time 10 ∗ bt/10c. I.e., the measured time is rounded off
to the next multiple of ten. We characterize the mecha-
nism in the framework by modifying the matrix RC (where
p(o|k) denotes the probabilities with full clock resolution
and pred(o|k) denotes them with reduced clock resolution):

pred(o|k) =

{∑9
j=0 p((o+j)|k) if o ≡ 0 mod 10,

0 otherwise.

Other clock resolutions can be characterized analogously.

Polling prevents occurrences of asynchronous interrupts,
which is characterized by changing the matrix QC :

p(k|i) =

{
0 if k > 0
1 if k = 0

Interrupt-rate limiting reduces the number of interrupts
that a device generates. For our analysis, we assume a
mechanism that generates one interrupt for every chunk of
v interrupts that would otherwise be requested, where v is
some constant. The handling of a given interrupt might take
longer with this mechanism (e.g., when a network card is-
sues an interrupt, v packets instead of 1 packet must be han-
dled), however, we ignore such aspects in our analysis.

A subtlety that our analysis addresses in more detail is
that there is some uncertainty about the number of interrupts
that are already pending at the given device. This number
determines how many further interrupt situations are needed
before an actual interrupt is forwarded to the CPU. We
assume that the number of pending interrupts is captured
by a random variable PEN that is uniformly distributed on
{0, . . . , v−1} (i.e., p(PEN=w) = 1

v for w∈{0, . . . , v−1}).
The mechanism is characterized in the framework from

Section 5 by modifying the matrix QC (where p(k|i) refers
to the entries of QC without interrupt-rate limiting and
pirl(k|i) refers to the entries with interrupt-rate limiting):

pirl(0|i) =
v−1∑
j=0

1
v
∗

(
v−j−1∑

l=0

p(l|i)

)
and (for k > 0)

pirl(k|i) =
v−1∑
j=0

1
v
∗

(k+1)∗v−j−1∑
l=k∗v−j

p(l|i)

 .

Strict software scheduling enforces a gap of D time
units between two successive interrupts. Consequently, if
a time-slot’s length is s then at most bs/Dc + 1 interrupts
can occur in it. Note that the number of interrupts that
occur with strict software scheduling might be strictly be-
low this upper bound, even if more than bs/Dc + 1 inter-
rupts would occur without strict software scheduler. For
instance, if all interrupts would occur in the second half of
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the time-slot then d bs/Dc+1
2 e would be an upper bound on

the number of interrupts that occur with a strict software
scheduler. For analyzing the effectiveness of the mecha-
nism, however, we make the worst-case assumption that,
if less than bs/Dc+ 1 interrupts would occur without strict
software scheduling then all these interrupts also occur with
strict software scheduling.

We characterize the mechanism in our framework by
modifying the matrix QC (where p(k|i) refers to the en-
tries ofQC without strict software scheduling and psss(k|i)
refers to the entries with strict software scheduling):

psss(k|i) =


p(k|i) if k < bs/Dc+ 1,∑K

k=bs/Dc+1 p(k|i) if k = bs/Dc+ 1,
0 otherwise.

Interrupt-initiated polling causes the system to switch
to polling mode after an interrupt occurred. In polling
mode, interrupts from the given device are masked, and the
operating system is now responsible for repeatedly check-
ing whether the device needs attention. After remaining in
polling mode for some time, the system may switch back
to interrupt mode in a later time-slot. For analyzing the ef-
fectiveness of the mechanism, we make the worst-case as-
sumption that the system switches to interrupt mode before
each time-slot of the receiver.

We characterize the mechanism in our framework by
modifying the matrix QC (where p(k|i) refers to the ma-
trix without interrupt-initiated polling and piip(k|i) to the
matrix with interrupt-initiated polling):

piip(k|i) =


p(0|i) if k = 0∑

k>0 p(k|i) (= 1− p(0|i)) if k = 1
0 if k > 1

Note that the probability is 0 for k > 1 as the first interrupt
in the receiver’s slot causes a switch to polling mode.

Combinations of different mechanisms can be charac-
terized by combining the transformations presented in this
section. However, such a straightforward combination re-
lies on that mechanisms do not disturb each other. One
needs to check to which extent this assumption is satisfied
in reality before applying this solution. In comparison, we
expect an analysis to be much more involved if one investi-
gates combinations of mechanisms that are not independent.

6.2. Numerical evaluation

We evaluate the mechanisms by computing the capacity
of the channel for each of them. For such a computation,
one needs to fix some parameters of the channel. We con-
sider two scenarios, one without noise and one with noise.

In the first scenario, we use the values from Example 5.
The second scenario is as follows: the receiver’s time-slots
are scheduled directly after the sender’s time-slots, where
all time-slots have a length of 100ms. An interrupt is han-
dled on average 10ms after the corresponding interrupt-
initiating operation was performed, while approximately
80% of the requests are handled between 5ms and 15ms
after the interrupt-initiating operation occurred. The han-
dling of an interrupt requires between 1ms and 4ms, with
an average of 2.5ms. Additionally, on average 2 noisy in-
terrupts occur in a time-slot of the receiver. In summary, we
obtain a = 100, b = 200, δ = 10, tmin = 1, tmax = 4,
t = 2.5, and n = 2. Moreover, σ = 4 follows from the
assumption that 80% of the interrupts are handled between
5ms and 15ms after their initiation.

We analyze both scenarios for two senders. Sender A
performs up to four interrupt-initiating operations in a time-
slot. Hence, his input alphabet consists of the subsets of
{0, . . . , 99} that contain at most four elements. Sender B
performs up to one interrupt-initiating operation. Hence, his
input alphabet is {{}, {0}, . . . , {99}}. The receiver behaves
as described in Section 3.2.

Due to the complex probability matrices arising in this
context an analytical derivation of the capacity is no longer
tractable. More precisely, the problem is the maximiza-
tion over all probability distributions in the definition of
CAP(C) (see Section 3.1). Therefore we employ an approx-
imative method. For our numerical computations, we use an
algorithm due to Blahut ([Bla72]) and Arimoto ([Ari72]).
Computing the approximative capacities for the channel
with this algorithm for sender A, we obtain 2.32 bits and
0.33 bits in the first and second scenario, respectively. For
sender B we obtain 1 bit and 0.1 bits, respectively.

Figure 2 illustrates the results of our numerical compu-
tations. The diagrams indicate how the choice of a mech-
anism’s parameter affects the channel bandwidth. In each
column, the upper diagram refers to Scenario 1 while the
lower diagram refers to Scenario 2. The solid line refers to
sender A and the dashed line to sender B. In the following,
we discuss the insights gained from our numerical analysis.

Fuzzy time reduces the capacity towards 0 for high values
of K, without reaching 0. A given non-zero capacity can be
enforced by an appropriate value for K. For sender B, e.g.,
a maximal deviation of K = 3 suffices to push the capacity
below 10−5 bits. To achieve the same reduction for sender
A, the value of K must be three times as high.

Reduced clock resolution lowers the capacity to zero for
sufficiently coarse clock resolutions. However, reducing the
clock resolution decreases the capacity only slowly. To re-
duce the capacity by 50% the clock resolution must be low-
ered by a factor of ten. The discontinuities in the noiseless
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Figure 2. Results of numerical computation

case (see Figure 2) might stem from the phenomenon that,
for certain clock resolutions, differences between some de-
lays can no longer be distinguished. Moreover, by numeri-
cally evaluating some further scenarios, we learned that the
longer the handling of a single interrupt takes, the more one
needs to lower the clock resolution for obtaining the same
reduction of the capacity.

Reduced clock resolution and fuzzy time, both make tim-
ing data imprecise. Time measurements with fuzzy time
and a maximal deviation of K time units are as imprecise
as time measurements with a clock whose reduced resolu-
tion is 2K time units. We found it surprising that, for small
values of K, the capacity with fuzzy time is much lower
than the capacity with a clock resolution of 2K time units.

Polling obviously reduces the capacity to 0.

Interrupt-rate limiting decreases the capacity towards
zero for high values of v. The diagrams indicate that if the
value of v is large enough then one can obtain a capacity
arbitrarily close to 0. However, when increasing the value
of v the capacity is decreasing only slowly. If v = 6 inter-
rupts are merged then the capacity decreases by 50%. To
decrease the capacity by 90% one needs to merge at least
v = 11 interrupt requests.

Strict software scheduling cannot push the capacity be-
low some threshold. In our example, the threshold is 1 bit
in the first scenario and and 0.075 bits in the second sce-
nario (see Figure 2). This also shows that the value of the
threshold depends on the amount of noise. Furthermore,
the maximal capacity reduction is attained only slowly. For
instance, a delay of more than 90 milliseconds between ad-
jacent interrupts is needed for sender A.

Interrupt-initiated polling reduces the capacity to 1 bit
in the first scenario and to 0.07 bits in the second scenario
for senderA. For senderB, we obtain the same results. This
is not by coincidence as at most one interrupt can occur in
the receiver’s time-slot. Therefore, it is irrelevant whether
the sender can initiate one or four interrupt requests in a
time-slot. Moreover, if the CPU stays in polling mode for
several scheduler rounds before using interrupts again, sym-
bols cannot be transmitted in some scheduling rounds. This
is the reason why it becomes possible to obtain a capacity
arbitrarily close to zero with this mechanism.

6.3. Recommendations

The numerical analysis in Section 6.2 illustrates the ben-
efits of the various mechanisms with respect to the mitiga-
tion of interrupt-related channels. Two mechanisms, polling
and reduced clock resolution, make it possible to close
such channels completely. Our analysis reveals that three
other mechanisms (fuzzy time, interrupt-rate limiting, and
interrupt-initiated polling) allow one to lower the capacity
arbitrarily close to zero by setting the respective parame-
ter to a particular value. Finally, strict software scheduling
cannot reduce the capacity below some given threshold.

Some mechanisms have additional benefits besides miti-
gating interrupt-related covert channels, but they also cre-
ate costs (e.g., a performance overhead or a more com-
plex system architecture). Reduced clock resolution and
fuzzy time impair the perception of time. They are, there-
fore, not applicable if applications need precise timing in-
formation. An additional benefit of these mechanisms is,
however, that they mitigate not only interrupt-related chan-
nels, but covert timing channels in general. Interrupt-rate
limiting, interrupt-initiated polling, and the strict software
scheduler have the additional benefit of also being effective
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against receive livelocks. From all the mechanisms, only
interrupt-rate limiting requires a modification of hardware.

None of the mechanisms is superior to all others. Hence,
when choosing a mechanism, one should take the particular
scenario into account:

• If the channel shall be closed completely, the alterna-
tives are reduced clock resolution and polling. The for-
mer allows one to keep the communication paradigm
(whose benefits are discussed in Section 2), while the
latter does not disturb time measurements.

• If the capacity need not be reduced to zero, fuzzy time,
interrupt-rate limiting, or interrupt-initiated polling are
preferable. All of them are adjustable to obtain a given
non-zero capacity. Among these mechanisms, fuzzy
time has the advantage that interrupt communication
need not be changed. However, if accurate timing in-
formation is needed, it is no alternative.

• Due to its limited ability to lower the capacity, strict
software scheduling is not the first choice to mitigate
the channel. However, if it is already used for receive
livelock mitigation then it might still be a natural can-
didate for mitigating interrupt-related channels. How-
ever, one needs to verify that the reduction of the chan-
nel’s capacity suffices one’s needs.

7. Related work

Covert channels, firstly identified in [Lam73] , have been
researched extensively during the last 30 years. The three
main goals (and also research directions) are covert channel
identification, bandwidth estimation, and mitigation.

An overview of methods for covert channel identifica-
tion is given in [Gli93]: syntactic information flow anal-
ysis studies specifications or programs equipped with an
information-flow semantics (e.g., [Den76, DD77, Mil76]).
A more recent technology for controlling information flow
are security type systems (see, e.g., [VSI96, SM03]). The
shared resource matrix method proposed in [Kem83] identi-
fies attributes of shared resources that can be used for covert
communication (see also [HKMY87, Kem02]). A third ap-
proach is a noninterference analysis (e.g, [Fei80, GM82]).

A variety of covert channels has been identified, ex-
ploiting, e.g., shared CPUs [Hus78], shared hard disks
[SGLS77, KW91], or the shared system bus [Hu91]. A
scenario in which interrupts are used for covert informa-
tion transmission is discussed in [Tro98]. In contrast to our
scenario, the information is not transmitted intentionally, in
fact, information about entered passwords is obtained by
measuring the duration of keyboard interrupts.

After a covert channel has been identified, one needs to
assess its danger. This is usually achieved by estimating

its bandwidth. If the bandwidth is too high, one needs to
decrease it or to even eliminate the channel completely. Be-
sides informal methods for estimating the bandwidth (e.g.,
[TG88]), the focus has been on deriving the capacity of
covert channels based on information theory. A number
of articles study this problem conceptually, without inves-
tigating concrete channels. Millen and Moskowitz [Mil87,
Mos90] study the connection between notions of noninter-
ference [GM82, McC88] with the capacity of a channel.
Various other articles (e.g., [Mil89, MM94, MGK96]) in-
vestigate how the capacity of certain classes of channels
can be computed, while [Mos91] and [MM92] study the ef-
fects of noise on simple timing channels. In contrast to the
types of noise considered in this article, the noise effects in
[Mos91] and [MM92] affect the time it takes to transmit a
symbol, not the output of the channel itself.

Besides the analysis of abstract channels, concrete chan-
nels have been investigated, and mechanisms mitigating
the channels have been proposed and analyzed. A reason
for this were the Department of Defense Trusted Computer
System Evaluation Criteria [TCS85], requiring covert chan-
nel analysis from level B2 upwards (the more recent Com-
mon Criteria [CC05] require a covert channel analysis from
level EAL5 upwards as well). In [Hu91], the so-called bus-
contention channel is identified. It allows one to transmit
information by modulating the usage of a shared system
bus. Fuzzy time is proposed as a countermeasure and eval-
uated wrt. its effectiveness by measurements on a system.
In [Gra93b], Gray proposes another countermeasure based
on partitioning the system bus, and performs a rigorous
information-theoretical analysis of its effects on the chan-
nel capacity. In [Gra93a], the bus-contention channel is for-
mally analyzed in combination with fuzzy time. Another
example in which a concrete channel and a countermeasure
are analyzed is the NRL-Pump [KM93, KMC05].

To our knowledge there are no articles in which differ-
ent countermeasures mitigating the same covert channel are
analyzed and compared in a uniform formal framework.

8. Conclusion

We presented a collection of countermeasures against
interrupt-related covert channels and analyzed their effec-
tiveness in a novel information-theoretic framework. To our
knowledge, this is the first general investigation of interrupt-
related covert channel analysis and mitigation. It revealed
some interesting insights about the threat as well as the
countermeasures and also created some open questions and
tasks that would be interesting to address in the future.

We were somewhat conservative by focusing on mecha-
nisms for which implementations are available. During our
project, also some more speculative solutions came to our
mind that have not been implemented yet. One example is

337



to modify interrupt-driven communication such that inter-
rupts can be filtered based on which process performed the
interrupt-initiating operation (rather than masking only on
a per-device basis). Another possibility would be to intro-
duce a co-processor that performs timing-critical parts of
interrupt handling without involving the CPU.

It will be interesting to see how well our information-
theoretic framework can be adapted for the analysis of other
covert channels and of countermeasures against them. It
would also be desirable to verify the analytical results pre-
sented here in experiments. The outcome of such an exper-
iment is not completely determined by our analysis results
because we made some choices in parameters that seemed
plausible to us (often making worst-case assumptions), but
that are not the only possible choices. These include, for
instance, the choice of the output alphabet (i.e., that the re-
ceiver can only see the accumulated delay), the choice of
maximal entropy distributions (in Sections 5.1 and 5.2), and
the choice of the Poisson distribution (in Section 5.3). Re-
fining the instantiation is another interesting direction for
future work, for instance, by changing the input alphabet
IC (e.g., to distinguish different operations depending on
the hardware devices involved and on other aspect of the ac-
cess) or the output alphabet OC (e.g., to allow the analysis
to exploit information about when delays occurred within a
time-slot).
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