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Abstract We propose an approach to certify the information flow se-
curity of multi-threaded programs independently from the scheduling
algorithm. A scheduler-independent verification is desirable because the
scheduler is part of the runtime environment and, hence, usually not
known when a program is analyzed. Unlike for other system properties,
it is not straightforward to achieve scheduler independence when ver-
ifying information flow security, and the existing independence results
are very restrictive. In this article, we show how some of these restric-
tions can be overcome. The key insight in our development of a novel
scheduler-independent information flow property was the identification
of a suitable class of schedulers that covers the most relevant sched-
ulers. The contributions of this article include a novel security property,
a scheduler independence result, and a provably sound program analysis.

1 Introduction

Whether a program can be entrusted secrets depends on the flow of information
caused by running this program. Noninterference is a security property that
characterizes secure information flow by the requirement that a program’s output
to untrusted sinks does not depend on secrets [1]. This requirement ensures that
an attacker cannot conclude any information about secrets from the output that
he can possibly observe, even if he has access to the full code of the program.

In order to obtain reliable analysis results, a noninterference analysis needs
to properly respect the semantics of the given language. This raises the ques-
tion of how to deal with aspects that influence a program’s behavior, but that
are outside the definition of the programming language’s semantics. Examples
are elements of the language whose behavior is not specified in the language’s
definition (e.g. native methods in Java) or elements of the runtime environment.

In this article, we focus on how to deal with a particular element of the
runtime environment, namely the scheduler. Unlike for other properties, it is
not sufficient to assume a possibilistic scheduler in a noninterference analysis,
i.e. the scheduler that admits all possible scheduling choices. Secure information
flow under a possibilistic scheduler need not imply that a program is secure for
other schedulers because refining some part of a secure system’s specification
(such as the scheduler) may result in a system that violates security [2].

Many information flow analyses are scheduler dependent in the sense that
they assume a particular scheduler, such that the analysis results are only valid if
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the program is executed under this scheduler. For instance, a uniform scheduler is
assumed in [3], a Round-Robin scheduler in [4], and a possibilistic scheduler in [5].

There are also a few approaches that support a scheduler-independent analy-
sis. So far, there are two main approaches to defining information flow properties
that are scheduler independent, firstly, requiring that a program’s public out-
put is deterministically determined by the program’s public input and, secondly,
requiring that a program’s possible behaviors for any two inputs, which com-
prise identical public inputs, are stepwise indistinguishable to an observer of the
program’s public outputs. The first approach was introduced by Zdancewic and
Myers, adapting the idea of defining secure information flow based on obser-
vational determinism to language-based security [6]. The second approach was
used by Sabelfeld and Sands to define the so-called strong security property [7].
While both approaches provide a semantic basis for program analyses that are
sound independently of the scheduling algorithm, they are far from satisfactory.
The resulting security properties are very restrictive because they are violated
by many intuitively secure programs. The main deficiency of security properties
based on observational determinism is that they forbid nondeterminism in the
publicly observable behavior of a program, albeit intuitively secure programs
can have nondeterministic public output. Strong security suffers from a different
problem. It requires a restrictive lock-step indistinguishability, which implies, for
instance, that a program’s execution time must not depend on secrets, even if
such differences in the timing do not cause differences in the public output.

In this article, we propose a scheduler-independent security property that
permits nondeterminism in a program’s publicly observable behavior without
requiring a restrictive lock-step indistinguishability. Our solution does not re-
quire non-standard modifications to the interface of schedulers (as in other
approaches, e.g., [8,9]). In fact our approach is the first that is suitable for
programs with nondeterministic publicly observable behavior whose runtime de-
pends on secrets, while providing scheduler independence for common schedulers
like Round-Robin and uniform schedulers (see Section 6 for a more detailed com-
parison). The existence of a scheduler-independent security property with these
features is somewhat surprising given that Sabelfeld proved in [10] that strong
security is the weakest property that implies information flow security for a nat-
ural class of schedulers. The key step in our development was the identification
of a different class of schedulers, the robust schedulers, that also contains the
most relevant schedulers.

In summary, our contributions include (1) the definition of a novel security
property for multi-threaded programs, (2) the novel notion of robust schedulers,
(3) a theorem showing that our security property is scheduler independent for
robust schedulers, and (4) a provably sound, scheduler-independent program
analysis for enforcing our security property. We illustrate the progress made
by the security analysis of a small, but realistic example program. The proofs
of all theorems in this article are made available on the authors’ website. We
expect that our improvements constitute a significant step towards more widely
applicable information flow analyses for concurrent programs.
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2 Preliminaries

In this article, we consider multi-threaded programs that communicate via shared
memory. In this section, we leave the set Com of commands unspecified. It will be
instantiated by a multi-threaded imperative programming language in Section 5.

2.1 Execution Model

A multi-threaded program executes threads from a pool, that we represent by
a finite list of threads. The thread pool’s size has no upper bound and varies
during program execution as threads are removed upon termination and new
threads may be spawned. Active threads are implicitly numbered consecutively
by their position in the thread pool. The program memory is shared between all
threads, and thereby provides a means for inter-thread communication.

A thread configuration is a pair 〈com,mem〉 ∈ (Com ∪{stop})× (Var → Val)
that models a snapshot during the execution of a single thread. If com = stop

then the thread has terminated, while if com ∈ Com then this is the command
that remains to be executed by the thread. The second element of a thread con-
figuration, mem, models the current state of the program memory by assigning
a value to each program variable, where Var is the set of variables and Val is a
not further specified set of values. We denote the set (Var → Val) with Mem.

A program configuration is a pair 〈thr ,mem〉, consisting of a thread pool
thr : N0 → (Com ∪ {stop}) and a shared memory mem ∈ Mem, that models a
snapshot during the execution of a multi-threaded program. If thr(k) = stop then
there is no thread at position k, while if thr(k) ∈ Com then this is the command
that remains to be executed by the kth thread. We define the size of a thread
pool thr by ](thr) = |{k ∈ N0 | thr(k) 6= stop}|. We furthermore require that
thr(k) 6= stop implies thr(l) 6= stop for all l < k, i.e. the thread pool has no gaps.
We denote the set of all thread pools satisfying these requirements with Progs.
Note that ](thr) = min{k ∈ N0 | thr(k) = stop} holds for all thr ∈ Progs.

To make scheduling explicit, we introduce system configurations. Formally, a
system configuration is a triple 〈thr ,mem, sst〉 such that 〈thr ,mem〉 is a program
configuration and sst ∈ sSt is a scheduler state. Scheduler states and other aspects
of scheduling will be introduced in Section 3.1. We use Conf to denote the set of
all system configurations and introduce selector functions getT , getM , and getS
to retrieve the elements from a system configuration, i.e., getT (〈thr ,mem, sst〉) =
thr , getM (〈thr ,mem, sst〉) = mem, and getS (〈thr ,mem, sst〉) = sst .

To model execution steps, we introduce the judgment

conf ⇒k,p conf ′

where conf , conf ′ ∈ Conf , k ∈ N0, and 0 < p ≤ 1. Intuitively, this judgment
models that a transition from the system configuration conf to the system con-
figuration conf ′ is possible. The index k identifies the thread performing a com-
putation step by its position in the thread pool getT (conf ). The probability of
the transition is specified by the index p. Note that purely deterministic behavior
can be modeled by restricting p to the singleton set {1}.
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Derivability of the judgment for system configurations is defined based on two
further judgments. The judgment (sst , sin) k p sst ′ models that the scheduler
selects the kth thread with probability p. This decision may be based on sst , the
state of the scheduler, and further input sin. The resulting scheduler state is sst ′.
The judgment 〈com,mem〉 α−_ 〈com ′,mem ′〉 models that executing the com-
mand com in the memory mem results in the thread configuration 〈com ′,mem ′〉.
The label α∈Lab is an event from the set Lab = {new(coms) | coms ∈ Com∗}
that captures information about the creation of threads in the computation step.
An event new(coms) models that new threads are spawned to execute the com-
mands in the list coms. We omit the label if no new threads were spawned.

Based on the above two judgments we can now model the stepwise execution
of a multi-threaded program under a given scheduler by the following rule:

(sst , sin) k p sst ′ 〈thr(k),mem〉 α−_ 〈com ′,mem ′〉
sin = obs(thr ,mem) thr ′ = updatek(thr , com ′, α)

〈 thr ,mem, sst 〉 ⇒k,p

〈
thr ′,mem ′, sst ′

〉 (1)

The third premise of the rule indicates that inputs to schedulers result from an
observation of the program configuration (Section 3.1 will refine scheduler in-
puts). The function updatek in the fourth premise updates the thread pool thr . In
this article, we assume that spawned threads are inserted in the list of threads af-
ter the thread that executed the spawn operation. Moreover, if a thread termi-
nates then it is removed from the list. For α= new(coms) and k < ](thr), the
thread pool updatek(thr , com, α) is defined by replacek(thr , coms) if com = stop

and by replacek(thr , [com]::coms) otherwise (where :: denotes list concatenation).1

2.2 Traces

A trace models a possible run of a program under some scheduler by a pair
(str , dtr). The system trace str : N0 → Conf models the run of the pro-
gram, where str(0) is a snapshot of the system before starting its execution,
and str(k) is a snapshot of the system after k execution steps. The decision trace
dtr : N0 → N0 models the scheduler’s decisions during the run, where dtr(k) is
the position of the thread selected for execution in the kth execution step.

Definition 1. A trace is a pair tr = (str , dtr) consisting of a system trace
str : N0 → Conf and a decision trace dtr : N0 → N0.

We model the termination of a run by designated final configurations, namely
those configurations in which the thread pool is empty.

Definition 2. We call a trace tr = (str , dtr) terminating if it reaches a final
configuration, i.e. if ∃j ∈ N0 : ](getT (str(j))) = 0 holds. The length of a termi-
nating trace is ](tr) = min{j ∈ N0 | ](getT (str(j))) = 0}.
1 For k ∈ N0, the partial function replacek : (Progs × Com∗) ⇀ Progs is defined by
replacek(thr ,

[
com0, . . . , comn−1

]
)(j) = com for k < ](thr) where com = thr(j) if

j < k, com = comj−k if k ≤ j < k + n, and com = thr(j − n) if k + n ≤ j.
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Given a set of traces Tr, we define the subset of terminating traces by

Tr⇓= {(str , dtr) ∈ Tr | ∃j ∈ N0 : ](getT (str(j))) = 0}.
The subset of traces terminating with memory mem is defined by

Tr⇓mem= {tr ∈Tr⇓| getM (str(](tr))) = mem}.

3 Scheduling and Scheduler-Specific Security

We capture scheduler-dependent information flow security by a noninterference-
like information flow property that is parametric in the choice of the scheduler.

3.1 An Explicit Scheduler Model

During the execution of a multi-threaded program, the scheduler repeatedly
decides which thread shall next proceed with the computation. Scheduling algo-
rithms differ not only in how they make this decision, but also in the information
on which they base their decision. For instance, a uniform scheduler needs to
know the current number of threads in order to randomly choose among the
available threads with equal probability. A Round-Robin scheduler iterates over
the list of available threads in a cyclic fashion. Beyond knowing the number of
threads, this requires that the scheduler remembers its scheduling choice from
the previous step. A scheduler might even need to know part of the program’s
memory, for instance, in priority-based scheduling if priorities are first-class val-
ues that may be read and modified by the program itself. To cover these and
various other possibilities, we assume that schedulers base their decision on their
current internal state and their observation of the program configuration.

We leave the set of scheduler states sSt and the set of scheduler inputs sIn
unspecified. We only assume that it is at least possible to retrieve the current
number of threads from any given input sin ∈ sIn and denote this number
by ](sin). The scheduler’s output is modeled by a natural number, indicating the
position of the next thread to be run. The behaviour of a scheduler is modeled by
a labeled transition relation, where a label (sin, k, p) ∈ sIn×N0× ]0, 1] indicates
that sin is the input to the scheduler, k is the position of the chosen thread, and
p is the probability of this choice. We use probabilistic transitions in order to
account for schedulers that are not deterministic like, e.g., uniform schedulers.

Definition 3. A scheduler is a labeled transition system (sSt , sst0, sLab,→)
with initial state sst0 ∈ sSt, label set sLab = sIn × N0 × ]0, 1], and transition
relation → ⊆ sSt × sLab × sSt that satisfies the following properties:
1. if (sst , (sin, k, p), sst ′) ∈ →, then k < ](sin);
2. for each triple (sst , sin, k) there is at most one probability p ∈ ]0, 1] and one

scheduler state sst ′ ∈ sSt such that (sst , (sin, k, p), sst ′) ∈ →; and
3. the equality

∑
{|p | ∃k, sst ′ : (sst , (sin, k, p), sst ′) ∈ →|} = 1 holds for each

pair (sst , sin) (where {| . . . |} denotes a multiset).

The first property in Definition 3 ensures that a scheduler selects among the
available threads, the second property ensures that a scheduler cannot choose



Flexible Scheduler-Independent Security 121

a single thread position with multiple probabilities or modify its internal state
nondeterministically, and the third property ensures that in each state the prob-
abilities of the transitions for a given input form a probability distribution.

Definition 4. The judgment (sst , sin) k p sst ′ (from Section 2.1) is derivable
for a scheduler (sSt , sst0, sLab,→) if and only if (sst , (sin, k, p), sst ′) ∈ →.

Our model for schedulers is sufficiently expressive for common scheduling algo-
rithms such as uniform, Round-Robin, and priority-based scheduling.

Example 1. A uniform scheduler can be modeled by the labeled transition system
UNI = ({s}, s, sLab,→UNI ), where →UNI is defined by (sst , (sin, k, p), sst ′) ∈
→UNI if and only if k < ](sin), p = 1/](sin), and sst ′ = sst = s.

Example 2. A Round-Robin scheduler can be modeled by the labeled transition
system RR = (sStRR, sstRR,0, sLab,→RR), with sStRR : {choice, size} → N0,
sstRR,0(choice) = 0, and sstRR,0(size) = 1. The scheduler variables choice and
size store from the previous step which thread position was selected and what size
the thread pool had. The transition relation is defined by (sst , (sin, k, p), sst ′) ∈
→RR if and only if p = 1, k = (sst(choice)+1+(](sin)−sst(size))) mod ](sin),
sst ′(choice) = k, and sst ′(size) = ](sin).2

We specify the traces modeling possible program runs under a given scheduler.

Definition 5. For a scheduler S = (sSt , sst0, sLab,→), the set of possible traces
starting in a system configuration conf is defined by (str , dtr) ∈ TrS(conf ) if
and only if

str(0) = conf ∧ ∀j ∈ N0 :

 (∃p ∈ ]0, 1] : str(j)⇒dtr(j),p str(j + 1))

∨

(
](getT (str(j))) = 0

∧ str(j + 1) = str(j) ∧ dtr(j) = 0

)
Note that if a final configuration is reached, the program performs no further
computation steps. We model this by requiring that from that point on the
system trace infinitely often repeats the final configuration and the decision trace
infinitely often repeats the value 0. We say that a system configuration conf is
terminating under a scheduler S if TrS(conf ) = TrS(conf )⇓. A thread pool thr
is terminating if for all mem ∈ Mem the system configuration 〈thr ,mem, sst0〉
is terminating under all schedulers S with initial scheduler state sst0.

We use the probabilities of single execution steps to compute the probability
that a terminating program run with a given sequence of scheduler decisions oc-
curs when executing a program in a given configuration under a given scheduler:

Definition 6. For a trace tr =(str , dtr)∈TrS(conf )⇓ we define the probability
of tr under the scheduler S by ρS(tr) = p0 ∗ . . . ∗ p](tr)−1, where the pj are the
unique probabilities with str(j)⇒dtr(j),pj str(j + 1) for 0 ≤ j < ](tr).

2 Note that our condition on k ensures, firstly, that no thread is skipped if the current
thread terminates (in this case ](sin)−sst(size) equals −1) and, secondly, that newly
created threads obtain their term only after all other threads have been scheduled
(in this case ](sin)− sst(size) equals the number of newly created threads).
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3.2 Scheduler-Specific Security Property

We consider a security lattice with two security domains, low and high, where the
requirement is that no information flows from high to low . This is the simplest
policy capturing information flow security. A domain assignment is a function
dom : Var → {low , high} that associates a security domain with each program
variable. The resulting security requirement is that no information may flow
from variables with domain high to variables with domain low .

We assume that attackers cannot directly access the values of high variables
(i.e., access control works correctly). The following indistinguishability relation
captures this upper bound on the observational capabilities of attackers.

Definition 7. Two memories mem,mem ′ ∈ Mem are low-equal, denoted by
mem =L mem ′, if and only if mem(var) = mem ′(var) for all var ∈ Var with
dom(var) = low. We use [mem]=L to denote the equivalence class {mem ′ ∈
Mem | mem =L mem ′}.

Definition 8. A thread pool thr is S-secure for S = (sSt , sst0, sLab,→) if∑
mem′∈[mem]=L

ρS(〈thr ,mem1, sst0〉 ,mem ′) =
∑

mem′∈[mem]=L

ρS(〈thr ,mem2, sst0〉 ,mem ′)

holds for all mem1, mem2, mem ∈ Mem with mem1 =L mem2, where the
value ρS(conf ,mem) is the probability that a program run under the scheduler S
that starts in the system configuration conf terminates with memory mem. It is
defined by ρS(conf ,mem) =

∑
tr∈TrS(conf )⇓mem

ρS(tr).
A command com is S-secure if the thread pool thrcom containing the single

thread com is S-secure (i.e. thrcom(0) = com and thrcom(j) = stop for all j > 0).

Our notion of S-security guarantees that the probability that an S-secure pro-
gram terminates with given values of low variables is independent from the initial
values of secrets. This means, S-security implies that an attacker who can ob-
serve the initial and final values of low variables cannot conclude anything about
high inputs. This implication still holds if the attacker knows the code of the
program and the scheduling algorithm. Moreover, it also holds if the attacker can
observe multiple runs of the program. Note that the number of execution steps
of an S-secure program may depend on the values of low variables (in contrast
to, e.g., the bisimulation-based scheduler-specific security condition in [7]).

Remark 1. While we prefer to define S-security using the probabilities of traces,
an equivalent property could be defined using Markov chains, as, e.g., in [11].

4 Scheduler-Independent Information Flow Security

In this section, we present the novel information flow property that is the main
contribution of this article. Our security property is scheduler independent in the
sense that it implies S-security for a large class of schedulers. We characterize this
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class by the novel notion of robust schedulers and show that this class covers the
most common scheduling algorithms. As we will illustrate, our security property
is suitable for programs with nondeterministic behavior and whose runtime may
depend on secrets. That is, it overcomes restrictions of the existing scheduler-
independent security properties.

4.1 A Novel Security Property

We partition the set Com into high commands that definitely do not modify low
variables and into low commands that potentially modify values of low variables.

Definition 9. The set of high commands HCom ⊂ Com is the largest set of
commands such that if com ∈ HCom then the following holds:

∀com ′ ∈ Com ∪ {stop} : ∀mem,mem ′ ∈ Mem : ∀com0, . . . , comn−1 ∈ Com :

〈com,mem〉
new([com0,...,comn−1])

−−−−−−−−−−−−−_ 〈com ′,mem ′〉 =⇒(
mem =L mem ′ ∧ com ′ ∈ HCom ∪ {stop} ∧ ∀j ∈ {0, . . . , n− 1}. comj ∈ HCom

)
The set of low commands LCom ⊂ Com is defined as Com \HCom.

We refer to threads executing high commands as high threads and to threads
executing low commands as low threads. Note that a low thread becomes high
after an execution step if the command that remains to be executed is high.
High threads, by definition, cannot become low during a program’s execution.

Low matches link the positions of corresponding low threads in thread pools.

Definition 10. A low match of two thread pools thr1 and thr2 with the same
number of low threads (i.e. |{k1 ∈ N0 | thr1(k1) ∈ LCom}| = |{k2 ∈ N0 |
thr2(k2) ∈ LCom}|) is an order-preserving bijection with the domain {k1 ∈ N0 |
thr1(k1) ∈ LCom} and the range {k2 ∈ N0 | thr2(k2) ∈ LCom}.

That is, a low match maps the position of the nth low thread in one thread pool
to the position of the nth low thread in the other thread pool:

Theorem 1. The low match of thr1 and thr2 is unique and given by the function

l-matchthr1,thr2(k1) =

min
{
k2 ∈ N0 |

∣∣{l1 ≤ k1 | thr1(l1) ∈ LCom}
∣∣ =

∣∣{l2 ≤ k2 | thr2(l2) ∈ LCom}
∣∣}.

Due to space restrictions, the proof of the above theorem as well as the proofs
of all other theorems in this article are provided on the authors’ website.

We use the PER-approach [12] to define the novel security property, i.e., we
define an indistinguishability relation on thread pools that is not reflexive, as it
only relates thread pools to themselves that have secure information flow.

Definition 11. A symmetric relation R on thread pools with an equal number of
low threads is a low bisimulation modulo low matching, if whenever thr1 R thr2,

mem1 =L mem2, and 〈thr1(k1),mem1〉
α1−_ 〈com1,mem ′1〉, then
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1. if thr1(k1) ∈ LCom, then there exist com2, mem ′2, and α2 with

(a) 〈thr2(k2),mem2〉
α2−_ 〈com2,mem ′2〉,

(b) mem ′1 =L mem ′2, and
(c) updatek1

(thr1, com1, α1) R updatek2
(thr2, com2, α2)

where k2 = l -matchthr1,thr2(k1); and

2. if thr1(k1) ∈ HCom, then updatek1(thr1, com1, α1) R thr2.

The relation ∼ is the union of all low bisimulations modulo low matching.

Definition 12. A thread pool thr is FSI-secure if thr ∼ thr. A command com
is FSI-secure if the thread pool thrcom (see Definition 8) is FSI-secure.

We will show in Section 4.3 that all terminating FSI-secure programs are also S-
secure for any robust scheduler S. This scheduler independence result motivates
the expansion of the acronym FSI-security, which is flexible scheduler-indepen-
dent security.

The following theorem shows that FSI-security is compositional.

Theorem 2. Let thr1 and thr2 be FSI-secure thread pools. Then their parallel
composition par(thr1, thr2) is also FSI-secure, where

par(thr1, thr2)(k) =

{
thr1(k) , if k < ](thr1)

thr2(k − ](thr1)) , otherwise.

The compositionality result is not only crucial for a modular analysis, but also
illustrates that FSI-security is suitable for multi-threaded programs containing
races: As it suffices that each individual thread of a program is FSI-secure, FSI-
security imposes no restrictions on the relationships between variables occurring
in concurrent threads. This constitutes a significant improvement over security
properties based on observational determinism.

Moreover, FSI-security is suitable for programs whose runtime depends on
confidential information. While FSI-security requires stepwise indistinguishabil-
ity for low threads (Item 1 in Definition 11), no such requirement is imposed
on a thread once it is high (Item 2 in Definition 11). This constitutes a ma-
jor improvement over the strong security condition. In particular, unlike strong
security, FSI-security is satisfied by every high command.

Theorem 3. Let com ∈ HCom. Then com is FSI-secure.

In summary, FSI-security overcomes serious deficiencies of the two main ap-
proaches to defining scheduler-independent security mentioned in Section 1.

4.2 The Class of Robust Schedulers

The essential idea of robust schedulers is that the scheduling order of low threads
does not depend on the high threads in a thread pool. We formalize the class of
robust schedulers in Definition 15 based on the auxiliary notions of thread purge
functions (Definition 13) and of S-simulations (Definition 14).
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Definition 13. The thread pool th-purge(thr) is defined by

th-purge(thr)(k1) = thr
(

min
{
k2 ∈N0 | k1 =

∣∣{l < k2 | thr(l) ∈ LCom∪{stop}}
∣∣})

for all k1 ∈ N0. We denote with th-purge(conf ) the system configuration obtained
from conf by replacing getT (conf ) with th-purge(getT (conf )).

Intuitively, th-purge(thr) is obtained from thr by removing all high threads and
leaving the order of low threads unchanged:

Theorem 4. For a thread pool thr, th-purge(thr) contains no high threads and
as many low threads as thr. Moreover, if k ∈ N0 with thr(k) ∈ LCom then

thr(k) = th-purge(thr)(l -matchthr ,th-purge(thr)(k)).

Definition 14. Let S = (sSt , sst0, sLab,→) be a scheduler. An S-simulation is
a relation < that relates arbitrary configurations with configurations that do not
contain high threads, such that conf 1 < conf 2 and conf 1 ⇒k1,p1

conf ′1 imply

1. if getT (conf 1)(k1) ∈ LCom, then there exists conf ′2 with
(a) conf 2 ⇒k2,p2

conf ′2, where k2 = l -matchgetT(conf 1),getT(conf 2)
(k1) and

p2 = p1/l -probS(conf 1), and l-probS(conf ) denotes the probability that a
low thread is selected by the scheduler S in the system configuration conf
that is defined by l-probS(〈thr ,mem, sst〉) =

∑
{|p | ∃k, sst ′ : thr(k) ∈

LCom ∧ (sst , obs(thr ,mem)) k p sst ′|}, as well as
(b) conf ′1 < th-purge(conf ′2); and

2. if getT (conf 1)(k1) ∈ HCom, then conf ′1 < conf 2.

The relation <S is the union of all S-simulations.

Definition 15. The scheduler S = (sSt , sst0, sLab,→) is robust if

〈thr ,mem, sst0〉 <S th-purge(〈thr ,mem, sst0〉)
holds for each FSI-secure thread pool thr and each memory mem.

Intuitively, a scheduler is robust if the scheduling of low threads during a run
of an FSI-secure thread pool remains unchanged when one removes all high
threads from the thread pool. That is, the probability that the scheduler se-
lects a low thread among all low threads in a configuration equals the proba-
bility to select the matching low thread if all high threads were removed (i.e.,
p2 = p1/l -probS(conf 1)). This is, in particular, the case for uniform and Round-
Robin schedulers:

Theorem 5. The uniform scheduler (see Example 1) is robust.

Theorem 6. The Round-Robin scheduler (see Example 2) is robust.

Robust schedulers will only be employed in combination with observation func-
tions that properly confine the interface between programs and schedulers:

Definition 16. We call the observation function obs (introduced in Section 2.1)
confined, if it satisfies the following property for all thread pools thr1, thr2 and
for all memories mem1,mem2:

(](thr1) = ](thr2) ∧ mem1 =L mem2) =⇒ obs(thr1,mem1) = obs(thr2,mem2)
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Confined observation functions only provide information about the current num-
ber of threads and the values of public variables. This is sufficient for common
schedulers like Round-Robin or priority-based schedulers.

Note that Definition 15 quantifies over all FSI-secure thread pools. This is
essential. Quantifying over all thread pools (i.e., including ones that are not FSI-
secure) would result in a significantly smaller class of robust schedulers, that,
for instance, does not include Round-Robin and uniform schedulers.

4.3 Scheduler Independence Result

We are now ready to present the scheduler independence result:

Theorem 7. Let thr be a terminating thread pool that is FSI-secure and let S
be a robust scheduler under a confined observation function. Then the thread pool
thr is S-secure.

Theorems 5 and 6 show that we obtain scheduler-independent information flow
security for a practically relevant class of schedulers. As FSI-security overcomes
restrictions of the two main approaches to scheduler-independent security (see
Section 4.1), we expect that our results will contribute to more widely applicable
information flow analyses for concurrent programs.

5 Security Analysis for a Multi-threaded Language

We use a simple multi-threaded imperative programming language supporting
the dynamic creation of new threads for illustrating how to analyze concrete
programs with respect to FSI-security. We define the set Com by the following
grammar (using a set Exp of expressions that we do not specify further):

com ::= skip | var :=exp | com; com | if (exp) then com else com fi

| while (exp) do com od | spawn(com, . . . , com),

where var ∈ Var and exp ∈ Exp. The operational semantics for commands is
formalized by a calculus for the judgment 〈com,mem〉 α−_ 〈com ′,mem ′〉 intro-
duced in Section 2.1. The derivation rules are as usual, we refrain from stating
their definition due to space restrictions.

5.1 Security Type System

We present a security type system for our example language. This type system
provides the basis for an automated scheduler-independent security analysis.

We type commands with types of the form (ass, stp), where ass, stp ∈ {low ,
high}. The intuition of the typing judgment ` com : (ass, stp) is as follows: If
ass = high, then neither the thread executing com nor the threads that are
created due to spawn-commands within com assign to low variables, i.e., com is
a high command. If stp = low , then the number of execution steps made by a
thread executing com cannot depend on the values of high variables. However,
the execution time of threads spawned by this thread may depend on high values.

The typing rules are displayed in Figure 1. We denote with dom(exp) the
security domain of an expression, where dom(exp) = low if all variables occurring
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[SKIP]
` skip : (high, low)

[ASS]
dom(exp) v dom(var)

` var :=exp : (dom(var), low)

[IF]
` com1 : (ass, stp) ` com2 : (ass, stp) dom(exp) v ass

` if (exp) then com1 else com2 fi : (ass, stp t dom(exp))

[WHILE]
` com : (ass, stp) stp t dom(exp) v ass

` while (exp) do com od : (ass, stp t dom(exp))

[SPAWN]
∀i∈{0, . . . , k−1}. ` comi : (ass, stpi)

` spawn(com0, . . . , comk−1) : (ass, low)

[SEQ]
` com1 : (ass1, stp1) ` com2 : (ass2, stp2) stp1 v ass2

` com1; com2 : (ass1 u ass2, stp1 t stp2)

[SUB]
` com : (ass ′, stp′) ass v ass ′ stp′ v stp

` com : (ass, stp)

Figure 1. Security type system

in exp have domain low , and dom(exp) = high otherwise. As usual for a two-level
policy, we assume low v high and denote the greatest lower bound respectively
least upper bound operator on security domains with u and t, respectively. Note
that subtyping is covariant in the first component of a type and contravariant
in its second component (compare rule [SUB] in Figure 1).

Rule [ASS] forbids assignments from high to low variables, and rules [IF]
and [WHILE] forbid assignments to low variables under high guards of condition-
als and loops (compare, e.g., [13]). Furthermore, rules [IF] and [WHILE] ensure
that commands containing high guards (and whose runtime might hence depend
on the values of high variables) can only be typed if stp = high. Rule [SPAWN]
allows to type programs that dynamically spawn threads: A spawn-command is
typable with stp = low , as it is executed in a single execution step. Moreover, the
command spawn(com0, . . . , comk−1) is only typable with ass = high if each comi

is typable with ass = high. Rules [SEQ] and [WHILE] ensure that if a typable com-
mand assigns to low variables, then its runtime before such an assignment only
depends on the values of low variables. This is essential for the soundness of the
type system, as it ensures that lock-step execution is possible for low threads
that correspond to each other under the low matching.3

Theorem 8. If the judgment ` com : (ass, stp) is derivable in the type system
for some com ∈ Com and ass, stp ∈ {low , high} then com is FSI-secure.

3 Note that our security type system does not contain a rule for typing conditionals
with high guards whose branches may contain assignments to low variables if the
branches are related by an indistinguishability relation. Such a rule is, e.g., provided
in [14], and could be soundly integrated into our type system. We refrain from such a
rule here to ensure that there are no choice points when generating a type derivation.
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Initial thread :

networkOutl:=”getStockPrices”;
stockPricesl:=networkInl;
spawn(writeStockPricesToDatabase);
networkOutl:=”getFundsPrices”;
fundsPricesl:=networkInl;
spawn(writeFundsPricesToDatabase);
spawn(computeAccountOverview)

writeStockPricesToDatabase:

il:=0;
while (il < getSize(stockPricesl)) do

databasel := databasel
+ getTitleAt(stockPricesl, il)
+ getPriceAt(stockPricesl, il);

il := il+1 od

writeFundsPricesToDatabase:

jl:=0;
while (jl < getSize(fundsPricesl)) do

databasel := databasel
+ getTitleAt(fundsPricesl, jl)
+ getPriceAt(fundsPricesl, jl);

jl := jl+1 od

computeAccountOverview:

kh := 0; overviewh := ””;
while (kh < getSize(userPortfolioh)) do

titleh := getTitleAt(userPortfolioh, kh);
if (isStock(titleh)) then

priceh := getPriceFor(stockPricesl, titleh)
∗ getQuantityAt(userPortfolioh, kh)

else
priceh := getPriceFor(fundsPricesl, titleh)
∗ getQuantityAt(userPortfolioh, kh)

fi;
oldPriceh :=getLastPrice(databasel, titleh);
if (oldPriceh ≤ priceh)

then tendencyh := ”up”
else tendencyh := ”down”

fi;
overviewh := overviewh + titleh

+ priceh + tendencyh;
kh := kh+1

od

Figure 2. Exemplary security analysis: implementation

Thus, due to the compositionality of FSI-security (Theorem 2), a thread pool thr
is FSI-secure if thr(k) is typable for each k < ](thr).

Note that the type systems proposed in [15,8,11,16] are similar to our type sys-
tem as they restrict the assignments a program may perform after executing a
conditional or a loop with a high guard. However, note that [15,11,16] only guar-
antee soundness for one scheduler-specific security property. Note also that [8]
targets a language that allows dynamic thread creation (a typical feature of
multi-threaded programming languages) only in a very limited form (no threads
may be created inside loops), and the article assumes that threads idle after their
termination instead of being removed from the thread pool. Our type system and
its soundness result do not share these limitations. The scheduler independence
result from [8] will be further compared to the result in this article in Section 6.

5.2 Exemplary Security Analysis

Consider the code fragment in Figure 2, which is part of an application managing
personal finances. The program contacts two network-based services that pro-
vide up-to-date pricing information for stocks respectively funds (by writing to
respectively reading from the variables networkOutl and networkInl). The program
appends the retrieved information to the information in the variable databasel
that contains historical pricing information for future reference. Moreover, us-
ing the novel data and historical data already present in databasel, the program
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generates an overview of the user’s custody account. Those three activities are
spawned in new threads (writeStockPricesToDatabase, writeFundsPricesToData-
base, and computeAccountOverview) to improve the interactivity of the overall
program and not block computations following this code fragment. In our ex-
ample, we model the network requests, the data retrieved from the network, the
data stored in the database, and the generated overview with string values. The
data encoded in those string values is accessed by the program using selector
expressions like, for instance, getLastPrice.

The subscripts of variables indicate whether a variable is classified as low (l)
or as high (h). Information in the database and information retrieved from the
network services is public and classified as low, while the user’s portfolio and the
report created based on the portfolio are confidential and classified as high.

Applying the type system to the program proves that the program is FSI-
secure: The initial thread as well as the threads writeStockPricesToDatabase
and writeFundsPricesToDatabase are typable with the type (low , low), while
the thread computeAccountOverview is typable with the type (high, high).

Note that the program is rejected by existing analyses that guarantee security
for common schedulers. Observational determinism [6] is violated, as the order
in which entries are written to the database depends on the order in which
the threads writeStockPricesToDatabase and writeFundsPricesToDatabase are
scheduled. Strong security [7] is violated as the runtime of the loop in the thread
computeAccountOverview depends on confidential information. The soundness
of the type system together with the scheduler independence result guarantee
that the order of the database entries never depends on confidential information
when using a robust scheduler.

6 Related Work

An overview on information flow security in a multi-threaded setting is provided
in [17]. Here, we focus on approaches that cover the problem of scheduling.

Most approaches assume a particular scheduling algorithm. In consequence,
their results do not necessarily generalize to other schedulers. Several approaches
consider a scheduler that selects threads purely nondeterministically (for in-
stance, [5,18,19,20,21]). Uniform schedulers are assumed in [3,11], and a Round-
Robin scheduler is assumed in [4,22].

There are only a few approaches to scheduler-independent information flow
security. In the following, we discuss those approaches in more detail.

The idea of observational determinism goes back to McLean [23] and Roscoe
et al. [24,25], who proposed security properties not at the level of a program-
ming language, but more abstractly for specifications. The idea was adapted
to a language-based setting in [6,26]. Observational determinism requires that
public observations of program executions are deterministic regardless of the
interleaving of threads and the values of secret variables. If this requirement is
satisfied, restricting the possible interleavings by assuming a concrete scheduler
cannot result in a dependency of public observations on secrets. Observational
determinism has the drawback that it forbids useful nondeterminism which oc-
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curs, for instance, when multiple threads append data to the same public variable
(as in the example program from Section 5.2).

Sabelfeld and Sands [7] introduce strong security, which is scheduler-inde-
pendent for a natural class of schedulers. Strong security is quite restrictive, as
it requires that the runtime of a program must not depend on secret data. This
drawback appeared unavoidable because [10] proved that the strong security con-
dition is the weakest compositional property that implies information flow secu-
rity for the natural class of schedulers. Hence, the strong security condition was
used, despite its restrictiveness, as the foundation of many later developments
(e.g., [27,28,29]) and has been generalized in various ways, e.g., for distributed
systems [27] or to control declassification [30]. While [7] proposes a type sys-
tem that can transform some insecure programs into strongly secure programs,
only a subset of the intuitively secure programs is amenable to this approach
(for instance, the type system does not transform the example program from
Section 5.2 into a strongly secure program).

The combining calculus [20] is a first step towards combining approaches
based on observational determinism and strong security as it allows the combina-
tion of different analysis techniques in a security analysis. However, a scheduler-
independence result has not yet been established for the combining calculus.

Boudol and Castellani [8] propose a security type system for controlled thread
systems that consist of a thread pool and a scheduler. If a controlled thread sys-
tem is typable, then the thread pool is secure under the scheduler. In contrast to
this article, the approach requires the size of a thread pool to remain fixed during
a program run: dynamic thread creation is not supported, and threads remain in
the thread pool upon termination (and may still be selected by the scheduler).
Boudol and Castellani argue that if the termination of certain threads would be
signaled to the scheduler, then controlled thread systems writing public variables
cannot be typed. This is a non-standard restriction, as schedulers typically use
the number of live threads when choosing the next thread.

As a different approach to relax the security property while remaining sche-
duler-independent, [9,31,32] propose to use non-standard schedulers that provide
a customized interface to the scheduled threads. Via two special commands, pro-
grams can hide (and at a later point unhide) a thread; the scheduler guarantees
that during the execution of hidden threads no other thread is scheduled. The ap-
proach allows to securely execute programs containing threads that assign to low
variables after performing computations whose runtime depends on high data
(hiding the thread during those computations), but at the cost that a scheduler
with a non-standard interface must be used. Such threads are rejected by our
security property, as they may cause information leakage when being executed
under currently available schedulers.

Another approach that prevents scheduling during computations whose run-
time depends on secrets is followed by [22]. It provides a program transformation
that introduces yield-statements into a program instructing the scheduler to se-
lect another thread, such that no yield-statements occur during computations
depending on secrets, and rescheduling only occurs after a yield-statement. The
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approach is implemented for a Round-Robin scheduler, but the article argues
that it is applicable for a wide class of schedulers. The transformation entails
that computations on secrets block all remaining threads. This is particularly
critical when these computations are time-consuming. In contrast, our approach
allows any computations to be interleaved with the executions of other threads.

In the following we discuss two approaches that investigate scheduler-inde-
pendence on the level of system specifications. Van der Meyden and Zhang [33]
adapt security conditions for asynchronous systems to scheduled synchronous
systems. They consider schedulers whose decisions do not depend on secret ac-
tions and show that the security properties are scheduler-implementation inde-
pendent in the sense that a system satisfies a property under one implementation
of a scheduler if and only if it satisfies the property under all of the scheduler’s
possible implementations. Note that this differs from requiring that security
holds under different schedulers. Moreover, [33] prove that if the security defi-
nitions are satisfied for all deterministic schedulers, then they are also satisfied
for all nondeterministic schedulers. Probabilistic schedulers are not considered.

Also when considering protocols the scheduling might impact security. In
particular, the hidden random choice of a secret value in a security protocol
could be revealed if the protocol’s schedule depends on the choice’s outcome.
As a solution, [34] proposes to make random choices invisible to the scheduler
by annotating protocol actions with labels and requiring that (a) the possible
actions after a secret random choice obtain the same label and (b) the only input
to the scheduler are the labels of the schedulable actions. The development is
based on the probabilistic process algebra CCSp. It differs from our approach as
it requires program annotations that guide the possible choices of the scheduler.

7 Conclusion

Scheduler-independent information flow security is an important problem for
concurrent programs, but previously existing solutions are far from being sat-
isfactory: They are either very restrictive in the sense that they reject many
intuitively secure programs, or in the sense that they require non-standard mod-
ifications of schedulers and their interfaces. Both restrictions limit the applica-
bility of information flow security analyses for concurrent programs.

Aiming at more widely applicable information flow analyses, we developed the
novel security condition FSI-security. FSI-security overcomes deficiencies of the
existing approaches to scheduler-independent security while still achieving sched-
uler independence for common schedulers. Our scheduler independence result is
rather surprising in the light of the impossibility result from [10], which states
that for a natural class of schedulers a compositional scheduler-independent secu-
rity condition must be at least as restrictive as the strong security condition. The
key insight for obtaining a security property that is less restrictive yet compo-
sitional and scheduler-independent for relevant schedulers was the identification
of a different class of schedulers, the robust schedulers, which is also natural but
smaller than the class in [10].
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