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Abstract Cassandra, a Security-Certifying App Store for Android, is a
tool that allows its user to specify information-flow requirements and
to analyze apps against these requirements before they are installed
on the user’s mobile device. The information-flow analysis is performed
statically by means of a security-type system for Dalvik bytecode, the
language in which Android apps are typically distributed. One of Cas-
sandra’s distinguishing features is the soundness result for its analysis,
which ensures that only apps adhering to the given security require-
ments pass the analysis. This report presents the formal foundations of
the type-based information-flow analysis of Cassandra and the corre-
sponding soundness result. To the best of our knowledge, this is the first
sound information-flow analysis for Dalvik bytecode.
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1 Introduction

Modern Android smartphones operate on all kinds of their user’s private infor-
mation including, e.g., contacts, calendars, GPS location, and browsing history.
Whereas the Android operating system provides some protection mechanisms for
private data [Prob], these mechanisms do not provide control and transparency
on how apps use the private data. In fact, studies [TK10, EOMC11] show that
many apps actually abuse private data by sending it silently over the Internet,
e.g., to advertising companies.

These leaks of private data are possible because the built-in protection mech-
anisms of the Android operating system, such as the permission system, allow to
restrict access to private data, but cannot control the propagation of such data
after access has been granted. One possible solution to deal with this shortcom-
ing is to augment the available protection mechanisms with information-flow
control [DD77], which allows to control where private data is propagated.

Following this idea, we developed Cassandra, a Security-Certifying App Store
for Android. Cassandra is a tool that allows its user to check apps against his
personal information-flow requirements before installing them on the mobile de-
vice. Cassandra consists of a server, providing apps and the security analysis
service, and a client-app, supporting the selection of apps and control of the
security analysis. The functionality of Cassandra resembles that of existing app
stores, e.g., F-Droid [Lim], augmented by means to specify security requirements
and to analyze apps against these requirements.

The analysis of apps with Cassandra is performed statically by means of
a novel security-type system in the style of [VIS96]. Cassandra’s security-type
system operates on Dalvik bytecode, the format in which Android apps are
typically distributed. It detects data leaks as well as implicit information leaks
that occur through control-flow dependencies on secrets.

The trust in Cassandra’s information-flow analysis is substantiated by a proof
that all typable programs satisfy a noninterference-like security property [GM82]
with respect to formal semantics of Dalvik bytecode. This result ensures that the
security-type system underlying the analysis of Cassandra detects all information
leaks in an app with respect to a given information-flow requirement.

The purpose of this report is to give details on Cassandra’s security-type
system and its formal foundations. More specifically, we present

– the syntax and operational semantics for an abstract version of the Dalvik
bytecode language (Section 2),

– the formalization of a timing- and termination-insensitive noninterference-
like security property for programs in this abstract language (Section 3),

– the definition of the security-type system that enforces the security property
(Section 4), and

– the soundness proof for this security type system, ensuring that all typable
apps satisfy the given information-flow security requirements (Section 5).

To the best of our knowledge, the presented security-type system is the first
information-flow analysis for Dalvik bytecode that has been proven sound.
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1.1 Notational Conventions

We use the notation f : X ⇀ Y for partial functions, i.e., functions where some
x ∈ X are mapped to values in Y and for some x ∈ X the value of f is undefined.
We denote that the value for x is undefined by f(x) = ⊥. The domain of the
partial function f is denoted dom(f). For the range of a function f , we write
rng(f).

We denote the composition of two functions g : Y → Z and f : X → Y by
g ◦ f where (g ◦ f)(x) = g(f(x)) for all x ∈ X.

For all functions f : X → Y , elements x1, . . . , xn ∈ X and y1, . . . , yn ∈ Y ,
we denote by f [x1 7→ y1, . . . , xn 7→ yn] the updated function that maps each
xi ∈ {x1, . . . , xn} to the corresponding yi and each x ∈ X \{x1, . . . , xn} to f(x).

We denote the inverse of an injective function f : X → Y by f−1, i.e., for all
x ∈ X and all y ∈ Y , f−1(y) = x if and only if f(x) = y.

We denote the type for a list of elements of type T by T ∗. Given a list L ∈ T ∗,
we write length(L) for the length of L, and L[i] for the i-th element of the list
L starting from i = 0. The empty list is denoted by [] and the list L ∈ T ∗ with
the entries t1, . . . , tn ∈ T is written [t1, . . . , tn].

We use N0 to denote the set of natural numbers including 0. For any set X,
P(X) denotes the powerset of X, i.e., the set of all possible subsets of X. For
any two sets X,Y , we denote by X ⊆fin Y that X is a finite subset of Y .

2 The ADL Programming Language

This section introduces ADL (Abstract Dalvik Language), an abstract version of
the Dalvik bytecode language [Proc]. ADL was designed with the idea in mind to
focus on the information-flow aspects of the original Dalvik bytecode language
and to abstract from less relevant operational details. The instruction set of ADL
is based on [Man11].

2.1 Syntax of ADL

The syntactical domains of ADL include the following underspecified sets:

CID : set of class names
FID : set of field names
MID : set of method names
S : set of string symbols
N : set of numerical symbols (e.g., integers and floating point numbers)
Lc : set of constant memory locations
F : set of fields

The sets CID, FID, andMID are assumed to be mutually disjoint. Memory
locations from the set Lc are used to refer to global constants. Elements from
the set F allow to uniquely identify fields, since different field names could refer
to the same fields due to inheritance.
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Register names of the form vi for some number i are used to refer to registers
in the syntax of ADL.

Definition 1 (Register names). The set of register names X is defined by
X = {vi | i ∈ N0}.

The sets of ADL operators are divided into sets UNOP of unary operators,
BINOP of binary operators, and RELOP of relational operators.

Definition 2 (Operator symbols). Let CONV be a set of symbols of type
casting operators, then the sets of operator symbols are defined by

UNOP = {−,¬} ∪ CONV,

BINOP = {+,−, ∗, /,%,∧,∨,⊕, <<,>>,>>>}, and

RELOP = {=, 6=, <,>,≤,≥}.

The underspecified set CONV contains symbols for type casting operations
that convert between 32 bit and 64 bit values (e.g., integer to long), and from
one representation to another representation with the same length (e.g., integer
to float). UNOP is the set of symbols for unary operations, e.g., the negation
of a value. The set BINOP contains symbols for binary operations, such as
addition and subtraction. The set RELOP is the set of symbols of operations
that compare values, e.g., for equality.

Definition 3 (ADL instructions). The set INST R of ADL instructions
contains the following instructions:

Arithmetic Instructions
move va, vb
move-wide va, vb
const va, n
const-wide va, n
cmp va, vb, vc
cmp-wide va, vb, vc
unop va, vb, uop
unop-wide va, vb, uop
unop-wideS va, vb, uop
unop-wideT va, vb, uop
binop va, vb, vc, bop
binop-wide va, vb, vc, bop
binop-2addr va, vb, bop
binop-2addr-wide va, vb, bop
binop-lit va, vb, n, bop

Control Flow Instructions
nop

goto n

if-test va, vb, n, rop
if-testz va, n, rop

Object-Related Instructions
instance-of va, vb, cl
new-instance va, cl
const-string va, s
const-class va, cl
iget va, vb, fid
iget-wide va, vb, fid
iput va, vb, fid
iput-wide va, vb, fid
sget va, fid
sget-wide va, fid
sput va, fid
sput-wide va, fid

Array-Related Instructions
array-length va, vb
new-array va, vb
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filled-new-array va, . . . , ve, n
filled-new-array-range va, n
fill-array-data va, u0, . . . un
aget va, vb, vc
aget-wide va, vb, vc
aput va, vb, vc
aput-wide va, vb, vc

Method-Related Instructions
invoke-virtual va, . . . , ve, n,mid
invoke-super va, . . . , ve, n,mid
invoke-direct va, . . . , ve, n,mid

invoke-interface va, . . . , ve, n,mid
invoke-static va, . . . , ve, n,mid
invoke-virtual-range va, n,mid
invoke-super-range va, n,mid
invoke-direct-range va, n,mid
invoke-interface-range va, n,mid
invoke-static-range va, n,mid
move-result va
move-result-wide va
return-void

return va
return-wide va

where n ∈ N denotes a constant numerical value, s ∈ S denotes a constant
string, mid ∈ MID denotes a method name, fid ∈ FID denotes a field name,
cl ∈ CID denotes a class name, va, vb, vc, vd, ve ∈ X denote registers, ui ∈ (N ∪
Lc) for all i ∈ N0 denote constant values, rop ∈ RELOP denotes a relational
operator, uop ∈ UNOP denotes a unary operator, and bop ∈ BINOP denotes
a binary operator.

The intuitive meaning of the ADL instructions will be introduced in Sec-
tion 2.2. The set of instructions abstracts from actual Dalvik bytecode instruc-
tions in aspects that have no impact on the the information flow analysis (e.g.,
the the actual number of method parameters, or the type of arrays in array spe-
cific instructions). Details on which concrete Dalvik bytecode instructions are
covered by the instructions of Definition 3 can be found in Appendix B.

Each instruction represents one atomic computation step. To represent com-
plex computations, methods are defined as non-empty lists of instructions.

Definition 4 (ADL methods). The set M of all ADL methods is defined by
M = INST R∗ \ [].

We assume a total function params :MID → N0 that specifies the number
of parameters of a method with a given name.

In Dalvik bytecode programs, methods and fields are declared by classes.
All classes are organized in a class hierarchy, which defines the accessibility of
methods and fields. This means that classes can extend other classes (i.e., super
classes) to inherit and overwrite methods and inherit fields from their super
class. In ADL programs, the declaration of fields and methods as well as the
class hierarchy that supports the inheritance of fields and methods is modeled
implicitly by five partial functions:

– lookup-field : FID → F returns the field corresponding to the given field
name.

– lookup-direct :MID × CID ⇀M returns the method with the given name
declared by the class with the given name. If the class does not declare a
method with the given name, lookup-direct is undefined.
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– lookup-super :MID × CID ⇀M returns the method with the given name
declared or inherited by the super class of the class with the given name. If
there is no such method declared or inherited by the super class, lookup-super
is undefined.

– lookup-virtual :MID×CID ⇀M returns the method with the given name
declared or inherited by the class with the given name. If there is no such
method declared or inherited by the class with the given name, lookup-virtual
is undefined.

– lookup-static :MID ⇀M returns the static method with the given name.
If there is no such method lookup-static is undefined.

Definition 5 (ADL programs). An ADL program P is a tuple

P = (CIDP ,FIDP ,MIDP ,MP ,FP ,
lookup-fieldP , lookup-staticP , lookup-directP ,

lookup-superP , lookup-virtualP ), where

CIDP ⊆fin CID, FIDP ⊆fin FID, MIDP ⊆fin MID, MP ⊆fin M, FP ⊆fin F ,

lookup-fieldP : FIDP → FP ,
lookup-staticP :MIDP ⇀MP ,

lookup-directP :MIDP × CIDP ⇀MP ,

lookup-superP :MIDP × CIDP ⇀MP , and

lookup-virtualP :MIDP × CIDP ⇀MP .

An ADL program consists of finite sets of class names, field names, method
names, methods, fields, and functions for looking up fields and methods. The
sets of names correspond to the classes, fields, and methods that the program
declares. The set of methods contains the method definitions required by the
program. The five partial functions define the declaration and inheritance of
fields and methods with respect to the classes of the program.

Remark 1. In the remainder of this report, we assume an arbitrary but fixed
program P with corresponding sets and functions as of Definition 5.

2.2 Semantics of ADL

We define the operational semantics of ADL in the spirit of Barthe, Pichardie,
and Rezk [BPR07, BPR08], who developed a formal semantics for the bytecode
language of the Java Virtual Machine. Our proposed semantics for Dalvik byte-
code is based on the official documentation of the Android Open Source Project
[Proc].

The operational semantics of ADL programs is defined in terms of a tran-
sition relation on execution states. Each state specifies the position of the next
instruction to be executed in the program and the current state of the memory,
where the memory consists of the state of the registers and a heap. Execution
states and their underlying domains are defined as follows.

6



Definition 6 (Semantical domains). The semantical domains of ADL pro-
grams are defined by

L = Lc ∪ Lv locations

V = N ∪ L ∪ {void} values

O = CID × (F ⇀ V) objects

A = N0 × (N0 ⇀ V) arrays

Xres = {resultlower, resultupper} reserved registers

R = (X ∪ Xres)→ V register states

H = L⇀ (O ∪A) heaps

C = H× N0 ×R intermediate states

Cfinal = V ×H final states

where Lv with Lv ∩Lc = ∅ is the set of variable locations, void is a special value
such that void /∈ (N ∪ L), and resultlower, resultupper are special registers such
that resultlower, resultupper /∈ X .

The set L of locations consists of the locations Lc of constants and class
objects that can be statically referred to from the bytecode and of the variable
locations Lv at which dynamically created objects and arrays are stored. The
set V contains values that can be stored in registers, fields, and arrays. These
are, most importantly, numerical values and locations. The special value void
only occurs as the result of methods with the return type void, i.e., methods
that do not return a value, and in uninitialized registers. An object from the set
O consists of a class name that specifies its type and a mapping of its fields to
values. An array from the set A has a length and entries which are represented
by a partial function that maps each index of the array to a value. A natural
number is an index of a given array if it is smaller than the length of the array.
This definition of arrays requires that N contains at least the natural numbers
N0 as self-evaluating numerical symbols.

The states of the registers are represented as a mapping of register names to
values. Any function r ∈ R returns, for any register name va, a ∈ N0, the value
r(va) that is stored in the given register. The special registers resultlower and
resultupper are reserved to store the return values of method calls. The result of
methods with 32 bit return values is obtained through register resultlower. The
return values of 64 bits are divided into both registers: the lower 32 bits of the
result value are stored in resultlower and the upper 32 bits in resultupper.

A heap stores objects, arrays, as well as special class objects in which values
of static fields are stored. For a given location l ∈ L, a heap h ∈ H returns the
instance h(l) stored at that location. If nothing is stored at the given location,
h(l) is undefined.

Intermediate states 〈h, pp, r〉 ∈ C consist of the program point pp ∈ N0 of the
next instruction to be executed and the current memory state, represented as a
heap h ∈ H and a register state r ∈ R. The program point corresponds to the
index of the instruction in the executed method. When a method terminates, it
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yields a final state 〈u, h〉 ∈ Cfinal. A final state is a tuple of the returned value of
the method u ∈ V, and the heap h ∈ H at the point in time when the method
terminated.

To increase the readability of frequently used operations on objects and ar-
rays, we introduce corresponding selector functions and abbreviations.

Definition 7 (Selectors for objects). For all objects o ∈ O, mappings of
fields to values F : F ⇀ V, and class names c ∈ CID such that o = (c, F ), the
function ·.class : O → CID is defined by o.class = c and the function ·.fields :
O → (F ⇀ V) is defined by o.fields = F .

The functions ·.class and ·.fields are selectors for the class of objects and
the state of their fields respectively. To access the value of the field f of the
object o, we write o.f as a shorthand for o.fields(f). Moreover, we write o[f1 7→
u1, . . . , fn 7→ un] to denote the object (o.class, o.fields[f1 7→ u1, . . . , fn 7→ un]),
i.e., the object that is equal to o except that the fields f1, . . . , fn map to the
values u1, . . . , un.

Definition 8 (Selectors for arrays). For all arrays a ∈ A, lengths n ∈ N0,
and maps of indices to values m : N0 ⇀ V such that a = (n,m), the function
·.length : A → N0 is defined by a.length = n and the function ·.entries : A →
(N0 ⇀ V) is defined by a.entries = m.

The functions ·.length and ·.entries are selectors for the length of arrays and
their entries, respectively. To access the entry at index i of some array a, we write
a[i] as shorthand for a.entries(i). Moreover, we write a[i1 7→ u1, . . . , in 7→ un] for
referring to the array (a.length, a.entries[i1 7→ u1, . . . , in 7→ un]), i.e., the array
in which the values at the positions i1, . . . , in are set to u1, . . . , un.

Semantics of methods. The effect of the execution of a method m ∈ M
of some program P is defined based on the relation ⇓(·)P,m⊆ C × (N0 × Cfinal) on
execution states. The relation is parametric in the method m and in the program
P that defines the method.

The formal definition of ⇓(·)P,m and the definition of the execution relation for

instructions
(·)
 P,m⊆ C×(N0×(C∪Cfinal)) are mutually recursive. For the definition

of the relation ⇓(·)P,m we briefly provide the intuition of the relation
(·)
 P,m which

is formalized later. Intuitively, the judgment 〈h, pp, r〉 (n)
 P,m 〈h′, pp′, r′〉 denotes

that the instruction at program point pp of the method m defined by program P
executed in the initial memory given by h and r yields the possibly changed heap
h′, register state r′, and determines the instruction at program point pp′ as the

next instruction to be executed. The judgment 〈h, pp, r〉 (n)
 P,m 〈u, h′〉 denotes

that the instruction at program point pp of the method m defined by program P
executed in the initial memory given by h and r terminates the execution of the
method and returns the value u and the possibly changed heap h′. In addition to

the resulting states, ⇓(·)P,m and
(·)
 P,m both relate a natural number to the input
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state. It represents the number of method calls executed during the computation
of the resulting state. This number is only relevant for the proof of soundness of
the type system given in Chapter 5. It does not affect the computation of the
resulting state for any instruction or method.

Definition 9 (Transition relation for methods). Let m ∈ MP be any

method defined by program P . The execution relation ⇓(·)P,m⊆ C × (N0 × Cfinal)
for method m of program P is defined by the following rules:

〈h, pp, r〉 (n)
 P,m 〈u, h′〉

〈h, pp, r〉 ⇓(n)P,m 〈u, h′〉

〈h, pp, r〉 (n)
 P,m 〈h′, pp′, r′〉 〈h′, pp′, r′〉 ⇓(n

′)
P,m 〈u, h′′〉

〈h, pp, r〉 ⇓(n+n
′)

P,m 〈u, h′′〉

where h, h′, h′′ ∈ H, pp, pp′ ∈ N0, r, r′ ∈ R, u ∈ V, and n, n′ ∈ N0.

The judgment 〈h, pp, r〉 ⇓(n)P,m 〈u, h′〉 represents the terminating execution of
a method. If some initial state 〈h, pp, r〉 ∈ C and some final state 〈u, h′〉 ∈ Cfinal

are related by ⇓(n)P,m, the method m of program P executed in the initial register
state r and heap h recursively calls n methods and terminates in the possibly
changed heap h′ while returning the result u.

Definition 10 (Semantics of methods). Let m ∈ MP be a method defined
by program P . The method m executed in any initial heap h ∈ H and register
state r ∈ R terminates yielding the return value u ∈ V and the final heap h′ ∈ H
after n ∈ N0 method calls occurred, if and only if 〈h, 0, r〉 ⇓(n)P,m 〈u, h′〉.

The constant number 0 in the initial configuration indicates that the execu-
tion of methods always starts from the first instruction.

Semantics of programs. Android applications usually have more than one en-
try point method with which they start their execution [Proa], e.g., Activity.-
onCreate() or Activity.onResume(). We denote the set of method names of
entry points of the program P by the subset EPP ofMIDP . Hence, the possible
semantics of an ADL program P under any suitable initial state 〈h, 0, r〉 ∈ C
corresponds to the semantics of any such method m ∈MP .

A “suitable” initial heap h ∈ H contains at least the objects of string
constants and classes that are used in the program, as well as a special class
object for each class that holds the values of its static fields. The function
nameToReference : (CID ∪ S ∪ FID) ⇀ Lc maps the syntactical representa-
tion of these objects (class names, strings, and names of static fields) to the
locations of the respective objects on the heap. Since these locations can be re-
ferred to from the bytecode, they are constant over all program executions. We
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moreover assume that the initial register state r ∈ R maps the registers for the
parameters of the method to suitable initial values, e.g., to valid locations of
objects of the proper type on the heap, and that all other registers map to void.
These assumptions are adequate as, in practice, the Dalvik virtual machine takes
care of the proper initialization of class objects, static fields, and type safety.

Semantics of instructions. Values in Dalvik bytecode can be 32 or 64 bit wide
whereas all registers are 32 bit wide. Values that are 64 bit wide are therefore
stored in two consecutive registers [Proc]. This is also reflected in a set of ADL
instructions specifically for the handling of 64 bit values, i.e., instructions with
the suffix -wide. The definition of the semantics of these ADL instructions often
depends on the conversion of 64 bit values to 32 bit values and vice versa. To
this end, we assume the following functions:

– lower : V → V takes a value and returns the value of the first 32 bits.
– upper : V → V takes a value and returns the value of the last 32 bits.
– · • · : V × V → V takes two 32 bit values and returns a 64 bit value which is

the concatenation of the inputs.

Note that for 32 bit values, lower and upper yield the same result. We more-
over assume the following auxiliary functions and relations:

assignmentCompatible ⊆ CID × CID
nextFreeLocation : H⇀ Lv

defaultObject : CID → O
defaultArray : N0 → A

defaultRegisters : V∗ → R

Two class names c1, c2 ∈ CID are related by assignmentCompatible, written
assignmentCompatible(c1, c2), if and only if c1 is a subclass of or equal to c2.
Intuitively, this means that it is safe to assign an object of class c1 to a register or
field of the type c2. The partial function nextFreeLocation returns a free variable
location on the heap, unless the heap is full. It is used in the semantics of
instructions that create objects or arrays to determine where to put them on
the heap. The creation of new objects and arrays is modeled by the functions
defaultObject and defaultArray. The function defaultObject returns an object of
the class with the given name, and the function defaultArray returns an array
with the given length. Both, the object’s and the array’s fields are initialized
with a zero-value corresponding to the type of the field, e.g., 0 for fields of the
type integer, 0.0 for fields containing floating point numbers, the special location
null for fields storing references to objects and arrays, and so on. The function
defaultRegisters allocates a list of registers to store parameter values for method
invocation.

Definition 11 (Register allocation). Let r ∈ R, and x ∈ V∗. The function
defaultRegisters : V∗ → R for register allocation is defined such that
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defaultRegisters(x) = r if and only if for all i ∈ N0 it holds that

r(vi) =

{
x[i] if i < length(x)

void otherwise.

The effect that the execution of instructions has on a state is defined by the

execution relation
(·)
 P,m⊆ C × (N0 × C ∪ Cfinal). The relation is parametric in a

program P and the current method m defined by P . The execution relation is
defined by rules of the form

rName
premise1 . . . premisen

〈h, pp, r〉 (n)
 P,m 〈h′, pp′, r′〉

rName
premise1 . . . premisen

〈h, pp, r〉 (n)
 P,m 〈u, h′〉

for each instruction. To keep the rules clutter-free, we assume the method defi-
nitions to be well-formed with respect to the Dalvik bytecode verifier [Prod]. In
particular, we assume type-correct programs, and that all numerical values that
are given as parameters, such as n in goto n, lie within the range that is sensible
for the parameter.

In the following, we present the semantics of selected instructions that are
representative for groups of similar instructions. The semantics of the remaining
instructions from Definition 3 are given in Appendix C.

Arithmetic instructions. Arithmetic instructions compute values from given pa-
rameters, e.g., constants or values stored in registers. All have in common that
they do neither access the heap nor invoke any methods. The instruction to
be executed after an arithmetic instruction is always the next instruction in the
method, i.e., the instruction at the current program point plus one. In the follow-
ing, the function uop denotes the semantics of the operation uop on the domain
N . The functions bop, and rop denote the semantics of the operation bop on the
domain N , respectively rop on the domain V, and are used in infix notation.

The instruction move copies the value from register vb to register va as it is
reflected in the judgment derivable with the rule (rMove). The instruction const

stores a constant numerical value in a register. The instruction unop stores the
result of applying the unary operation uop to the parameter vb in the given
destination register va. The instruction binop applies the binary operation bop
to the values from vb and vc and stores the result to va.

Control flow instructions. Control flow instructions define the control flow in
the executed method. They allow to continue execution at any instruction in the
method. They have no effect on the heap or registers and they do not invoke
any methods.

The instruction nop executes without changing the program state besides
selecting the next instruction in the method for execution. The instruction goto

sets the next instruction to be executed to the instruction with the offset n from
the current program point. The semantics of if-test is defined by two rules.
The rule (rIfTestTrue) covers the case where the comparison of the values in
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rMove
m[pp] = move va, vb

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ r(vb)]〉

rConst
m[pp] = const va, n

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ n]〉

rUnop
m[pp] = unop va, vb, uop u = uop(r(vb))

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ u]〉

rBinop
m[pp] = binop va, vb, vc, bop x = r(vb) bop r(vc)

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ x]〉

Figure 1. Semantics of arithmetic instructions

rNop
m[pp] = nop

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r〉

rGoto
m[pp] = goto n

〈h, pp, r〉 (0)
 P,m 〈h, pp + n, r〉

rIfTestTrue
m[pp] = if-test va, vb, n, rop r(va) rop r(vb)

〈h, pp, r〉 (0)
 P,m 〈h, pp + n, r〉

rIfTestFalse
m[pp] = if-test va, vb, n, rop ¬(r(va) rop r(vb))

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r〉

Figure 2. Semantics of control flow instructions
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va and vb by the operator rop yields true. In this case, the instruction to be
executed is set to the instruction with the offset n from the current program
point. The rule (rIfTestFalse) covers the case where the comparison of va and vb
yields false. It selects the next instruction of the method for execution.

Object-related instructions. Object-related instructions read from or write to
objects on the heap. All instructions select their immediate successor in the
method to be executed next. None of the instructions invokes any methods.

The semantics of the instruction instance-of consists of two rules, (rIn-
stanceOfTrue) and (rInstanceOfFalse). If the class of the object referenced by vb
is a subtype of cl, the value 1 is stored in va. Otherwise, 0 is stored in va. Hence,
the result is 1 if and only if the object referenced by register vb is an instance
of the class cl. The instruction new-instance creates a new object of the given
class and stores a reference to it in va. The location to create the object at is de-
termined by the function nextFreeLocation whereas the new object is determined
using defaultObject. The instruction const-string stores the reference to the
constant string object with the given text s in va. The initial heap we assume
already contains all constant string objects of a program and the reference to the
specific string’s location is determined through the function nameToReference.
The instruction const-class works like const-string but taking a class name
as its second parameter. The instruction iget copies the value from the field
with the name fid of the object referenced by vb to va, provided that the ob-
ject exists at the specified location and has the respective field. The function
lookup-fieldP is used to obtain the field for the given field name. On the same
lines as iget, the instruction iput stores the value of va in the field fid of the
object referenced by vb. The instruction sget stores the value from the static
field denoted by fid in va, given that the respective special object declares the
field. The location of the special objects that hold the values of static fields are
obtained using nameToReference. The instruction sput stores the value from va
in the static field fid.

Array-related instructions. Array-related instructions create, access, and manip-
ulate arrays on the heap. As for the object-specific instructions, all array-specific
instructions select their immediate successor in the method to be executed next
and none of the instructions invokes any methods.

The instruction array-length stores the length of the array referenced by
a location in vb to va. The instruction new-array creates a new array of the
length stored in vb, stores the array at a new location on the heap, and stores the
location of the new array in va. The new location is determined using the function
nextFreeLocation and the new array is determined using defaultArray. The length
of the array is required to be greater than or equal to zero. The instruction
filled-new-array-range creates a new array in the same way as new-array. In
addition, filled-new-array-range stores the values of n consecutive registers
starting from the parameter register vk in the array. The location of the new
array on the heap is stored in the result register resultlower. The instruction aget

stores the value at the index given in vc of the array referenced by the location
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rInstanceOfTrue

m[pp] = instance-of va, vb, cl r(vb) ∈ dom(h)
assignmentCompatible(h(r(vb)).class, cl)

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ 1]〉

rInstanceOfFalse

m[pp] = instance-of va, vb, cl r(vb) ∈ dom(h)
¬(assignmentCompatible(h(r(vb)).class, cl))

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ 0]〉

rNewInstance

m[pp] = new-instance va, cl h ∈ dom(nextFreeLocation)
l = nextFreeLocation(h)

〈h, pp, r〉 (0)
 P,m 〈h[l 7→ defaultObject(cl)], pp + 1, r[va 7→ l]〉

rConstString
m[pp] = const-string va, s s ∈ dom(nameToReference)

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ nameToReference(s)]〉

rConstClass
m[pp] = const-class va, cl cl ∈ dom(nameToReference)

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ nameToReference(cl)]〉

rIget

m[pp] = iget va, vb, fid fid ∈ dom(lookup-fieldP )
r(vb) ∈ dom(h) o = h(r(vb))

f = lookup-fieldP (fid) f ∈ dom(o.fields)

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ o.f ]〉

rIput

m[pp] = iput va, vb, fid fid ∈ dom(lookup-fieldP )
r(vb) ∈ dom(h) o = h(r(vb))

f = lookup-fieldP (fid) f ∈ dom(o.fields)

〈h, pp, r〉 (0)
 P,m 〈h[r(vb) 7→ o[f 7→ r(va)]], pp + 1, r〉

rSget

m[pp] = sget va, fid fid ∈ dom(nameToReference)
l = nameToReference(fid) fid ∈ dom(lookup-fieldP )

f = lookup-fieldP (fid) f ∈ dom(h(l).fields) u = h(l).f

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ u]〉

rSput

m[pp] = sput va, fid fid ∈ dom(nameToReference)
l = nameToReference(fid) fid ∈ dom(lookup-fieldP )
f = lookup-fieldP (fid) o = h(l) f ∈ dom(o.fields)

〈h, pp, r〉 (0)
 P,m 〈h[l 7→ o[f 7→ r(va)]], pp + 1, r〉

Figure 3. Semantics of object-related instructions
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rArrayLength
m[pp] = array-length va, vb r(vb) ∈ dom(h)

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ h(r(vb)).length]〉

rNewArray

m[pp] = new-array va, vb h ∈ dom(nextFreeLocation)
l = nextFreeLocation(h) 0 ≤ r(vb)

〈h, pp, r〉 (0)
 P,m 〈h[l 7→ defaultArray(r(vb))], pp + 1, r[va 7→ l]〉

rFilledNewArrayR

m[pp] = filled-new-array-range vk, n
h ∈ dom(nextFreeLocation)

l = nextFreeLocation(h) x = defaultArray(n)
ar = x[0 7→ r(vk), . . . , n− 1 7→ r(vk+n−1)]

〈h, pp, r〉 (0)
 P,m 〈h[l 7→ ar], pp + 1, r[resultlower 7→ l]〉

rAget

m[pp] = aget va, vb, vc r(vb) ∈ dom(h) ar = h(r(vb))
u = ar[r(vc)] 0 ≤ r(vc) < ar.length

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ u]〉

rAput

m[pp] = aput va, vb, vc r(vb) ∈ dom(h) ar = h(r(vb))
x = ar[r(vc) 7→ r(va)] 0 ≤ r(vc) < ar.length

〈h, pp, r〉 (0)
 P,m 〈h[r(vb) 7→ x], pp + 1, r〉

Figure 4. Semantics of array-related instructions
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in vb to register va, given that the value of vb points to an array on the heap and
the index given in vc is within the domain of this array. Correspondingly, the
instruction aput stores the value from va at the index given in vc of the array
referenced by the location in vb.

Method-related instructions. Method-related instructions comprise instructions
for method invocation, return instructions, and instructions that copy return
values of method calls to registers.

rIVR

m[pp] = invoke-virtual-range vk, n,mid r(vk) ∈ dom(h)
(mid, h(r(vk)).class) ∈ dom(lookup-virtualP )
m′ = lookup-virtualP (mid, h(r(vk)).class)

〈h, 0, defaultRegisters([r(vk), . . . r(vk+n−1)])〉 ⇓(n
′)

P,m′ 〈u, h
′〉

〈h, pp, r〉 (n′+1)
 P,m 〈h′, pp + 1, r[resultlower 7→ lower(u), resultupper 7→ upper(u)]〉

rIStR

m[pp] = invoke-static-range vk, n,mid
mid ∈ dom(lookup-staticP ) m′ = lookup-staticP (mid)

〈h, 0, defaultRegisters([r(vk), . . . r(vk+n−1)])〉 ⇓(n
′)

P,m′ 〈u, h
′〉

〈h, pp, r〉 (n′+1)
 P,m 〈h′, pp + 1, r[resultlower 7→ lower(u), resultupper 7→ upper(u)]〉

rMoveR
m[pp] = move-result va

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ r(resultlower)]〉

rReturnVoid
m[pp] = return-void

〈h, pp, r〉 (0)
 P,m 〈void, h〉

rReturn
m[pp] = return va

〈h, pp, r〉 (0)
 P,m 〈r(va), h〉

Figure 5. Semantics of method-related instructions

The instruction invoke-virtual-range determines the method with the
name mid, declared or inherited by the class of the object referenced by the
location in vk, and executes it. The method definition is determined using
lookup-virtualP . The method is executed from its first statement, i.e., program
point 0, with the current heap and a list of fresh registers that are initialized
with the n parameters of the method, from parameter vk to vk+n−1. The re-
sult value of the method invocation is stored to the special registers resultlower
and resultupper. Afterwards, the execution continues with the next instruction
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in the current method and with the possibly changed memory resulting from
the method invocation. The number n′ of method calls in the called method m′

is added to the one call that occurs when m′ is called. Hence, the transition is
annotated with n′ + 1. The semantics of the instruction invoke-static-range

is almost the same as that of invoke-virtual-range but it uses lookup-staticP
instead of lookup-virtualP to obtain the method to execute, identified by the
given method name only. The instruction move-result copies the value from
register resultlower to va. This instruction and move-result-wide (see Defini-
tion 15 in the appendix) are the only instructions that can read the special result
registers and make their values available for other computations. The instruction
return-void terminates the execution of the current method with a transition
to a final state. In case of return-void, the return value is always the constant
void. The semantics of the instruction return only differs from the semantics of
return-void in the value of the final state, which is read from the register that
is given as a parameter.

Instructions for 64 bit values. Many of the instructions discussed in this section
are also available with arguments of 64 bits width. They are mostly similar
to the 32 bit variants but they split 64 bit arguments to store them in two
successive 32 bit registers and combine 32 bit values from two successive registers
to 64 bit values before using them. For their formal semantics, see Appendix C.
Special instructions without corresponding 32 bit variants are unop-wideS and
unop-wideT.

rUnopWideS
m[pp] = unop-wideS va, vb, uop u = uop(r(vb) • r(vb+1))

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ u]〉

rUnopWideT
m[pp] = unop-wideT va, vb, uop u = uop(r(vb))

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ lower(u), va+1 7→ upper(u)]〉

Figure 6. Semantics of conversion instructions for 64 bit values

The instruction unop-wideS applies unary operators that convert a 64 bit
value read from register vb and vb+1 to a 32 bit value and stores the result to
register va. unop-wideT applies unary operators that convert a 32 bit value read
from register vb to a 64-bit value, which is then stored to the registers va and
va+1. Both instructions do not access the heap and execution continues with
their immediate successor in the method.
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3 Security Property

In this section, we introduce the capabilities of our attacker and define a non-
interference-like security property that specifies which programs can be executed
without leaking information to the attacker observing the execution.

We assume an attacker who knows the code of the program that is executed.
He can observe the content of a subset of all storage locations (e.g., registers,
fields, the content of arrays) of the program. For the content of these storage
locations, the attacker can observe the type of the content, e.g., whether it
is a number or location, the class of an object, and the length of an array.
The attacker cannot observe non-termination and timing behavior of a program
execution.

To specify which storage locations in the program are observable to the at-
tacker, we classify them with respect to two security domains, low and high.
Storage locations classified as low are public and may be accessed by anybody.
The domain high is used to classify private storage locations which are not di-
rectly observable by the attacker. To prevent that the attacker learns anything
about private information from observing storage locations classified as low, no
information must flow from storage locations classified as low to storage loca-
tions classified as high. This requirement is formalized by the following flow
policy.

Definition 12 (Flow policy). The flow policy is defined as the lattice (SL,v),
where SL = {low, high} and v = {(low, high), (low, low), (high, high)}.

The flow relation v specifies which flows of information are permitted. For
any two security domains s1, s2 ∈ SL, information may flow from a storage
location classified as s1 to a storage location with the security domain s2 if and
only if s1 v s2. We write s1 t s2 to denote the least upper bound of the two
domains.

How the storage locations of a particular program are classified into the two
security domains is specified with domain assignments.

Definition 13 (Domain assignments).

– The security domains of the parameters and return values of methods are
defined by a set

mda ⊆fin {(mid, [p0, . . . , pn−1], ret) ∈MIDP×SL∗×SL | n = params(mid)}.

– The security domains of fields are defined by a function fda : FIDP → SL.
– The security domain of the content of all arrays in the program is defined as

a constant ada ∈ SL.

We refer to elements of the set mda as method signatures. A method signature
(mid, [p0, . . . , pn−1], ret) denotes that a call of the methodmid with n parameters
that are classified as p0 to pn−1 yields a return value classified as ret. If fda(fid) =
s, the content stored in a field with the name fid is classified as s. All contents
of all arrays in the program are classified as ada.
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Definition 14 (Security policy). A security policy for a program P consists of
the flow policy (SL,v) and domain assignments for methods mda ⊆fin MIDP ×
SL∗ × SL, fields fda : FIDP → SL, and arrays ada ∈ SL.

Remark 2. For the remainder of this report, we assume an arbitrary but fixed
security policy for program P with domain assignments mda, fda, and ada.

The domain assignments for registers are not directly specified by the secu-
rity policy but are inferred from the method signatures. Registers are assigned
security domains based on their names, independent of a concrete program.

Definition 15 (Domain assignments for registers). The security domains
of registers are defined by functions from the set RDA, where RDA = (X ∪
Xres → SL). For any two rda1, rda2 ∈ RDA, rda1 v rda2 holds if and only if
rda1(x) v rda2(x) holds for all x ∈ X∪Xres. For all rda1, rda2 ∈ RDA, rda1trda2
is defined by (rda1 t rda2)(x) = rda1(x) t rda2(x) for all x ∈ X ∪ Xres.

Note that the relation v and the function t on domain assignments for
registers are pointwise extensions of v and t on security domains.

The notion of information flow in a program from a private security stor-
age location to a public storage location is formalized with the security condi-
tion TIN-ADL (Termination-Insensitive Noninterference for the Abstract Dalvik
Language). Intuitively, it requires that if any entry point of the program is ex-
ecuted in any two initial states that are indistinguishable to the attacker, then
the two final states of the execution are also indistinguishable to the attacker.
Hence, if a program satisfies TIN-ADL, the observable part of the output of any
entry point execution does not depend on the private input of the entry point.
Indistinguishability and the security condition TIN-ADL are formalized in the
following.

3.1 Indistinguishability

Different program executions may yield a different allocation of objects and
arrays on the final heaps. However, any two such heaps may still be indistin-
guishable to the attacker, as long as any observable array or object on one heap
has a corresponding indistinguishable array or object on the other heap. Fol-
lowing Banerjee and Naumann [BN05], the locations of any two corresponding
observable arrays and objects are related by a partial injective function on loca-
tions β : L⇀ L. This allows to define indistinguishability modulo the placement
of objects and arrays on the heap by making the relations parametric in β. In
addition, we require β to map constant locations to themselves: As the attacker
is assumed to know the program, he also knows the content of the heap at the
constant locations in Lc, i.e., special class objects that store the values of static
fields, classes, string constants, and so on.

Definition 16 (Partial injective functions on locations). The set B of
partial injective functions on locations is defined by

B = {β : L⇀ L | β is injective ∧ ∀l ∈ Lc. β(l) = l}.
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Two values are indistinguishable for the attacker if they are both void, if they
are the same numerical value, or if they are both locations and the first location
corresponds to the second one with respect to β.

Definition 17 (Indistinguishability of values). Let v1, v2 ∈ V be arbitrary
values, and β ∈ B be a partial injective function on locations. The values v1 and
v2 are indistinguishable, written v1 ∼β v2, if and only if

– v1 = v2 = void, or
– there exists a number n ∈ N such that v1 = v2 = n, or
– v1, v2 ∈ L, v1 ∈ dom(β), and β(v1) = v2.

The notion of indistinguishability for concatenated values is a straightforward
extension of value indistinguishability.

Definition 18 (Indistinguishability of concatenated values). Let x1, y1,
x2, y2 ∈ V be arbitrary values and let β ∈ B be a partial injective function
on locations. The concatenated values x1 • y1 and x2 • y2 are indistinguishable,
written x1•y1 ∼β x2•y2 if and only if x1 ∼β x2 and y1 ∼β y2. Two concatenated
values are equal, i.e., x1 • y1 = x2 • y2 if and only if x1 = x2 and y1 = y2.

Two register states are indistinguishable if all registers classified as low hold
indistinguishable values.

Definition 19 (Indistinguishability of register states). Let r, r′ ∈ R be
two register states, rda ∈ RDA be a register domain assignment, and β ∈ B be a
partial injective function on locations. The register states r and r′ are indistin-
guishable with respect to rda, written r ∼β,rda r

′, if and only if for all x ∈ X∪Xres
with rda(x) = low it holds that r(x) ∼β r′(x).

Two objects are indistinguishable for the attacker if they are instances of
the same class, and all fields that could be referenced by a field name of a low
security domain hold indistinguishable values in both objects.

Definition 20 (Indistinguishability of objects). Let o1, o2 ∈ O be two ob-
jects, and let β ∈ B be a partial injective function on locations. The objects o1
and o2 are indistinguishable, written o1 ∼β o2, if and only if

1. o1.class = o2.class and
2. for all fields f ∈ dom(o1.fields) and field names fid ∈ FIDP such that

f = lookup-fieldP (fid), it holds that if fda(fid) = low, then o1.f ∼β o2.f .

Two arrays are indistinguishable for the attacker if they have the same length
and, in case ada = low, all entries are indistinguishable.

Definition 21 (Indistinguishability of arrays). Let a1, a2 ∈ A be two arrays
and let β ∈ B be a partial injective function on locations. The arrays a1 and a2
are indistinguishable, written a1 ∼β a2 if and only if a1.length = a2.length and
if ada = low, then for all indices i ∈ N0 such that 0 ≤ i < a1.length it holds that
a1[i] ∼β a2[i].
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Two heaps are indistinguishable if for all locations on the first heap that are
potentially observable by the attacker, there exists a corresponding location on
the second heap such that the object or array at both locations are indistin-
guishable.

Since the attacker can distinguish between objects and arrays, the partial
function β must not map locations of objects to locations of arrays or vice
versa. To distinguish between locations of arrays and objects, we introduce the
notations domO(h) for the locations that the function h maps to an object and
domA(h) for the locations that the function h maps to an array.

Definition 22 (Indistinguishability of heaps). Let h1 and h2 be two heaps,
and let β ∈ B be a partial injective function on locations. The heaps h1 and h2
are indistinguishable, written h1 ∼β h2, if and only if

1. dom(β) ⊆ dom(h1),

2. rng(β) ⊆ dom(h2), and

3. for all locations l ∈ dom(β), either

(a) l ∈ domO(h1), β(l) ∈ domO(h2), and h1(l) ∼β h2(β(l)), or

(b) l ∈ domA(h1), β(l) ∈ domA(h2) and h1(l) ∼β h2(β(l)).

3.2 Security

The indistinguishability relations capture the capabilities of the attacker to ob-
serve differences of any two register states, heaps, and values. Based on these
relations, the security property TIN-ADL formalizes that the attacker cannot
learn more information about the private input of a program that satisfies TIN-
ADL by executing the program and observing the results of the execution.

Definition 23 (TIN-ADL for methods). Let m ∈ MP be a method of pro-
gram P , mid ∈ MIDP be a method name, and p0, . . . pn, ret ∈ SL for some
n ∈ N0 be security domains such that (mid, [p0, . . . , pn], ret) ∈ mda.

The method m satisfies TIN-ADL with respect to (mid, [p0, . . . , pn], ret) if and
only if there exists a register domain assignment rda ∈ RDA with pi v rda(vi)
for all i ∈ N0, i ≤ n and for all partial injective functions β ∈ B, register
states r1, r2 ∈ R, heaps h1, h2, h

′
1, h
′
2 ∈ H, return values u1, u2 ∈ V, and natural

numbers n1, n2 ∈ N0 such that

r1 ∼β,rda r2,

h1 ∼β h2,

〈h1, 0, r1〉 ⇓(n1)
P,m 〈u1, h

′
1〉, and

〈h2, 0, r2〉 ⇓(n2)
P,m 〈u2, h

′
2〉,

there exists a partial injective function on locations β′ ∈ B, such that β ⊆ β′,
h′1 ∼β′ h′2 and, if ret = low, u1 ∼β′ u2.
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A method m satisfies TIN-ADL with respect to a method signature if and
only if for any two terminating executions of m from initial configurations with
indistinguishable registers and indistinguishable heaps, the final configurations
have indistinguishable heaps and, if the method has a public return value, the
return values are indistinguishable. Intuitively, the property ensures that the
attacker who cannot tell apart the initial states also cannot distinguish the final
states after the execution of the method. Hence, the public outputs of a method
that satisfies TIN-ADL do not depend on its private inputs. Note that the do-
main assignment for the registers, rda, classifies the parameter registers of the
method at least as private as declared in the method signature. The classification
of all non-parameter registers does not matter, as these registers are initialized
with void and, thus, intuitively contain public information.

This notion of security is extended to ADL programs by ensuring that each
method that could be called to execute the program, i.e., each entry point,
satisfies TIN-ADL for all signatures of the method. Moreover, to assess the
security of a program the security classification of the entry points must be
complete, i.e., each entry point must have at least one method signature.

Definition 24 (TIN-ADL for programs). Program P satisfies TIN-ADL if
and only if

1. for all method names of entry points mid ∈ EPP there exists p0, . . . pn, ret ∈
SL for some n ∈ N0 such that (mid, [p0, . . . pn], ret) ∈ mda, and

2. for all method names of entry points mid ∈ EPP , methods m ∈ MP ,
classes c ∈ CIDP , and security domains p0, . . . pn, ret ∈ SL such that
(mid, [p0, . . . pn], ret) ∈ mda, if
– m = lookup-static(mid),
– m = lookup-direct(mid, c),
– m = lookup-super(mid, c), or
– m = lookup-virtual(mid, c)

holds, then m must satisfy TIN-ADL with respect to (mid, [p0, . . . pn], ret).

Intuitively, P satisfies TIN-ADL if and only if any method that may be called
on any object to execute the program does not reveal private information to the
attacker.

4 Security Type System

In this section, we present a security-type system that facilitates the certification
of TIN-ADL for ADL programs.

The type system not only captures direct data flows through instructions with
assignments but also indirect information flows through control flow instructions
with branching conditions that depend on private information. To this end,
we utilize the concept of control dependence regions to determine control-flow
dependencies between the instructions of a method, following the approach of
Barthe, Pichardie, and Rezk [BPR07] who applied it to Java bytecode.
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Definition 25 (Successor relation). Let m ∈M be an arbitrary method. The
successor relation→m⊆ N0×N0 of method m is defined such that for all program
points i, j ∈ N0, it holds that i→m j if and only if program point j of method m
is possibly executed directly after the execution of program point i with respect to
the semantics of the instruction at program point i.

Intuitively, the relation →m specifies the control flow graph of method m.
Based on the control flow graph, the control flow dependency between instruc-
tions of a method can be approximated.

Definition 26 (Control dependence region). Let m ∈ M be an arbitrary
method. The functions regionm : N0 → P(N0) and junm : N0 ⇀ N0 are a safe
over approximation of the method’s control dependence regions if they satisfy the
three safe over approximation properties (SOAPs):

SOAP1 For all program points i, j, k ∈ N0 such that i →m j, i →m k, and
j 6= k, k ∈ regionm(i) or k = junm(i).

SOAP2 For all program points i, j, k ∈ N0, if j ∈ regionm(i) and j →m k, then
either k ∈ regionm(i) or k = junm(i).

SOAP3 For all program points i, j ∈ N0, if j ∈ regionm(i) and there exists no
k ∈ N0 such that j →m k, then junm(i) is undefined.

The control dependence region of a program point pp with a branching in-
struction, regionm(pp), contains at least those program points that are executed
depending on what the branching condition evaluates to. The junction point cor-
responding to pp, junm(pp), specifies an instruction that is again executed in-
dependently of the evaluation of the branching condition. If the method returns
in a control dependence region, this region does not have any junction points.

Remark 3. In the remainder of this report, we assume for all methods m ∈ M
functions regionm : N0 → P(N0) and junm : N0 ⇀ N0 such that regionm and
junm are a safe over approximation of m’s control dependence regions.

To prevent information leaks due to control flow dependencies, the security
type system ensures that no assignments to public storage locations are made
at any program point in the control dependence region of a program point with
a branching instruction that has a condition depending on private information.
For this purpose, the security environment se records for each program point the
upper bound of the security domains of all information that determines whether
the respective program point is executed or not.

Definition 27 (Security environment.). A security environment is a func-
tion se : N0 → SL.

4.1 Security Typing Rules

The judgment m, regionm,mda, fda, ada, ret, se ` pp : rda → rda′ is parametric
in the method m, the control dependence region regionm, the set of method sig-
natures mda, the field domain assignment fda, the security domain of all array
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contents ada, the domain ret ∈ SL of the return value of m, and a security en-
vironment se. The judgment denotes that after the execution of program point
pp in the context of m, regionm,mda, fda, ada, ret, se, the security domain as-
signment of the registers must be rda′ if it was rda before. We abbreviate long
judgments by m, · · · ` pp : rda→ rda′. The typing rules of the form

tName
premise1 . . . premisen

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda′

are introduced in the following.

Security typing rules for arithmetic instructions. The security typing rules for
arithmetic instructions set the security domain of the target register to at least
the highest security domain of any argument register of the computation, and
at least to the security domain of the environment in which the instruction is
executed. The former ensures that no direct information flows from the argument
registers to the target register occur. The latter rules out indirect information
flows through control-flow dependencies on private information: If a register is
written in the control dependence region of a branching instruction that depends
on private information (i.e., se(pp) = high), then treating the register as private
ensures that the attacker cannot learn from its content which path in the control
flow graph of the method was executed and, thus, what the value of the private
branching condition was. Constant values, as in (tConst), have a low security
domain, as the attacker is assumed to know the program.

tMove
m[pp] =move va, vb

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ rda(vb) t se(pp)]

tConst
m[pp] =const va, n

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ se(pp)]

tUnop
m[pp] =unop va, vb, uop

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ rda(vb) t se(pp)]

tBinop
m[pp] =binop va, vb, vc, bop t = rda(vb) t rda(vc) t se(pp)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t]

Figure 7. Security typing rules for arithmetic instructions

Security typing rules for control flow instructions. The instructions nop and
goto cannot leak information since they are statically known to the attacker
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and their execution does not depend on additional information from the memory.
The only control flow instructions that may leak information are branchings on
private information. To ensure that they do not cause indirect leaks through
which branch they execute, the security environment of all program points in
the control dependence region of a branching instruction must have at least the
highest security domain of all source registers. If a program point is in a high
security environment, then its instruction is forbidden to make assignments (e.g.,
to fields, arrays, method parameters) that may eventually become visible to the
attacker.

tNop
m[pp] = nop

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

tGoto
m[pp] = goto n

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

tIfTest

m[pp] = if-test va, vb, n, rop
∀j ∈ regionm(pp).rda(va) t rda(vb) v se(j)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

Figure 8. Security typing rules for control flow instructions

Security typing rules for object-related instructions. The rules (tNewInstance),
(tConstString), and (tConstClass) resemble the rule for loading constant num-
bers. Similarly, the value to be stored in the target register is statically known
and, thus, only information about the control flow could be leaked, which is
prevented by raising the domain of the target register to the domain of the secu-
rity environment. The typing rule (tIget) sets the domain of the target register
to the least upper bound of the security environment, the source field, and the
register holding the reference to the source object. The domain of the register
that holds the object reference is incorporated into the security domain of the
target register, because reading the value from a field also reveals the instance
behind the reference, which may have been set depending on private information.
Incorporating the security domain of the field and the security domain of the
security environment prevents the usual direct and indirect information flows,
respectively. The security typing rule (tIput) ensures that the security domain
of the target field is at least as high as the highest domain of the register holding
the object reference, the source register, and the security environment. As for
(tIget), incorporating the domain of the register with the object reference pre-
vents indirect leaks into the field through aliasing. Incorporating the domains
of the source register and the security environment prevent direct and indirect
information flows, respectively. The rules (tSget) and (tSput) are analogous to
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the rules for instances but without the security domain of the register holding
the object reference.

tInstOf
m[pp] = instance-of va, vb, cl

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ rda(vb) t se(pp)]

tNewInstance
m[pp] = new-instance va, cl

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ se(pp)]

tConstString
m[pp] = const-string va, s

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ se(pp)]

tConstClass
m[pp] = const-class va, cl

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ se(pp)]

tIget
m[pp] = iget va, vb, fid fda(fid) = st t = rda(vb) t st t se(pp)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t]

tIput

m[pp] = iput va, vb, fid fda(fid) = st
rda(va) t rda(vb) t se(pp) v st

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

tSget
m[pp] = sget va, fid fda(fid) = st

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ st t se(pp)]

tSput
m[pp] = sput va, fid fda(fid) = st rda(va) t se(pp) v st

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

Figure 9. Security typing rules for object-related instructions

Security typing rules for array-related instructions. The security typing rules
(tAget) and (tAput) are very similar to the rules (tIget) and (tIput) for fields of
objects. However, array operations do not have a constant field name as param-
eter but address the fields of arrays by dynamic index values stored in registers.
Hence, (tAget) and (tAput) in addition ensure the privacy of the index in register
vc. Rule (tNewA) sets the security domain of a register storing a newly created
array to the least upper bound of the domain of the security environment and
the length of the array. This is because the initial length, stored in register vb,
may be private. For (tFNAR), the initial length of the array is statically known,

26



but since the array’s content is initialized with values from registers, the rule
ensures that the domain of the content ada is at least as high as the least upper
bound of the security domains of the argument registers.

tALength
m[pp] = array-length va, vb t = rda(vb) t se(pp)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t]

tNewA
m[pp] = new-array va, vb

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ rda(vb) t se(pp)]

tFNAR
m[pp] = filled-new-array-range vk, n

⊔k+n−1
i=k rda(vi) v ada

m, · · · ` pp : rda→ rda[resultlower 7→ se(pp), resultupper 7→ se(pp)]

tAget
m[pp] = aget va, vb, vc t = se(pp) t ada t rda(vb) t rda(vc)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t]

tAput
m[pp] = aput va, vb, vc rda(va) t se(pp) t rda(vb) t rda(vc) v ada

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

Figure 10. Security typing rules for array-related instructions

Security typing rules for method-related instructions. Rules for method invo-
cation ensure that the called method supports a signature with the respective
security domains of the parameter registers. If there exists such a signature, the
security domain of the result registers is set to the declared return type of the
signature. To prevent indirect leaks due to observable effects of the method calls
on the heap, methods may only be called in a low security environment and, in
case of instance methods, on objects that are stored in a public register. The
rule (tReturn) ensures that the declared security domain of the return value of
the current method is at least the least upper bound of the security domain of
the environment and the domain of the register that contains the return value.

Security typing rules for conversion instructions for 64 bit values. In case a 64
bit value is reduced to a 32 bit value (tUnopWS), the security domain of the
target register is set to the least upper bound of the domains of the two registers
containing the 64 bit value and the domain of the security environment. In case
of converting a 32 bit value to a 64 bit value, the two target registers are set to
the same domain, the least upper bound of the domains of the source register
and the security environment.

The typing rules for 64 bit instructions and the remaining instructions from
Definition 3 are listed in Appendix D.
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tIR

m[pp] = invoke-virtual-range vk, n,mid
(mid, [rda(vk), . . . , rda(vk+n−1)], st) ∈ mda

se(pp) = low rda(vk) = low

m, · · · ` pp : rda→ rda[resultlower 7→ st, resultupper 7→ st]

tIRS

m[pp] = invoke-static-range vk, n,mid
(mid, [rda(vk), . . . , rda(vk+n−1)], st) ∈ mda se(pp) = low

m, · · · ` pp : rda→ rda[resultlower 7→ st, resultupper 7→ st]

tMoveRes
m[pp] = move-result va t = se(pp) t rda(resultlower)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t]

tReturnVoid
m[pp] = return-void

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

tReturn
m[pp] = return va se(pp) t rda(va) v ret

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

Figure 11. Security typing rules for method-related instructions

tUnopWS
m[pp] = unop-wideS va, vb, uop t = rda(vb) t rda(vb+1) t se(pp)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t]

tUnopWT
m[pp] = unop-wideT va, vb, uop t = rda(vb) t se(pp)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t, va+1 7→ t]

Figure 12. Security typing rules for conversion instructions for 64 bit values
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4.2 Typable Methods and Programs

A method is typable if there exists a suitable declaration of the security envi-
ronment and a register domain assignment for each program point, such that
for each potential step in program execution a judgment can be derived in the
security type system for the respective program point.

Definition 28 (Typable method). Let m ∈ MP be an arbitrary method of
program P with length(m) = k+1 for some k ∈ N0. Moreover, let mid ∈MIDP ,
and p0, . . . pn, ret ∈ SL for some n ∈ N0 such that (mid, [p0, . . . , pn], ret) ∈ mda.

The method m is typable with respect to the signature (mid, [p0, . . . , pn], ret)
if and only if there exist a security environment se : N0 → SL and register
domain assignments rda0, . . . , rdak ∈ RDA such that

1. for all i ∈ N0 with i ≤ n it holds that pi v rda0(vi),

2. for all i, j ∈ N0, if i →m j then there exists a register domain assignment
rda′j ∈ RDA such that rda′j v rdaj and the judgment

m, regionm,mda, fda, ada, ret, se ` i : rdai → rda′j

is derivable, and

3. for all i ∈ N0, if there exists no j ∈ N0 such that i→m j, then the judgment

m, regionm,mda, fda, ada, ret, se ` i : rdai → rdai

is derivable.

The first condition ensures that the method treats the parameters given in
the initial register state at least as confidential as they have been declared in the
method signature. The second condition requires that a typing rule is applicable
for each possible transition between program points i and j in the method such
that the register domain assignment resulting from the derivable judgment rda′j
is not more restrictive than the fixed register domain assignment rdaj . The third
condition requires that a typing rule can be applied for each return instruction
in the method.

To allow for the use of methods that are not part of the analyzed program
itself, e.g., methods of the Android framework, framework ⊆ M specifies a set
of trusted methods. The set framework contains only those methods that can be
safely assumed to satisfy TIN-ADL with respect to all applicable signatures in
mda, e.g., after careful manual inspection.

An ADL program is typable with respect to a security policy if each of its
methods is typable with respect to all method signatures that could possibly
apply to the respective method. Each entry point of the program must have at
least one corresponding method signature (see Definition 24) to make sure that
all input and output of the program is classified into one of the security domains,
regardless which entry point is called to start the program.
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Definition 29 (Typable program). The program P is typable if and only if

1. for all method names of entry points mid ∈ EPP there exists p0, . . . pn, ret ∈
SL for some n ∈ N0 such that (mid, [p0, . . . pn], ret) ∈ mda,

2. for all field names fid1, fid2 ∈ FIDP , it holds that if lookup-fieldP (fid1) =
lookup-fieldP (fid2), then fda(fid1) = fda(fid2), and

3. for all method names mid ∈ MIDP , methods m ∈ MP , class names c ∈
CIDP , and security domains p0, . . . pn, ret ∈ SL with (mid, [p0, . . . pn], ret) ∈
mda, if

– m = lookup-static(mid),
– m = lookup-direct(mid, c),
– m = lookup-super(mid, c), or
– m = lookup-virtual(mid, c),

then m ∈ framework or m is typable with respect to (mid, [p0, . . . pn], ret).

The first condition requires that each entry point of the program has at
least one declared method signature. The second condition ensures that all field
identifiers that could refer to the same field must have the same security domain.
The third condition requires that all methods which the name of a signature
could refer to must be typable with respect to that signature or be a framework
method.

5 Soundness

In this section, we establish the formal guarantee that if a program is typable
in the security type system from Section 4, then it also satisfies the security
condition TIN-ADL from Section 3.

Theorem 1 (Soundness of the type system). If program P is typable, then
P satisfies TIN-ADL.

The proof of this theorem is inspired by [BPR08]. It depends on lemmas with
the following intuition about the execution of typable programs:

Locally respect (Lemmas 1, 2, 3) If the same program point is executed in
a low security environment with indistinguishable heaps and register states,
then the resulting heap and register states are also indistinguishable. These
lemmas ensure that no private data is copied to public storage locations.

Step consistent (Lemma 4, 5) Heap and register state before and after the
execution of a program point in a high security environment are indistin-
guishable. This implies that, in a high security environment, there are no
observable information flows to the heap, to the register state, or to return
values. These lemmas ensure, together with high branching, that no infor-
mation is leaked implicitly through control flow dependencies on branching
conditions with secrets.
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High branching (Lemma 6) All program points in control-flow dependence
of a branching based on private information are in a high security environ-
ment. This lemma ensures that all control flow dependencies on branching
conditions with secrets are taken into account.

Indistinguishable after high branch (Lemma 7) Executing sequences of
program points that are all in a high security environment starting with
indistinguishable heaps and register states do not affect the indistinguisha-
bility of the heaps and register states at any point in execution. This lemma
ensures that executions in a high security environment, i.e., depending on
secrets, have no observable effect.

Security of typable sequences (Lemma 8) For arbitrary two execution se-
quences from the same program point with indistinguishable initial register
states and heaps, each state with a program point in a low security en-
vironment of one execution sequence has a matching state in the second
execution sequence with indistinguishable heaps and register states. This
lemma ensures that the same potentially observable steps are executed in
two independent runs of a method starting from indistinguishable inputs.

Security of typable methods (Lemma 9) If a method of a typable program
is typable with respect to a given method signature, then it satisfies TIN-
ADL with respect to the same signature.

Moreover, we utilize in some proofs that all indistinguishability relations are
equivalence relations, which is shown in Appendix A.

Figure 13. Proof Structure

Figure 13 shows an overview of the dependencies between the lemmas in the
proof of soundness. The arrowhead denotes on which lemma the lemma from
which the arrow originates depends. We show the basic lemmas, i.e., those with-
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out dependencies, with respect to instructions that are representatives for groups
of similar instructions. All remaining instructions can be shown analogously.

Lemma 1 (Locally respect). For all methods m ∈MP of a typable program
P , register states r1, r2, r

′
1, r
′
2 ∈ R, heaps h1, h2, h

′
1, h
′
2 ∈ H, program points

pp1, pp2, pp
′
2 ∈ N0, partial injective functions on locations β ∈ B, register domain

assignments rda, rda′ ∈ RDA, security environments se : N0 → SL, and security
domains ret ∈ SL, if

1. se(pp1) = low,
2. h1 ∼β h′1,
3. r1 ∼β,rda r

′
1,

4. m, regionm,mda, fda, ada, ret, se ` pp1 : rda→ rda′,

5. 〈h1, pp1, r1〉
(0)
 P,m 〈h2, pp2, r2〉, and

6. 〈h′1, pp1, r′1〉
(0)
 P,m 〈h′2, pp′2, r′2〉,

then there exists some β′ ∈ B with β ⊆ β′ such that h2 ∼β′ h′2 and r2 ∼β′,rda′ r
′
2.

Proof. Let m ∈ MP be a method of a typable program P , r1, r2, r
′
1, r
′
2 ∈ R

be register states, h1, h2, h
′
1, h
′
2 ∈ H be heaps, pp1, pp2, pp

′
2 ∈ N0 be program

points, β ∈ B be partial injective functions on locations, rda, rda′ ∈ RDA be
register domain assignments, se : N0 → SL be security environments, and
ret ∈ SL be security domains such that se(pp1) = low, h1 ∼β h′1, r1 ∼β,rda

r′1, m, regionm,mda, fda, ada, ret, se ` pp1 : rda → rda′, 〈h1, pp1, r1〉
(0)
 P,m

〈h2, pp2, r2〉, and 〈h′1, pp1, r′1〉
(0)
 P,m 〈h′2, pp′2, r′2〉.

To show that there exists some β′ ∈ B with β ⊆ β′ such that h2 ∼β′ h′2
and r2 ∼β′,rda′ r

′
2, we distinguish cases over the different instructions. For conve-

nience, we repeat the respective semantic rules and typing rules at the beginning
of each case.

Case 1 (binop va, vb, vc, bop).

rBinop
m[pp] = binop va, vb, vc, bop x = r(vb) bop r(vc)

〈h, pp, r〉 (0)
 P,m 〈h, pp+ 1, r[va 7→ x]〉

tBinop
m[pp] =binop va, vb, vc, bop t = rda(vb) t rda(vc) t se(pp)
m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t]

As the heap does not change, β′ = β and h1 ∼β h′1 implies h2 ∼β′ h′2.
We need to show that r2 ∼β,rda′ r

′
2. The only register that is updated in

the register state and the register domain assignment is va. Hence, given that
r1 ∼β,rda r

′
1, we only need to show if rda′(va) = low that r2(va) ∼β r′2(va) to

have r2 ∼β,rda′ r
′
2.

Assume rda′(va) = low, then rda(vb) = low and rda(vc) = low because
otherwise t in (tBinop) would be high. Since the operators represented by the
symbols in BINOP all operate on numbers, vb and vc must store numbers. With
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r1 ∼β,rda r
′
1, we have r1(vb) ∼β r′1(vb) and r1(vc) ∼β r′1(vc). Thus, r1(vb) = r′1(vb)

and r1(vc) = r′1(vc) by the definition of indistinguishability of values. Since
bop is a function, we have r1(vb) bop r1(vc) = r′1(vb) bop r

′
1(vc) and therefore

r2(va) ∼β r′2(va) holds.

Case 2 (if-test va, vb, n, rop).

rIfTestTrue
m[pp] = if-test va, vb, n, rop r(va) rop r(vb)

〈h, pp, r〉 (0)
 P,m 〈h, pp+ n, r〉

rIfTestFalse
m[pp] = if-test va, vb, n, rop ¬(r(va) rop r(vb))

〈h, pp, r〉 (0)
 P,m 〈h, pp+ 1, r〉

tIfTest

m[pp] = if-test va, vb, n, rop
∀j ∈ regionm(pp).rda(va) t rda(vb) v se(j)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

Both potentially applicable rules (rIfTestTrue) and (rIfTestFalse) do not modify
the heap or register set. Hence β′ = β, h1 = h2, h′1 = h′2, r1 = r2, and r′1 = r′2.
Since the register security domains are also not modified in the applicable typing
rule (tIfTest), i.e., rda = rda′, we know from h1 ∼β h′1 that h2 ∼β′ h′2 and from
r1 ∼β,rda r

′
1 that r2 ∼β′,rda′ r

′
2.

Case 3 (new-instance va, cl).

rNewInstance

m[pp] = new-instance va, cl h ∈ dom(nextFreeLocation)
l = nextFreeLocation(h)

〈h, pp, r〉 (0)
 P,m 〈h[l 7→ defaultObject(cl)], pp+ 1, r[va 7→ l]〉

tNewInstance
m[pp] = new-instance va, cl

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ se(pp)]

Let l = nextFreeLocation(h1), l′ = nextFreeLocation(h′1), and β′ = β[l 7→ l′]. Since
nextFreeLocation allocates fresh locations on the heap provided as argument, we
know that l /∈ dom(h1) and l′ /∈ dom(h′1). Hence, knowing that β was a partial
injective function, β′ is still a partial injective function, and β ⊆ β′. Moreover, as
nextFreeLocation only returns variable locations, ∀l ∈ Lc. β′(l) = l holds. Thus,
β′ ∈ B.

We first show h2 ∼β′ h′2. From h1 ∼β h′1, we know that dom(β) ⊆ dom(h1)
and rng(β) ⊆ dom(h′1), and by (rNewInstance), dom(h2) = dom(h1) ∪ {l} and
dom(h′2) = dom(h′1) ∪ {l′}. Moreover, from the definition of β′, we know that
dom(β′) = dom(β)∪{l} and rng(β′) = rng(β)∪{l′}. Ultimately, we can conclude
dom(β′) ⊆ dom(h2) and rng(β′) ⊆ dom(h′2).

From h2(l) = h′2(l′) = defaultObject(cl) follows h2(l) ∼β′ h′2(l′), and since
h2(l), h′2(l′) store objects at the new locations l, l′, we have l ∈ domO(h2) and l′ ∈
domO(h′2). Hence, with h1 ∼β h′1 we can conclude that for all l ∈ dom(β′), either
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l ∈ domA(h2), β′(l) ∈ domA(h′2), and h2(l) ∼β′ h′2(β′(l)), or l ∈ domO(h2),
β′(l) ∈ domO(h′2), and h2(l) ∼β′ h′2(β′(l)). Hence, we have h2 ∼β′ h′2.

We still need to show that r2 ∼β′,rda′ r
′
2. According to the rules (rNewIn-

stance) and (tNewInstance), the only register that is updated in the regis-
ter state and the register domain assignment is va, i.e., r2 = r1[va 7→ l] and
r′2 = r′1[va 7→ l′]. Given that r1 ∼β,rda r

′
1 and β′ equals β except for the addi-

tional point (l, l′), we only need to show that r2(va) ∼β′ r′2(va). Since, β′(l) = l′

we have l ∼β′ l′ and, thus, r2(va) ∼β′ r′2(va).

Case 4 (const-string va, s).

rConstString
m[pp] = const-string va, s s ∈ dom(nameToReference)

〈h, pp, r〉 (0)
 P,m 〈h, pp+ 1, r[va 7→ nameToReference(s)]〉

tConstString
m[pp] = const-string va, s

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ se(pp)]

As the heap does not change due to the semantics of const-string, β′ = β and
h1 ∼β h′1 implies h2 ∼β′ h′2.

We still need to show that r2 ∼β′,rda′ r
′
2 where rda′ = rda[va 7→ se(pp1)] by

(tConstString), i.e., rda′ = rda[va 7→ low]. The only register that is updated in
the register state is va. Given that r1 ∼β,rda r

′
1 and β′ = β, we only need to

show that r2(va) ∼β′ r′2(va). Since r2(va) = nameToReference(s) = r′2(va) by
rule (rConstString), this reduces to showing l ∼β′ l. From β′ = β and β(l) = l
for all l ∈ Lc, we have l ∼β′ l.

Case 5 (iget va, vb, fid).

rIget

m[pp] = iget va, vb, fid fid ∈ dom(lookup-fieldP )
r(vb) ∈ dom(h) o = h(r(vb))

f = lookup-fieldP (fid) f ∈ dom(o.fields)

〈h, pp, r〉 (0)
 P,m 〈h, pp+ 1, r[va 7→ o.f ]〉

tIget
m[pp] = iget va, vb, fid fda(fid) = st t = rda(vb) t st t se(pp)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t]

As the heaps are not changed by the semantics of iget, we have β′ = β and
h1 ∼β h′1 implies h2 ∼β′ h′2.

It remains to show that r2 ∼β,rda′ r
′
2. The only register that is updated in

the register state and the register domain assignment is va. Hence, given that
r1 ∼β,rda r

′
1, we only need to show if rda′(va) = low that r2(va) ∼β r′2(va) to

have r2 ∼β,rda′ r
′
2.

Assume rda′(va) = low, then rda(vb) = low and fda(fid) = st = low by
the premise of the typing rule (tIget). Then we have r1(vb) ∼β r′1(vb) be-
cause r1 ∼β,rda r

′
1. As r1(vb), r

′
1(vb) ∈ L, this implies that β(r1(vb)) = r′1(vb).

As h1 ∼β h′1, we know by the definition of indistinguishability of heaps that
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h1(r1(vb)) ∼β h′1(β(r1(vb))). With objects o, o′ ∈ O such that o = h1(r1(vb))
and o′ = h′1(r′1(vb)), we have that o ∼β o′. By the definition of object indis-
tinguishability, o ∼β o′, fda(fid) = low, and f = lookup-field(fid) follows that
o.f ∼β o′.f . Hence, r2(va) ∼β r′2(va).

Case 6 (iput va, vb, fid).

rIput

m[pp] = iput va, vb, fid fid ∈ dom(lookup-fieldP )
r(vb) ∈ dom(h) o = h(r(vb))

f = lookup-fieldP (fid) f ∈ dom(o.fields)

〈h, pp, r〉 (0)
 P,m 〈h[r(vb) 7→ o[f 7→ r(va)]], pp+ 1, r〉

tIput

m[pp] = iput va, vb, fid fda(fid) = st
rda(va) t rda(vb) t se(pp) v st

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

As no new objects or arrays are created, β′ = β. The register states and register
domain assignments are not changed, so we have rda = rda′ and r1 ∼β,rda r

′
1

implies r2 ∼β′,rda′ r
′
2.

It remains to show that h2 ∼β h′2. In the following, let o1 = h1(r1(vb)),
o′1 = h′1(r′1(vb)), o2 = o1[f 7→ r1(va)], and o′2 = o′1[f 7→ r′1(va)]. Since the field
name fid is a constant in the bytecode and lookup-fieldP is a function, f =
lookup-fieldP (fid) is the same for all executions of the program point. According
to rule (rIput), the only change to the respective heaps h1, h

′
1 is that the object

o1 at location l = r1(vb), respectively the object o′1 at location l′ = r′1(vb), is
updated in the field f to o2, respectively o′2. Moreover, by the definition of heap
indistinguishability, two heaps can only be distinguished by the instances that
are at locations related by β. Hence, to show that h2 ∼β h′2 given h1 ∼β h′1, it
remains to show that h2(l) ∼β h′2(β(l)) if l ∈ dom(β), and h2(β−1(l′)) ∼β h′2(l′)
if l′ ∈ rng(β). We distinguish two cases:

fda(fid) = high. Since h1 ∼β h′1 and objects can only be distinguished by public
fields, changes to the private field fid leave the resulting objects indistin-
guishable. Moreover, from the typability of the program also follows that
there are no other field names fid′ ∈ FID such that lookup-field(fid′) = f
and fda(fid′) = low. That means h2(l) ∼β h′2(β(l)) if l ∈ dom(β) and
h2(β−1(l′)) ∼β h′2(l′) if l′ ∈ rng(β) trivially follow from fda(fid) = high,
h1(l) ∼β h′1(β(l)), h1(β−1(l′)) ∼β h′1(l′), and the definition of indistinguisha-
bility of objects.

fda(fid) = low. Then rda(va) = low and rda(vb) = low by the premise of (tIput).
With r1 ∼β,rda r′1, it follows that r1(vb) ∼β r′1(vb) and, thus, β(l) = l′,
respectively β−1(l′) = l. Hence, we have to show that h2(l) ∼β h′2(l′) given
that h1(l) ∼β h′1(l′). This is equivalent to showing o2 ∼β o′2 given that
o1 ∼β o′1. Since o2 = o1[f 7→ r1(va)] and o′2 = o′1[f 7→ r′1(va)], we have
to show that r1(va) ∼β r′1(va), which is fulfilled because r1 ∼β,rda r

′
1 and

rda(va) = low by assumption.
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Case 7 (sget va, fid).

rSget

m[pp] = sget va, fid fid ∈ dom(nameToReference)
l = nameToReference(fid) fid ∈ dom(lookup-fieldP )
f = lookup-fieldP (fid) f ∈ dom(h(l).fields) u = h(l).f

〈h, pp, r〉 (0)
 P,m 〈h, pp+ 1, r[va 7→ u]〉

tSget
m[pp] = sget va, fid fda(fid) = st

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ st t se(pp)]
As the heaps are not changed by the semantics of sget, we have β′ = β and
h1 ∼β h′1 implies h2 ∼β′ h′2.

It remains to show that r2 ∼β,rda′ r
′
2. The only register that is updated in

the register state and the register domain assignment is va. Hence, given that
r1 ∼β,rda r

′
1, we only need to show if rda′(va) = low that r2(va) ∼β r′2(va) to

have r2 ∼β,rda′ r
′
2.

Assume rda′(va) = low, then fda(fid) = st = low by the premise of the typing
rule (tSget). Moreover, let l = nameToReference(fid) and f = lookup-fieldP (fid).
As h1 ∼β h′1, we know by the definition of indistinguishability of heaps and
the assumption that β(l) = l for all l ∈ Lc, that h1(l) ∼β h′1(l). By the
definition of object indistinguishability, h1(l) ∼β h′1(l), fda(fid) = low, and
f = lookup-field(fid) follows that h1(l).f ∼β h′1(l).f . Hence, r2(va) ∼β r′2(va).

Case 8 (sput va, fid).

rSput

m[pp] = sput va, fid fid ∈ dom(nameToReference)
l = nameToReference(fid) fid ∈ dom(lookup-fieldP )
f = lookup-fieldP (fid) o = h(l) f ∈ dom(o.fields)

〈h, pp, r〉 (0)
 P,m 〈h[l 7→ o[f 7→ r(va)]], pp+ 1, r〉

tSput
m[pp] = sput va, fid fda(fid) = st rda(va) t se(pp) v st

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

As no new objects or arrays are created, β′ = β. The register states and register
domain assignments are not changed, so we have rda = rda′ and r1 ∼β,rda r

′
1

implies r2 ∼β′,rda′ r
′
2.

It remains to show that h2 ∼β h′2. In the following, let f = lookup-fieldP (fid),
l = nameToReference(fid), o1 = h1(l), o′1 = h′1(l), o2 = o1[f 7→ r1(va)], and
o′2 = o′1[f 7→ r′1(va)]. According to rule (rSput), the only change to the respec-
tive heaps h1, h

′
1 is that the object o1 at location l, respectively the object o′1 at

location l, is updated in the field f to o2, respectively o′2. Moreover, by assump-
tion, β(l) = l. Hence, to show that h2 ∼β h′2 given h1 ∼β h′1, it remains to show
that h2(l) ∼β h′2(l). We distinguish two cases:

fda(fid) = high. Since h1 ∼β h′1 and objects can only be distinguished by public
fields, changes to the private field fid leave the resulting objects indistin-
guishable. Moreover, from the typability of the program also follows that
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there are no other field names fid′ ∈ FID such that lookup-field(fid′) = f
and fda(fid′) = low. That means h2(l) ∼β h′2(l) trivially follows from
fda(fid) = high, h1(l) ∼β h′1(l), and the definition of indistinguishability
of objects.

fda(fid) = low. Then rda(va) = low by the premise of (tSput). Showing that
h2(l) ∼β h′2(l) given that h1(l) ∼β h′1(l) is equivalent to showing o2 ∼β o′2
given that o1 ∼β o′1. Since o2 = o1[f 7→ r1(va)] and o′2 = o′1[f 7→ r′1(va)], we
have to show that r1(va) ∼β r′1(va), which is fulfilled because r1 ∼β,rda r

′
1

and rda(va) = low by assumption.

Case 9 (new-array va, vb).

rNewArray

m[pp] = new-array va, vb h ∈ dom(nextFreeLocation)
l = nextFreeLocation(h) 0 ≤ r(vb)

〈h, pp, r〉 (0)
 P,m 〈h[l 7→ defaultArray(r(vb))], pp+ 1, r[va 7→ l]〉

tNewA
m[pp] = new-array va, vb

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ rda(vb) t se(pp)]

We distinguish cases over rda(vb).

rda(vb) = high. Let l = nextFreeLocation(h1), l′ = nextFreeLocation(h′1), and
β′ = β.

We first show h2 ∼β h′2, which is equivalent to h2 ∼β′ h′2 because β′ = β.
From h1 ∼β h′1, we know that dom(β) ⊆ dom(h1) and rng(β) ⊆ dom(h′1).
Moreover, by rule (rNewArray), we know that dom(h2) = dom(h1) ∪ {l} and
dom(h′2) = dom(h′1) ∪ {l′}. Ultimately, we can conclude dom(β) ⊆ dom(h2)
and rng(β) ⊆ dom(h′2). It remains to show for all locations l ∈ dom(β) either
l ∈ domA(h2), β(l) ∈ domA(h′2), and h2(l) ∼β h′2(β(l)) or l ∈ domO(h2),
β(l) ∈ domO(h′2), and h2(l) ∼β h′2(β(l)).

As of rule (rNewArray) h2 and h′2 differ from h1 and h′1 only in location l
and l′, respectively. As nextFreeLocation allocates fresh locations on the heap
provided as argument, we know that l /∈ dom(h1) and l′ /∈ dom(h′1). Hence, for
all locations l ∈ dom(h1) it holds that h1(l) = h2(l) and for all locations l′ ∈
dom(h′1) it holds that h′1(l′) = h′2(l′). With h1 ∼β h′1, we have for all locations
l ∈ dom(β) either l ∈ domA(h2), β(l) ∈ domA(h′2), and h2(l) ∼β h′2(β(l)) or
l ∈ domO(h2), β(l) ∈ domO(h′2), and h2(l) ∼β h′2(β(l)).

We still need to show that r2 ∼β,rda′ r
′
2, which is equivalent to r2 ∼β′,rda′ r

′
2

because β′ = β. According to the rules (rNewArray) and (tNewA), the only
register that is updated in the register state and the register domain assignment
is va. Hence, given that r1 ∼β,rda r

′
1, we only need to show if rda′(va) = low that

r2(va) ∼β r′2(va) to have r2 ∼β,rda′ r
′
2. From rule (tNewA) follows that rda′(va) =

rda(vb)t se(pp1). Since rda(vb) = high by assumption, we have rda′(va) = high.
Thus, we have r2 ∼β,rda′ r

′
2.

37



rda(vb) = low. Let l = nextFreeLocation(h1), l′ = nextFreeLocation(h′1), and β′ =
β[l 7→ l′]. Since nextFreeLocation allocates fresh locations on the heap provided as
argument, we know that l /∈ dom(h1) and l′ /∈ dom(h′1). Hence, knowing that β
was a partial injective function, β′ is still a partial injective function, and β ⊆ β′.
Moreover, as nextFreeLocation only returns variable locations, ∀l ∈ Lc. β′(l) = l
holds. Thus, β′ ∈ B.

We first show h2 ∼β′ h′2. From h1 ∼β h′1, we know that dom(β) ⊆ dom(h1)
and rng(β) ⊆ dom(h′1), and by (rNewArray), dom(h2) = dom(h1) ∪ {l} and
dom(h′2) = dom(h′1) ∪ {l′}. Moreover, from the definition of β′, we know that
dom(β′) = dom(β)∪{l} and rng(β′) = rng(β)∪{l′}. Ultimately, we can conclude
dom(β′) ⊆ dom(h2) and rng(β′) ⊆ dom(h′2). It remains to show that for all
l ∈ dom(β′), either l ∈ domA(h2), β′(l) ∈ domA(h′2), and h2(l) ∼β′ h′2(β′(l)), or
l ∈ domO(h2), β′(l) ∈ domO(h′2), and h2(l) ∼β′ h′2(β′(l)).

The heaps h2 and h′2 are the same as h1 and h′1 except for the locations l and
l′, respectively. Moreover, h2 and h′2 store arrays at the new locations l and l′,
i.e., l ∈ domA(h2) and l′ ∈ domA(h′2). With h1 ∼β h′1 we can conclude that for
all l ∈ dom(β′), either l ∈ domA(h2), β′(l) ∈ domA(h′2), and h2(l) ∼β′ h′2(β′(l)),
or l ∈ domO(h2), β′(l) ∈ domO(h′2), and h2(l) ∼β′ h′2(β′(l)) if we show that
h2(l) ∼β′ h′2(l′) for the new locations l, l′. From the assumption rda(vb) = low
and r1 ∼β,rda r′1, we know that there exists an n ∈ N0 such that r1(vb) =
n = r′1(vb). From h2(l) = defaultArray(r1(vb)) = defaultArray(n) and h′2(l′) =
defaultArray(r′1(vb)) = defaultArray(n) follows h2(l) ∼β′ h′2(l′). Hence, we have
h2 ∼β′ h′2.

We still need to show that r2 ∼β′,rda′ r
′
2. According to the rules (rNewArray)

and (tNewA), the only register that is updated in the register state and the
register domain assignment is va, i.e., r2 = r1[va 7→ l] and r′2 = r′1[va 7→ l′].
Given that r1 ∼β,rda r

′
1 and β′ equals β except for the additional point (l, l′), we

only need to show that r2(va) ∼β′ r′2(va). Since, β′(l) = l′ we have l ∼β′ l′ and,
thus, r2(va) ∼β′ r′2(va).

Case 10 (filled-new-array-range vk, n).

rFilledNewArrayR

m[pp] = filled-new-array-range vk, n
h ∈ dom(nextFreeLocation)

l = nextFreeLocation(h) x = defaultArray(n)
ar = x[0 7→ r(vk), . . . , n− 1 7→ r(vk+n−1)]

〈h, pp, r〉 (0)
 P,m 〈h[l 7→ ar], pp+ 1, r[resultlower 7→ l]〉

tFNAR
m[pp] = filled-new-array-range vk, n

⊔k+n−1
i=k rda(vi) v ada

m, · · · ` pp : rda→ rda[resultlower 7→ se(pp), resultupper 7→ se(pp)]

Let l = nextFreeLocation(h1), l′ = nextFreeLocation(h′1), and β′ = β[l 7→ l′]. Since
nextFreeLocation allocates fresh locations on the heap provided as argument, we
know that l /∈ dom(h1) and l′ /∈ dom(h′1). Hence, knowing that β was a partial
injective function, β′ is still a partial injective function, and β ⊆ β′. Moreover, as
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nextFreeLocation only returns variable locations, ∀l ∈ Lc. β′(l) = l holds. Thus,
β′ ∈ B.

From h1 ∼β h′1, we know that dom(β) ⊆ dom(h1) and rng(β) ⊆ dom(h′1),
and by (rFilledNewArrayR), dom(h2) = dom(h1)∪{l} and dom(h′2) = dom(h′1)∪
{l′}. Moreover, from the definition of β′, we know that dom(β′) = dom(β)∪ {l}
and rng(β′) = rng(β) ∪ {l′}. Ultimately, we can conclude dom(β′) ⊆ dom(h2)
and rng(β′) ⊆ dom(h′2).

Since h2(l), h′2(l′) store arrays at the new locations l, l′, we have l ∈ domA(h2)
and l′ ∈ domA(h′2). Hence, with h1 ∼β h′1 we can conclude that for all l ∈
dom(β′), either l ∈ domA(h2), β′(l) ∈ domA(h′2), and h2(l) ∼β′ h′2(β′(l)), or
l ∈ domO(h2), β′(l) ∈ domO(h′2), and h2(l) ∼β′ h′2(β′(l)) (i.e., h2 ∼β′ h′2) if we
show h2(l) ∼β′ h′2(l′).

Let x = defaultArray(n). From (rFilledNewArrayR), we know that h2(l) =
x[0 7→ r1(vk), . . . , n− 1 7→ r1(vk+n−1)], and h′2(l′) = x[0 7→ r′1(vk), . . . , n− 1 7→
r′1(vk+n−1)]. Hence, in any case, h2(l).length = h′2(l′).length = n. It remains
to show that if ada = low, then h2(l)[i] ∼β′ h′2(l)[i] for all indices i ∈ N0. If
ada = low, then rda(vk) = . . . = rda(vk+n−1) = low. With r1 ∼β,rda r

′
1, we have

that r1(vi) ∼β r′1(vi) for all indices i ∈ N0 such that 0 ≤ i < h2(l).length. Hence,
we can conclude that h2(l) ∼β′ h′2(l′).

We still need to show that r2 ∼β′,rda′ r
′
2 where rda′(resultlower) = low by

(tFNAR). The only register that is updated in the register state and the register
domain assignment is resultlower. Given that r1 ∼β,rda r

′
1 and β′ equals β except

for the point (l, l′), we only need to show that r2(resultlower) ∼β′ r′2(resultlower).
Since, β′(l) = l′ we have l ∼β′ l′ and, thus, r2(resultlower) ∼β′ r′2(resultlower).

Case 11 (aget va, vb, vc).

rAget

m[pp] = aget va, vb, vc r(vb) ∈ dom(h) ar = h(r(vb))
u = ar[r(vc)] 0 ≤ r(vc) < ar.length

〈h, pp, r〉 (0)
 P,m 〈h, pp+ 1, r[va 7→ u]〉

tAget
m[pp] = aget va, vb, vc t = se(pp) t ada t rda(vb) t rda(vc)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t]

As the heaps are not changed by the semantics of aget, we have β′ = β and
h1 ∼β h′1 implies h2 ∼β′ h′2.

It remains to show that r2 ∼β,rda′ r
′
2. The only register that is updated in

the register state and the register domain assignment is va. Hence, given that
r1 ∼β,rda r

′
1, we only need to show if rda′(va) = low that r2(va) ∼β r′2(va) to

have r2 ∼β,rda′ r
′
2.

Assume rda′(va) = low, then rda(vb) = rda(vc) = low and ada = low by the
premise of the typing rule (tAget). Then we have r1(vb) ∼β r′1(vb) and r1(vc) ∼β
r′1(vc) because of r1 ∼β,rda r

′
1. As r1(vb), r

′
1(vb) ∈ L, this implies that β(r1(vb)) =

r′1(vb). With h1 ∼β h′1, we know by the definition of indistinguishability of
heaps that h1(r1(vb)) ∼β h′1(β(r1(vb))). Hence, for the arrays ar, ar′ ∈ A such
that ar = h1(r1(vb)) and ar′ = h′1(r′1(vb)), we have that ar ∼β ar′. Moreover,
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by r1(vc) ∼β r′1(vc), we know that r1(vc) = r′1(vc) since vc must contain a
number. By the definition of array indistinguishability, ar ∼β ar′, ada = low, and
r1(vc) = r′1(vc) follows that ar[r1(vc)] ∼β ar′[r′1(vc)]. Hence, r2(va) ∼β r′2(va).

Case 12 (aput va, vb, vc).

rAput

m[pp] = aput va, vb, vc r(vb) ∈ dom(h) ar = h(r(vb))
x = ar[r(vc) 7→ r(va)] 0 ≤ r(vc) < ar.length

〈h, pp, r〉 (0)
 P,m 〈h[r(vb) 7→ x], pp+ 1, r〉

tAput
m[pp] = aput va, vb, vc rda(va) t se(pp) t rda(vb) t rda(vc) v ada

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

As no new objects or arrays are created, β′ = β. The register states and register
domain assignments are not changed, so we have rda = rda′ and r1 ∼β,rda r

′
1

implies r2 ∼β′,rda′ r
′
2.

It remains to show that h2 ∼β h′2. In the following, let ar1 = h1(r1(vb)),
ar′1 = h′1(r′1(vb)), ar2 = ar1[r1(vc) 7→ r1(va)], and ar′2 = ar′1[r′1(vc) 7→ r′1(va)].
According to rule (rAput), the only change to the heap h1 is that the array ar1 at
location l = r1(vb) is updated at the index r1(vc) to ar2. Respectively, the heap
h′1 is changed such that that the array ar′1 at location l′ = r′1(vb) is updated at
the index r′1(vc) to ar′2. Moreover, by the definition of heap indistinguishability,
two heaps can only be distinguished by the instances that are at locations related
by β. Hence, to show that h2 ∼β h′2 given h1 ∼β h′1, it remains to show that
h2(l) ∼β h′2(β(l)) if l ∈ dom(β), and h2(β−1(l′)) ∼β h′2(l′) if l′ ∈ rng(β). We
distinguish two cases:

ada = high. Since h1 ∼β h′1 and the content of arrays in general is not observable
due to the assumption ada = high, changes to the array content leave the
resulting arrays indistinguishable, i.e., h2(l) ∼β h′2(β(l)) if l ∈ dom(β) and
h2(β−1(l′)) ∼β h′2(l′) if l′ ∈ rng(β) trivially follow from ada = high, h1(l) ∼β
h′1(β(l)), h1(β−1(l′)) ∼β h′1(l′), and the definition of indistinguishability of
arrays.

ada = low. Then rda(va) = rda(vb) = rda(vc) = low by the premise of (tAput).
With r1 ∼β,rda r′1, it follows that r1(vb) ∼β r′1(vb) and, thus, β(l) = l′,
respectively β−1(l′) = l. Hence, we have to show that h2(l) ∼β h′2(l′) given
that h1(l) ∼β h′1(l′). This is equivalent to showing ar2 ∼β ar′2 given that
ar1 ∼β ar′1. From rda(vc) = low and r1 ∼β,rda r

′
1 we have that r1(vc) ∼β

r′1(vc) and, since vc must store an index number, r1(vc) = r′1(vc). Hence
there exists an i ∈ N0 such that r1(vc) = r′1(vc) = i, ar2 = ar1[i 7→ r1(va)],
and ar′2 = ar′1[i 7→ r′1(va)]. To show ar2 ∼β ar′2, it remains to show that
r1(va) ∼β r′1(va), which is fulfilled because r1 ∼β,rda r

′
1 and rda(va) = low

by assumption.

Case 13 (unop-wideS va, vb, uop).
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rUnopWideS
m[pp] = unop-wideS va, vb, uop u = uop(r(vb) • r(vb+1))

〈h, pp, r〉 (0)
 P,m 〈h, pp+ 1, r[va 7→ u]〉

tUnopWS
m[pp] = unop-wideS va, vb, uop t = rda(vb) t rda(vb+1) t se(pp)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t]

As the heap does not change, β′ = β and h1 ∼β h′1 implies h2 ∼β′ h′2. We need
to show that r2 ∼β,rda′ r

′
2. The only register that is updated in the register state

and the register domain assignment is va. Hence, given that r1 ∼β,rda r
′
1, we only

need to show if rda′(va) = low that r2(va) ∼β r′2(va) to have r2 ∼β,rda′ r
′
2.

Assume rda′(va) = low, then rda(vb) = rda(vb+1) = low because otherwise t
in (tUnopWS) would be high. Since the operators represented by the symbols in
CONV all operate on numbers (locations and void are always 32-bit values), vb
and vb+1 must store numbers. With r1 ∼β,rda r

′
1, we have r1(vb) ∼β r′1(vb) and

r1(vb+1) ∼β r′1(vb+1). Thus, r1(vb) = r′1(vb) and r1(vb+1) = r′1(vb+1) by the defi-
nition of indistinguishability of values. With the definition of indistinguishability
of composed values, we get

r1(vb) • r1(vb+1) = r′1(vb) • r′1(vb+1).

Since uop is a function, we have

uop(r1(vb) • r1(vb+1)) = uop(r′1(vb) • r′1(vb+1))

and therefore r2(va) ∼β r′2(va) holds.

Case 14 (unop-wideT va, vb, uop).

rUnopWideT
m[pp] = unop-wideT va, vb, uop u = uop(r(vb))

〈h, pp, r〉 (0)
 P,m 〈h, pp+ 1, r[va 7→ lower(u), va+1 7→ upper(u)]〉

tUnopWT
m[pp] = unop-wideT va, vb, uop t = rda(vb) t se(pp)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t, va+1 7→ t]

As the heap does not change, β′ = β and h1 ∼β h′1 implies h2 ∼β′ h′2. We need to
show that r2 ∼β,rda′ r

′
2. The registers that are updated in the register state and

the register domain assignment are va and va+1. Both are set to the same security
domain. Hence, given that r1 ∼β,rda r

′
1, we only need to show if rda′(va) = low

that r2(va) ∼β r′2(va) and r2(va+1) ∼β r′2(va+1) to have r2 ∼β,rda′ r
′
2.

Assume rda′(va) = low, then rda(vb) = low because otherwise t in the premise
of (tUnopWT) would be high. Since the operators represented by the symbols
in CONV all operate on numbers (locations and void are always 32-bit values),
vb must store numbers. With r1 ∼β,rda r′1, we have r1(vb) ∼β r′1(vb). Thus,
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r1(vb) = r′1(vb) by the definition of indistinguishability of values. Since uop,
upper, and lower are functions,

r2(va) = lower(uop(r1(vb))) = lower(uop(r′1(vb))) = r′2(va),

r2(va+1) = upper(uop(r1(vb))) = upper(uop(r′1(vb))) = r′2(va+1),

and therefore r2(va) ∼β r′2(va) and r2(va+1) ∼β r′2(va+1) holds.

Lemma 2 (Locally respect for return). For all methods m ∈ MP of pro-
gram P , register states r1, r2 ∈ R, heaps h1, h2, h

′
1, h
′
2 ∈ H, program points

pp1 ∈ N0, values u2, u
′
2 ∈ V, partial injective functions on locations β ∈ B, regis-

ter domain assignments rda ∈ RDA, security environments se : N0 → SL, and
security domains ret ∈ SL, if

1. se(pp1) = low,
2. h1 ∼β h′1,
3. r1 ∼β,rda r

′
1,

4. m, regionm,mda, fda, ada, ret, se ` pp1 : rda→ rda,

5. 〈h1, pp1, r1〉
(0)
 P,m 〈u2, h2〉, and

6. 〈h′1, pp1, r′1〉
(0)
 P,m 〈u′2, h′2〉,

then there exists some β′ ∈ B with β ⊆ β′ such that h2 ∼β′ h′2 and, if ret = low,
u2 ∼β′ u′2.

Proof. Let m ∈ MP be a method of program P , r1, r2 ∈ R be register states,
h1, h2, h

′
1, h
′
2 ∈ H be heaps, pp1 ∈ N0 be a program point, u2, u

′
2 ∈ V be

values, β ∈ B be a partial injective function on locations, rda ∈ RDA be a
register domain assignment, se : N0 → SL be a security environment, and
ret ∈ SL be a security domain such that se(pp1) = low, h1 ∼β h′1, r1 ∼β,rda r

′
1,

m, regionm,mda, fda, ada, ret, se ` pp1 : rda → rda, 〈h1, pp1, r1〉
(0)
 P,m 〈u2, h2〉,

and 〈h′1, pp1, r′1〉
(0)
 P,m 〈u′2, h′2〉.

Since return-void can be seen as a special case of return, we show the
proof for m[pp1] = return va.

rReturn
m[pp] = return va

〈h, pp, r〉 (0)
 P,m 〈r(va), h〉

tReturn
m[pp] = return va se(pp) t rda(va) v ret

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

As the heap does not change, β′ = β and h1 ∼β h′1 implies h2 ∼β h′2. We need
to show that if ret = low, then u1 ∼β u2.

Assume ret = low, then rda(va) = low holds due to the premise rda(va) v ret
of the typing rule (tReturn). With r1 ∼β r′1, this implies r1(va) ∼β r′1(va). Since
u1 = r1(va) and u2 = r2(va) by the semantics of return, we have u1 ∼β u2.
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The proof of locally respect for invoke requires that the called method already
satisfies TIN-ADL in order to show that indistinguishability of register states
and heaps is preserved. This is achieved by an additional precondition (i.e.,
Definition 30) that guarantees the security of all method invocations with a
number of method calls greater than or equal to the number of method calls of
the execution step given in the lemma. When using this lemma in the proof of
the security of methods that is shown by induction over the number of occurring
method calls, the required guarantee is provided by the induction hypothesis.

Definition 30 (Security of methods up to n calls). Let n be a natural
number. The methods of a typable program P are secure up to n calls if and only if
for all methods m ∈MP , security environments se : N0 → SL, register domain
assignments rda0, . . . , rdak ∈ RDA where k = length(m) − 1, partial injective
functions β ∈ B, program points pp1, pp2 ∈ N0, register states r1, r2 ∈ R, heaps
h1, h2, h

′
1, h
′
2 ∈ H, return values u1, u2 ∈ V, and natural numbers n1, n2 ∈ N0

such that

1. n1 < n, n2 < n
2. pp1 = pp2,
3. r1 ∼β,rdapp1

r2,
4. h1 ∼β h2,

5. 〈h1, pp1, r1〉 ⇓(n1)
P,m 〈u1, h′1〉,

6. 〈h2, pp2, r2〉 ⇓(n2)
P,m 〈u2, h′2〉,

7. for all i, j ∈ N0, if i→m j there exists a register domain assignment rda′j ∈
RDA such that the judgment m, regionm,mda, fda, ada, ret, se ` i : rdai →
rda′j is derivable and rda′j v rdaj, and

8. for all i ∈ N0, if there exists no j ∈ N0 such that i→m j, then the judgment
m, regionm,mda, fda, ada, ret, se ` i : rdai → rdai is derivable.

there exists a partial injective function on locations β′ ∈ B, such that β ⊆ β′,
h′1 ∼β′ h′2 and, if ret = low, u1 ∼β′ u2.

Lemma 3 (Locally respect for invoke). For all methods m ∈ MP of a ty-
pable program P , register states r1, r2, r

′
1, r
′
2 ∈ R, heaps h1, h2, h

′
1, h
′
2 ∈ H, pro-

gram points pp1, pp2, pp
′
2 ∈ N0, natural numbers n0, n1, n2 ∈ N0, partial injective

functions on locations β ∈ B, register domain assignments rda, rda′ ∈ RDA,
security environments se : N0 → SL, and security domains ret ∈ SL, if

1. the methods of P are secure up to n0 calls,
2. n1 ≤ n0, n2 ≤ n0,
3. se(pp1) = low,
4. h1 ∼β h′1,
5. r1 ∼β,rda r

′
1,

6. m, regionm,mda, fda, ada, ret, se ` pp1 : rda→ rda′,

7. 〈h1, pp1, r1〉
(n1+1)
 P,m 〈h2, pp2, r2〉, and

8. 〈h′1, pp1, r′1〉
(n2+1)
 P,m 〈h′2, pp′2, r′2〉,
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then there exists some β′ ∈ B with β ⊆ β′ such that h2 ∼β′ h′2 and r2 ∼β′,rda′ r
′
2.

Proof. Let m ∈ MP be a method of a typable program P , r1, r2, r
′
1, r
′
2 ∈ R

be register states, h1, h2, h
′
1, h
′
2 ∈ H be heaps, pp1, pp2, pp

′
2 ∈ N0 be program

points, n0, n1, n2 ∈ N0 be natural numbers, β ∈ B be a partial injective function
on locations, rda, rda′ ∈ RDA be register domain assignments, se : N0 → SL
be a security environment, and ret ∈ SL be a security domain such that
the methods of P are secure up to n0, n1 ≤ n0, n2 ≤ n0, se(pp1) = low,
h1 ∼β h′1, r1 ∼β,rda r′1, m, regionm,mda, fda, ada, ret, se ` pp1 : rda → rda′,

〈h1, pp1, r1〉
(n1+1)
 P,m 〈h2, pp2, r2〉, and 〈h′1, pp1, r′1〉

(n2+1)
 P,m 〈h′2, pp′2, r′2〉.

We show the case for m[pp1] = invoke-virtual-range vk, n,mid. The cases
for other invoke instructions are analogous.

rIVR

m[pp] = invoke-virtual-range vk, n,mid r(vk) ∈ dom(h)
(mid, h(r(vk)).class) ∈ dom(lookup-virtualP )
m′ = lookup-virtualP (mid, h(r(vk)).class)

〈h, 0, defaultRegisters([r(vk), . . . r(vk+n−1)])〉 ⇓(n
′)

P,m′ 〈u, h′〉

〈h, pp, r〉 (n′+1)
 P,m 〈h′, pp+ 1, r[resultlower 7→ lower(u), resultupper 7→ upper(u)]〉

tIR

m[pp] = invoke-virtual-range vk, n,mid
(mid, [rda(vk), . . . , rda(vk+n−1)], st) ∈ mda
se(pp) = low rda(vk) = low

m, · · · ` pp : rda→ rda[resultlower 7→ st, resultupper 7→ st]

From the premise of the typing rule (tIR), we know rda(vk) = low and, thus,
r1(vk) ∼β r′1(vk) by r1 ∼β,rda r

′
1 and the definition of register indistinguishability.

By definition of object indistinguishability, this implies that h1(r1(vk)).class =
h′1(r′1(vk)).class. Since mid is hard-coded in the instruction and lookup-virtualP
is a function, this implies that

m′ = lookup-virtualP (mid, h1(r1(vk)).class)

= lookup-virtualP (mid, h′1(r′1(vk)).class).

From the semantics rule (rIVR), we know that there exist u, u′ ∈ V such that

〈h1, 0, defaultRegisters([r1(vk), . . . , r1(vk+n−1)])〉 ⇓(n1)
P,m′ 〈u, h2〉, and (1)

〈h′1, 0, defaultRegisters([r′1(vk), . . . , r′1(vk+n−1)])〉 ⇓(n2)
P,m′ 〈u

′, h′2〉.

From the premises of the typing rule (tIR), we know that there exists the method
signature (mid, [rda(vk), . . . , rda(vk+n−1)], st) ∈ mda. Let rda0 ∈ RDA be a reg-
ister domain assignment corresponding to that signature, i.e., for all i ∈ N0 with
i < n it holds that rda0(vi) = rda(vk+i). Since r1 ∼β,rda r

′
1, for each register

v ∈ {vk, . . . , vk+n−1} either rda0(v) = high or r1(v) ∼β r′1(v) holds by the defi-
nition of register indistinguishability. As the remaining registers in the method
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arguments are mapped to void by defaultRegisters, and void ∼β void, we know
that

defaultRegisters([r1(vk), . . . , r1(vk+n−1)]) ∼β,rda0 (2)

defaultRegisters([r′1(vk), . . . , r′1(vk+n−1)]).

Since the methods of P are secure up to n0 calls, given the assumptions of
this lemma 2., 4., (1), (2), and the typability of program P , we know that there
exists some β′ ∈ B with β ⊆ β′ such that h2 ∼β′ h′2 and, if st = low, u ∼β′ u′.

We still need to show that r2 ∼β′,rda′ r
′
2. The registers that are updated in the

register state and the register domain assignment are resultlower and resultupper.
Both are set to the same security domain st. Hence, given that r1 ∼β,rda r′1,
we only need to show if st = low that r2(resultlower) ∼β′ r′2(resultlower) and
r2(resultupper) ∼β′ r′2(resultupper) to have r2 ∼β′,rda′ r

′
2.

Assume st = low, then we have shown that u ∼β′ u′. With the definition of
the indistinguishability of concatenated values follows that

lower(u) ∼β′ lower(u′), and upper(u) ∼β′ upper(u′).

Moreover, it holds that r2(resultlower) = lower(u), r2(resultupper) = upper(u),
r′2(resultupper) = upper(u′), and r′2(resultlower) = lower(u′) by the semantics of
invoke-virtual-range. Therefore, we have r2(resultlower) ∼β′ r′2(resultlower)
and r2(resultupper) ∼β′ r′2(resultupper).

Lemma 4 (Step consistent). For all methods m ∈MP of a typable program
P , natural numbers n ∈ N0, register states r, r1, r2 ∈ R, heaps h, h1, h2 ∈ H,
program points pp1, pp2 ∈ N0, partial injective functions on locations β ∈ B,
register domain assignments rda, rda′ ∈ RDA, security environments se : N0 →
SL, and security domains ret ∈ SL such that

1. se(pp1) = high,
2. h ∼β h1,
3. r ∼β,rda r1,
4. m, regionm,mda, fda, ada, ret, se ` pp1 : rda→ rda′, and

5. 〈h1, pp1, r1〉
(n)
 P,m 〈h2, pp2, r2〉,

then h ∼β h2, and r ∼β,rda′ r2.

Proof. Let m ∈ MP be a method of a typable program P , r, r1, r2 ∈ R be
register states, h, h1, h2 ∈ H be heaps, pp1, pp2 ∈ N0 be program points, β ∈ B
be a partial injective function on locations, rda, rda′ ∈ RDA be register do-
main assignments, se : N0 → SL be a security environment, ret ∈ SL be a
security domain, and n ∈ N0 be a natural number such that se(pp1) = high,
h ∼β h1, r ∼β,rda r1, m, regionm,mda, fda, ada, ret, se ` pp1 : rda → rda′, and

〈h1, pp1, r1〉
(n)
 P,m 〈h2, pp2, r2〉. To show that h ∼β h2 and r ∼β,rda′ r2, we

distinguish cases over the the different instructions.
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Case 1 (binop va, vb, vc, bop, const-string va, s, iget va, vb, fid, sget va, fid,
aget va, vb, vc, unop-wideS va, vb, uop).

rBinop
m[pp] = binop va, vb, vc, bop x = r(vb) bop r(vc)

〈h, pp, r〉 (0)
 P,m 〈h, pp+ 1, r[va 7→ x]〉

tBinop
m[pp] =binop va, vb, vc, bop t = rda(vb) t rda(vc) t se(pp)
m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t]

The semantics of all these instructions has in common that

– it does not alter the heap, i.e., h2 = h1, and
– it updates the register state only in the register va, i.e., r2 = r1[va 7→ u] for

some value u ∈ V.

Moreover, the typing rules of these instructions all set rda′ = rda[va 7→ s] where
s = se(pp1) t s0 t . . . for some s0, · · · ∈ SL.

From h ∼β h1 and h2 = h1 follows immediately that h ∼β h2.
It remains to show that r ∼β,rda′ r2. Given that r ∼β,rda r1, we only need

to show if rda′(va) = low that r(va) ∼β r2(va) to have r ∼β,rda′ r2. Since
rda′(va) = se(pp1) t s0 t . . . for some s0, · · · ∈ SL and se(pp1) = high by
assumption, we have rda′(va) = high. Thus, we can conclude r ∼β,rda′ r2.

Case 2 (if-test va, vb, n, rop).

rIfTestTrue
m[pp] = if-test va, vb, n, rop r(va) rop r(vb)

〈h, pp, r〉 (0)
 P,m 〈h, pp+ n, r〉

rIfTestFalse
m[pp] = if-test va, vb, n, rop ¬(r(va) rop r(vb))

〈h, pp, r〉 (0)
 P,m 〈h, pp+ 1, r〉

tIfTest

m[pp] = if-test va, vb, n, rop
∀j ∈ regionm(pp).rda(va) t rda(vb) v se(j)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

From the rules (rIfTestTrue), (rIfTestFalse), and (tIfTest), we know that h2 = h1,
r2 = r1, and rda′ = rda. Thus, h ∼β h2 and r ∼β,rda′ r2 follows immediately from
h ∼β h1 and r ∼β,rda r1.

Case 3 (new-instance va, cl).

rNewInstance

m[pp] = new-instance va, cl h ∈ dom(nextFreeLocation)
l = nextFreeLocation(h)

〈h, pp, r〉 (0)
 P,m 〈h[l 7→ defaultObject(cl)], pp+ 1, r[va 7→ l]〉

tNewInstance
m[pp] = new-instance va, cl

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ se(pp)]
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We first show h ∼β h2. Let l = nextFreeLocation(h1). From h ∼β h1, we know
that dom(β) ⊆ dom(h) and rng(β) ⊆ dom(h1). Moreover, by rule (rNewIn-
stance), we know that h2 = h1[l 7→ defaultObject(cl)] and, thus, dom(h2) =
dom(h1) ∪ {l}. Ultimately, we can conclude dom(β) ⊆ dom(h) and rng(β) ⊆
dom(h2), which satisfies the first two requirements of the indistinguishability
of heaps (Definition 22). It remains to show that for all locations l ∈ dom(β)
either l ∈ domA(h), β(l) ∈ domA(h2), and h(l) ∼β h2(β(l)) or l ∈ domO(h),
β(l) ∈ domO(h2), and h(l) ∼β h2(β(l)).

Since h2 = h1[l 7→ defaultObject(cl)], we know that h2 differs from h1 only
in location l. As nextFreeLocation allocates fresh locations on the heap provided
as argument, we know that l /∈ dom(h1). Hence, for all locations l ∈ dom(h1)
it holds that h1(l) = h2(l). With h ∼β h1, we have for all locations l ∈ dom(β)
either l ∈ domA(h), β(l) ∈ domA(h2), and h(l) ∼β h2(β(l)) or l ∈ domO(h),
β(l) ∈ domO(h2), and h(l) ∼β h2(β(l)).

We still need to show that r ∼β,rda′ r2. According to the rules (rNewInstance)
and (tNewInstance), the only register that is updated in the register state and
the register domain assignment is va. Hence, given that r ∼β,rda r1, we only need
to show if rda′(va) = low that r(va) ∼β r2(va) to have r ∼β,rda′ r2. From rule
(tNewInstance) follows that rda′(va) = se(pp1). Since se(pp1) = high, we have
rda′(va) = high. Thus, we have r ∼β,rda′ r2.

Case 4 (iput va, vb, fid, sput va, fid).

rIput

m[pp] = iput va, vb, fid fid ∈ dom(lookup-fieldP )
r(vb) ∈ dom(h) o = h(r(vb))

f = lookup-fieldP (fid) f ∈ dom(o.fields)

〈h, pp, r〉 (0)
 P,m 〈h[r(vb) 7→ o[f 7→ r(va)]], pp+ 1, r〉

tIput

m[pp] = iput va, vb, fid fda(fid) = st
rda(va) t rda(vb) t se(pp) v st

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

The semantics of both instructions has in common that

– it does not change the register state, i.e., r2 = r1, and
– it updates the heap at one location l ∈ L by changing the value of the field
f = lookup-fieldP (fid) of the object o = h1(l), i.e., h2 = h1[l 7→ o[f 7→ u]]
for some value u ∈ V.

The typing rules of both instructions require that

– se(pp1) t s0 t . . . v fda(fid) for some s0, · · · ∈ SL, and
– the register domain assignment does not change, i.e., rda′ = rda.

From r ∼β,rda r1, r2 = r1, and rda′ = rda follows immediately that r ∼β,rda′ r2.
It remains to show that h ∼β h2. Let l ∈ L, f ∈ F , o ∈ O, and u ∈ V

such that f = lookup-fieldP (fid), o = h1(l), and h2 = h1[l 7→ o[f 7→ u]]. Hence,
h1 = h2 except for the object at location l. Moreover, by the definition of heap
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indistinguishability, two heaps can only be distinguished by the instances that
are at locations related by β. Hence, to show that h ∼β h2 given h ∼β h1, it
remains to show that h(β−1(l)) ∼β h2(l) if l ∈ rng(β).

Assume l ∈ rng(β). Given that se(pp1)ts0t . . . v fda(fid) for some s0, · · · ∈
SL, and se(pp1) = high by assumption, we have fda(fid) = high. Since the class
of the modified object is not changed and objects can only be distinguished by
public fields, changes to the private field fid leave the resulting object o[f 7→ u]
at l in h2 indistinguishable from o at l in h1. Moreover, from the typability
of the program also follows that there are no other field names fid′ ∈ FID
such that lookup-field(fid′) = f and fda(fid′) = low. That means h1(l) ∼β h2(l)
follows from fda(fid) = high and h2(l) = h1(l)[f 7→ u]. Moreover, from h ∼β
h1, we know that h(β−1(l)) ∼β h1(l). Finally, h(β−1(l)) ∼β h2(l) follows from
h(β−1(l)) ∼β h1(l), h1(l) ∼β h2(l), and the transitivity of indistinguishability of
objects.

Case 5 (new-array va, vb).

rNewArray

m[pp] = new-array va, vb h ∈ dom(nextFreeLocation)
l = nextFreeLocation(h) 0 ≤ r(vb)

〈h, pp, r〉 (0)
 P,m 〈h[l 7→ defaultArray(r(vb))], pp+ 1, r[va 7→ l]〉

tNewA
m[pp] = new-array va, vb

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ rda(vb) t se(pp)]
We first show h ∼β h2. Let l = nextFreeLocation(h1). From h ∼β h1, we know
that dom(β) ⊆ dom(h) and rng(β) ⊆ dom(h1). Moreover, by rule (rNewArray),
we know that h2 = h1[l 7→ defaultArray(n)] and, thus, dom(h2) = dom(h1) ∪
{l}. Ultimately, we can conclude dom(β) ⊆ dom(h) and rng(β) ⊆ dom(h2),
which satisfies the first two requirements of the indistinguishability of heaps
(Definition 22). It remains to show that for all locations l ∈ dom(β) either
l ∈ domA(h), β(l) ∈ domA(h2), and h(l) ∼β h2(β(l)) or l ∈ domO(h), β(l) ∈
domO(h2), and h(l) ∼β h2(β(l)).

Since h2 = h1[l 7→ defaultArray(n)], h2 differs from h1 only in location l. As
nextFreeLocation allocates fresh locations on the heap provided as argument, we
know that l /∈ dom(h1). Hence, for all locations l ∈ dom(h1) it holds that h1(l) =
h2(l). With h ∼β h1, we have for all locations l ∈ dom(β) either l ∈ domA(h),
β(l) ∈ domA(h2), and h(l) ∼β h2(β(l)) or l ∈ domO(h), β(l) ∈ domO(h2), and
h(l) ∼β h2(β(l)).

We still need to show that r ∼β,rda′ r2. According to the rules (rNewArray)
and (tNewA), the only register that is updated in the register state and the
register domain assignment is va. Hence, given that r ∼β,rda r1, we only need
to show if rda′(va) = low that r(va) ∼β r2(va) to have r ∼β,rda′ r2. From rule
(tNewA) follows that rda′(va) = rda(vb)tse(pp1). Since se(pp1) = high, we have
rda′(va) = high. Thus, we have r ∼β,rda′ r2.

Case 6 (filled-new-array-range vk, n).
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rFilledNewArrayR

m[pp] = filled-new-array-range vk, n
h ∈ dom(nextFreeLocation)

l = nextFreeLocation(h) x = defaultArray(n)
ar = x[0 7→ r(vk), . . . , n− 1 7→ r(vk+n−1)]

〈h, pp, r〉 (0)
 P,m 〈h[l 7→ ar], pp+ 1, r[resultlower 7→ l]〉

tFNAR
m[pp] = filled-new-array-range vk, n

⊔k+n−1
i=k rda(vi) v ada

m, · · · ` pp : rda→ rda[resultlower 7→ se(pp), resultupper 7→ se(pp)]

We first show h ∼β h2. Let l = nextFreeLocation(h1). From h ∼β h1, we know
that dom(β) ⊆ dom(h) and rng(β) ⊆ dom(h1). Moreover, by rule (rFilled-
NewArrayR), we know that dom(h2) = dom(h1) ∪ {l}. Ultimately, we can con-
clude dom(β) ⊆ dom(h) and rng(β) ⊆ dom(h2), which satisfies the first two
requirements of the indistinguishability of heaps (Definition 22). It remains to
show that for all locations l ∈ dom(β) either l ∈ domA(h), β(l) ∈ domA(h2),
and h(l) ∼β h2(β(l)) or l ∈ domO(h), β(l) ∈ domO(h2), and h(l) ∼β h2(β(l)).

As of rule (rFilledNewArrayR), h2 = h1[l 7→ defaultArray(n)[. . . ]], i.e., h2
differs from h1 only in location l. Since nextFreeLocation allocates fresh locations
on the heap provided as argument, we know that l /∈ dom(h1). Hence, for all
locations l ∈ dom(h1) it holds that h1(l) = h2(l). With h ∼β h1, we have for all
locations l ∈ dom(β) either l ∈ domA(h), β(l) ∈ domA(h2), and h(l) ∼β h2(β(l))
or l ∈ domO(h), β(l) ∈ domO(h2), and h(l) ∼β h2(β(l)).

We still need to show that r ∼β,rda′ r2. According to the rules (rFilled-
NewArrayR) and (tFNAR), the only registers that are updated in the regis-
ter state and the register domain assignment are resultlower and resultupper.
Given that r ∼β,rda r1, we only need to show if rda′(resultlower) = low, that
r(resultlower) ∼β r2(resultlower) holds and if rda′(resultupper) = low, that
r(resultupper) ∼β r2(resultupper). Since rda′(resultlower) = rda′(resultupper) =
se(pp1) according to rule (tFNAR) and se(pp1) = high by assumption, we have
rda′(resultlower) = rda′(resultupper) = high. Thus, we can conclude r ∼β,rda′ r2.

Case 7 (aput va, vb, vc).

rAput

m[pp] = aput va, vb, vc r(vb) ∈ dom(h) ar = h(r(vb))
x = ar[r(vc) 7→ r(va)] 0 ≤ r(vc) < ar.length

〈h, pp, r〉 (0)
 P,m 〈h[r(vb) 7→ x], pp+ 1, r〉

tAput
m[pp] = aput va, vb, vc rda(va) t se(pp) t rda(vb) t rda(vc) v ada

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

By the rules (rAput) and (tAput), we have r2 = r1, and rda′ = rda. With
r ∼β,rda r1, it follows immediately that r ∼β,rda′ r2.

It remains to show that h ∼β h2. Let l = r1(vr). By rule (rAput), we know
that h2 = h1[l 7→ h1(l)[vc 7→ va]]. Hence, h1 = h2 except for the array at location

49



l. Moreover, by the definition of heap indistinguishability, two heaps can only
be distinguished by the instances that are at locations related by β. Hence, to
show that h ∼β h2 given h ∼β h1, it remains to show that h(β−1(l)) ∼β h2(l) if
l ∈ rng(β).

Assume l ∈ rng(β). By rule (tAput), we know that rda(va)tse(pp1)trda(vb)t
rda(vc) v ada. With the assumption se(pp1) = high, we get ada = high. Since
arrays can only be distinguished by their content if it is public, we get h1(l) ∼β
h2(l) from ada = high, h2(l) = h1(l)[vc 7→ va], and h1(l).length = h1(l)[vc 7→
va].length. Moreover, from h ∼β h1, we know that h(β−1(l)) ∼β h1(l). Finally,
h(β−1(l)) ∼β h2(l) follows from h(β−1(l)) ∼β h1(l), h1(l) ∼β h2(l), and the
transitivity of indistinguishability of arrays.

Case 8 (unop-wideT va, vb, uop).

rUnopWideT
m[pp] = unop-wideT va, vb, uop u = uop(r(vb))

〈h, pp, r〉 (0)
 P,m 〈h, pp+ 1, r[va 7→ lower(u), va+1 7→ upper(u)]〉

tUnopWT
m[pp] = unop-wideT va, vb, uop t = rda(vb) t se(pp)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t, va+1 7→ t]

By the rule (rUnopWideT), we know that h2 = h1. With h ∼β h1, it follows
immediately that h ∼β h2.

It remains to show that r ∼β,rda′ r2. Given that r ∼β,rda r1, we only need
to show if rda′(va) = low that r(va) ∼β r2(va) and if rda′(va+1) = low that
r(va+1) ∼β r2(va+1). Since rda′(va) = rda′(va+1) = rda(vb) t se(pp1) according
to rule (tUnopWT) and se(pp1) = high by assumption, we have rda′(va) =
rda′(va+1) = high. Thus, we can conclude r ∼β,rda′ r2.

Case 9 (invoke-virtual-range vk, n,mid).

rIVR

m[pp] = invoke-virtual-range vk, n,mid r(vk) ∈ dom(h)
(mid, h(r(vk)).class) ∈ dom(lookup-virtualP )
m′ = lookup-virtualP (mid, h(r(vk)).class)

〈h, 0, defaultRegisters([r(vk), . . . r(vk+n−1)])〉 ⇓(n
′)

P,m′ 〈u, h′〉

〈h, pp, r〉 (n′+1)
 P,m 〈h′, pp+ 1, r[resultlower 7→ lower(u), resultupper 7→ upper(u)]〉

tIR

m[pp] = invoke-virtual-range vk, n,mid
(mid, [rda(vk), . . . , rda(vk+n−1)], st) ∈ mda
se(pp) = low rda(vk) = low

m, · · · ` pp : rda→ rda[resultlower 7→ st, resultupper 7→ st]

Since we assume m, regionm,mda, fda, ada, ret, se ` pp1 : rda → rda′, rule (tIR)
requires that se(pp1) = low. However, as we also assume se(pp1) = high,
we have a contradiction and the instruction at program point pp cannot be
invoke-virtual-range.
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Lemma 5 (Step consistent for return). For all methods m ∈ MP of pro-
gram P , register states r, r1 ∈ R, heaps h, h1, h2 ∈ H, values u ∈ V, program
points pp1 ∈ N0, partial injective functions on locations β ∈ B, register domain
assignments rda, rda′ ∈ RDA, security environments se : N0 → SL, and security
domains ret ∈ SL such that

1. se(pp1) = high,
2. h ∼β h1,
3. m, regionm,mda, fda, ada, ret, se ` pp1 : rda→ rda′, and

4. 〈h1, pp1, r1〉
(0)
 P,m 〈u, h2〉,

it holds that h ∼β h2 and, if u 6= void, ret = high.

Proof. Let m ∈ MP be a method of program P , r, r1 ∈ R be register states,
h, h1, h2 ∈ H be heaps, pp1 ∈ N0 be a program point, β ∈ B be a partial
injective function on locations, rda, rda′ ∈ RDA be register domain assign-
ments, se : N0 → SL be a security environment, ret ∈ SL be a security do-
main, and u ∈ V be a value such that se(pp1) = high, h ∼β h1, r ∼β,rda r1,

m, regionm,mda, fda, ada, ret, se ` pp1 : rda → rda′, and 〈h1, pp1, r1〉
(n)
 P,m

〈u, h2〉.
Since return-void can be seen as a special case of return, we show that

h ∼β h2 and, if u 6= void, ret = high, by proving the case of m[pp1] = return va.

rReturn
m[pp] = return va

〈h, pp, r〉 (0)
 P,m 〈r(va), h〉

tReturn
m[pp] = return va se(pp) t rda(va) v ret

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

By 〈h1, pp1, r1〉
(n)
 P,m 〈u, h2〉 and rule (rReturn), we have h2 = h1. Hence, with

h ∼β h1 follows h ∼β h2. By m, regionm,mda, fda, ada, ret, se ` pp1 : rda→ rda′

and se(pp1) = high, we can conclude that ret = high because of the premise
se(pp1) t rda(va) v ret of rule (tReturn).

Lemma 6 (High branching). For all methods m ∈MP of program P , register
states r1, r2, r

′
1, r
′
2 ∈ R, heaps h1, h2, h

′
1, h
′
2 ∈ H, program points pp1, pp2, pp

′
2 ∈

N0, partial injective functions on locations β ∈ B, register domain assignments
rda, rda′ ∈ RDA, security environments se : N0 → SL, and security domains
ret ∈ SL, if

1. h1 ∼β h′1,
2. r1 ∼β,rda r

′
1,

3. m, regionm,mda, fda, ada, ret, se ` pp1 : rda→ rda′,

4. 〈h1, pp1, r1〉
(0)
 P,m 〈h2, pp2, r2〉,

5. 〈h′1, pp1, r′1〉
(0)
 P,m 〈h′2, pp′2, r′2〉, and

6. pp2 6= pp′2,
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then se(pp′) = high for all pp′ ∈ regionm(pp1).

Proof. Let m ∈ MP be a method of program P , r1, r2, r
′
1, r
′
2 ∈ R be register

states, h1, h2, h
′
1, h
′
2 ∈ H be heaps, pp1, pp2, pp

′
2 ∈ N0 be program points, β ∈ B

be a partial injective function on locations, rda, rda′ ∈ RDA be register domain
assignments, se : N0 → SL be security environments, and ret ∈ SL be a security
domain, such that h1 ∼β h′1, r1 ∼β,rda r′1, m, regionm,mda, fda, ada, ret, se `
pp1 : rda→ rda′, 〈h1, pp1, r1〉

(0)
 P,m 〈h2, pp2, r2〉, 〈h′1, pp1, r′1〉

(0)
 P,m 〈h′2, pp′2, r′2〉,

and pp2 6= pp′2.
The only instruction that may yield different program points after execution

is if-test.

tIfTest

m[pp] = if-test va, vb, n, rop
∀j ∈ regionm(pp).rda(va) t rda(vb) v se(j)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

rIfTestTrue
m[pp] = if-test va, vb, n, rop r(va) rop r(vb)

〈h, pp, r〉 (0)
 P,m 〈h, pp+ n, r〉

rIfTestFalse
m[pp] = if-test va, vb, n, rop ¬(r(va) rop r(vb))

〈h, pp, r〉 (0)
 P,m 〈h, pp+ 1, r〉

Due to the premise of the typing rule (tIfTest), se(pp′) = low for some pp′ ∈
regionm(pp1) can only hold if rda(va) = low and rda(vb) = low. Under this
assumption, we have r1(va) ∼β r′1(va) and r1(vb) ∼β r′1(vb) because r1 ∼β,rda r

′
1.

If the registers va, vb store numbers from the set N , this directly implies
r1(va) = r′1(va) and r1(vb) = r′1(vb). Thus, r1(va) rop r1(vb) if and only if
r′1(va) rop r′1(vb).

If va, vb store locations, then β(r1(va)) = r′1(va) and β(r1(vb)) = r′1(vb).
The only operators applicable to locations are = and 6=. Since β is an injective
function, r1(va) rop r1(vb) if and only if r′1(va) rop r′1(vb) for rop ∈ {=, 6=}.

Because r1(va) rop r1(vb) if and only if r′1(va) rop r′1(vb), the same semantic
rule (rIfTestTrue) or (rIfTestFalse) is applicable in both executions and, thus,
yields the same program point to be executed next. As this is a contradiction
to the assumption that pp2 6= pp′2, we can conclude that rda(va) = high or
rda(vb) = high. By rule (tIfTest), this implies that se(pp′) = high for all pp′ ∈
regionm(pp1).

Lemma 7 (Indistinguishable after high branch). For all methods m ∈
MP of a typable program P , register domain assignments rda0, . . . , rdak ∈ RDA
where k = length(m) − 1, security environments se : N0 → SL, security do-
mains ret ∈ SL, partial injective functions β ∈ B, natural numbers i ∈ N0,
program points pp0, . . . , ppi ∈ N0, register states r, r0, . . . , ri ∈ R, and heaps
h, h0, . . . , hi ∈ H such that

1. se(ppn) = high for all n ∈ N0 with n < i,
2. h ∼β h0,
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3. r ∼β,rdapp0
r0,

4. 〈h0, pp0, r0〉 (0)
 P,m 〈h1, pp1, r1〉

(0)
 P,m · · ·

(0)
 P,m 〈hi, ppi, ri〉, and

5. for all i, j ∈ N0, if i→m j there exists a register domain assignment rda′j ∈
RDA such that the judgment m, regionm,mda, fda, ada, ret, se ` i : rdai →
rda′j is derivable and rda′j v rdaj,

then h ∼β hi, and r ∼β,rdappi
ri.

Proof. Let m ∈ MP be a method of a typable program P, rda0, . . . , rdak ∈
RDA be register domain assignments where k = length(m) − 1, se ∈ N0 →
SL be a security environment, ret ∈ SL be a security domain, β ∈ B be a
partial injective function, i ∈ N0 be a natural number, pp0, . . . , ppi ∈ N0 be
program points, r, r0, . . . , ri ∈ R be register states, and h, h0, . . . , hi ∈ H be
heaps such that se(ppn) = high for all n ∈ N0, n < i, h ∼β h0, r ∼β,rdapp0

r0,

〈h0, pp0, r0〉 (0)
 P,m 〈h1, pp1, r1〉

(0)
 P,m · · ·

(0)
 P,m 〈hi, ppi, ri〉, and for all i, j ∈ N0,

if i →m j there exists a register domain assignment rda′j ∈ RDA such that

the judgment m, regionm,mda, fda, ada, ret, se ` i : rdai → rda′j is derivable and

rda′j v rdaj .

We have to show that h ∼β hi and r ∼β,rdappi
ri. We conduct the proof by

induction over the length of the execution sequence i.

Base case. Assume i = 0. Then h ∼β h0 and r ∼β,rdapp0
r0 hold by assumption.

Induction hypothesis. We assume that the property holds for execution sequences
that are strictly shorter than i.

Induction step. Assume i > 0. We inspect the first execution step in the sequence

〈h0, pp0, r0〉 (0)
 P,m 〈h1, pp1, r1〉. With h ∼β h0, r ∼β,rdapp0

r0, se(pp0) = high,

and the fact that each program point is typable, we can apply Lemma 4 (step
consistent) and Lemma 20 (monotonicity of the indistinguishability of register
states), to conclude h ∼β h1 and r ∼β,rdapp1

r1.

Since the remainder of the execution sequence 〈h1, pp1, r1〉 (0)
 P,m · · ·

(0)
 P,m

〈hi, ppi, ri〉 has now i−1 steps remaining, we can apply the induction hypothesis
with h ∼β h1, r ∼β,rdapp1

r1 and the premises (1) and (5) to conclude h ∼β hi

and r ∼β,rdappi
ri.

Lemma 8 (Security of typable sequences). For all methods m ∈ MP of
a typable program P , register domain assignments rda0, . . . , rdak ∈ RDA where
k = length(m)− 1, security environments se : N0 → SL, security domains ret ∈
SL, partial injective functions β ∈ B, natural numbers i, j, n02, . . . , n

j
2 ∈ N0, pro-

gram points pp01, . . . , pp
i
1, pp

0
2, . . . , pp

j
2 ∈ N0, register states r01, . . . , r

i
1, r

0
2, . . . , r

j
2 ∈

R, heaps h01, . . . , h
i
0, h

0
2, . . . , h

j
2, h2 ∈ H, and values u2 ∈ V such that

1. pp01 = pp02,
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2. r01 ∼β,rda
pp01

r02,

3. h01 ∼β h02,
4. se(ppi1) = low,

5. 〈h01, pp01, r01〉
(0)
 P,m 〈h11, pp11, r11〉

(0)
 P,m · · ·

(0)
 P,m 〈hi1, ppi1, ri1〉,

6. 〈h02, pp02, r02〉
(n0

2) P,m 〈h12, pp12, r12〉
(n1

2) P,m · · · 〈hj2, pp
j
2, r

j
2〉

(nj
2) P,m 〈u2, h2〉,

7. for all i, j ∈ N0, if i→m j there exists a register domain assignment rda′j ∈
RDA such that the judgment m, regionm,mda, fda, ada, ret, se ` i : rdai →
rda′j is derivable and rda′j v rdaj, and

8. for all i ∈ N0, if there exists no j ∈ N0 such that i→m j, then the judgment
m, regionm,mda, fda, ada, ret, se ` i : rdai → rdai is derivable.

there exists a natural number d ∈ N0 and a partial injective function on locations
β′ ∈ B, such that

1. d ≤ j,
2. ppi1 = ppd2,
3. β ⊆ β′,
4. hi1 ∼β′ hd2,
5. ri1 ∼β′,rda

ppi1

rd2 , and

6. for all c ∈ N0, c < d it holds that nc2 = 0.

Proof. Let m ∈MP be a method of a typable program P , rda0, . . . , rdak ∈ RDA
be register domain assignments where k = length(m)−1, se ∈ N0 → SL be a se-
curity environment, ret ∈ SL be a security domain, β ∈ B be a partial injective
function, i, j, n02, . . . , n

j
2 ∈ N0 be natural numbers, pp01, . . . , pp

i
1, pp

0
2, . . . , pp

j
2 ∈ N0

be program points, r01, . . . , r
i
1, r

0
2, . . . , r

j
2 ∈ R be register states, h01, . . . , h

i
0, h

0
2, . . . ,

hj2, h2 ∈ H be heaps, and u2 ∈ V be a value such that pp01 = pp02, r01 ∼β,rda
pp01

r02,

h01 ∼β h02, se(ppi1) = low, 〈h01, pp01, r01〉
(0)
 P,m 〈h11, pp11, r11〉

(0)
 P,m · · ·

(0)
 P,m

〈hi1, ppi1, ri1〉, 〈h02, pp02, r02〉
(n0

2) P,m 〈h12, pp12, r12〉
(n1

2) P,m · · · 〈hj2, pp
j
2, r

j
2〉

(nj
2) P,m 〈u2, h2〉,

for all i, j ∈ N0, if i→m j there exists a register domain assignment rda′j ∈ RDA
such that the judgment m, regionm,mda, fda, ada, ret, se ` i : rdai → rda′j is

derivable and rda′j v rdaj , and for all i ∈ N0, if there exists no j ∈ N0 such that
i →m j, then the judgment m, regionm,mda, fda, ada, ret, se ` i : rdai → rdai is
derivable.

We have to show that there exists a natural number d ∈ N0 and a partial
injective function on locations β′ ∈ B, such that d ≤ j, ppi1 = ppd2, β ⊆ β′,
hi1 ∼β′ hd2, ri1 ∼β′,rda

ppi1

rd2 , and for all c ∈ N0, c < d it holds that nc2 = 0.

We prove this by induction over the number i of execution steps in the first
sequence.

Base case. Assume i = 0. Then d = i = 0 and β′ = β and all goals are fulfilled
by assumption.

Induction hypothesis. We assume that the property holds for execution sequences
that are strictly shorter than i.
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Induction step. Assume i > 0. Since pp01 = pp02 and the instruction at pp01 is
not a return statement (it does not lead to a final state), we know that also
the second sequence must make at least one step that is not terminating. We
distinguish whether the security environment at the first program point is low
or high.

Case 1 (se(pp01) = low). We can apply locally respect (Lemma 1) and Lemma 20
to obtain a β′′ ∈ B such that r11 ∼β′′,rda

pp11

r12, h11 ∼β h12, and n02 = 0. If pp11 = pp12,

we can apply the induction hypothesis and conclude all goals.

Otherwise, pp11 6= pp12 and the instruction at program point pp01 was a branch-
ing with a condition involving secrets. With Lemma 6 (high branching) and the
three SOAP properties of control dependence regions of branching instructions
(Definition 26), we know that all program points whose execution depends on
the given branching (all pp ∈ regionm(pp01)) have a high security environment.
Since we also know that the security environment of ppi1 is low by assumption,
there has to be a natural number c ∈ N0 with c < i which is the smallest number
such that ppc1 = junm(pp01). Hence, the program point of this state is the junc-
tion point of the different possible executions originating from the branching at
pp01 and this program point is not in regionm(pp01). According to SOAP 3, this
junction point is only defined if no return statement occurs in the control depen-
dence region of pp01. Hence, the second execution must also pass this junction
point ppc1 before terminating. Thus, we define d as the smallest number such
that ppc1 = ppd2 = junm(pp01).

As all states before junm(pp01) have a high security environment and no
methods can be called in high security environments required by the typability
of the program, we have n12 = . . . = nd−12 = 0. Hence, we can apply Lemma 7
(indistinguishable after high branch) to show for the execution sequences

〈h11, pp11, r11〉
(0)
 P,m · · · 〈hc1, ppc1, rc1〉 and

〈h12, pp12, r12〉
(n1

2) P,m · · · 〈hd2, ppd2, rd2〉

that h11 ∼β′′ hc1, h12 ∼β′′ hd2, and with h11 ∼β h12 and β ⊆ β′′ we have hc1 ∼β′′ hd2
with the transitivity and symmetry of the indistinguishability of heaps. More-
over, we get from Lemma 7 that r11 ∼β′′,rdappc1

rc1, r11 ∼β′′,rdappc1
rd2 (since ppc1 =

ppd2). With the symmetry and transitivity of the indistinguishability of register
states, we have rc1 ∼β′′,rdappc1

rd2 . Since the length of the remainder of the first

execution sequence is smaller than i, we can now apply the induction hypothesis
and conclude all goals.

Case 2 (se(pp01) = high). If the security environment is high at pp01, then there
exists some program point pp ∈ N0 that is a branching on secrets with pp10 ∈
regionm(pp) and that has a junction point junm(pp) which is not in a high
security environment. Otherwise, se(ppi1) could not be low. The rest of this case
is shown analogously to the second case of se(pp01) = high.
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Lemma 9 (Security of typable methods). For all methods m ∈MP of a ty-
pable program P , method names mid ∈MIDP , and security domains p0, . . . pn,
ret ∈ SL for some n ∈ N0, if (mid, [p0, . . . , pn], ret) ∈ mda and m is typable
with respect to (mid, [p0, . . . , pn], ret), then m satisfies TIN-ADL with respect to
the method signature (mid, [p0, . . . , pn], ret).

Proof. Let m ∈ MP be an arbitrary method of a typable program P , mid ∈
MIDP be a method name, and p0, . . . pn, ret ∈ SL for some n ∈ N0 be security
domains such that (mid, [p0, . . . , pn], ret) ∈ mda and m is typable with respect
to (mid, [p0, . . . , pn], ret).

To show that m satisfies TIN-ADL with respect to (mid, [p0, . . . , pn], ret), we
have to show that there exists a register domain assignment rda ∈ RDA with
pi v rda(vi) for all i ∈ N0, i ≤ n and for all partial injective functions β ∈ B,
register states r1, r2 ∈ R, heaps h1, h2, h

′
1, h
′
2 ∈ H, return values u1, u2 ∈ V, and

natural numbers n1, n2 ∈ N0 such that

r1 ∼β,rda r2,

h1 ∼β h2,

〈h1, 0, r1〉 ⇓(n1)
P,m 〈u1, h

′
1〉, and

〈h2, 0, r2〉 ⇓(n2)
P,m 〈u2, h

′
2〉,

there exists a partial injective function on locations β′ ∈ B, such that β ⊆ β′,
h′1 ∼β′ h′2 and, if ret = low, u1 ∼β′ u2.

By the typability of m and Definition 28, we obtain rda0 ∈ RDA such that
for all i ∈ N0, i ≤ n it holds that pi v rda0(vi) and set rda = rda0.

For the remaining goals, we show a more general case where executions of
arbitrary methods start at arbitrary positions.

Let m ∈MP be an arbitrary method of a typable program P , se ∈ N0 → SL
be a security environment, rda0, . . . , rdak ∈ RDA be register domain assignments
where k = length(m) − 1, β ∈ B be a partial injective function, pp01, pp

0
2 ∈ N0

be program points, r01, r
0
2 ∈ R be register states, h01, h

0
2, h1, h2 ∈ H be heaps,

u1, u2 ∈ V be return values, and n1, n2 ∈ N0 be natural numbers such that

1. pp01 = pp02,
2. r01 ∼β,rda

pp01

r02,

3. h01 ∼β h02,

4. 〈h01, pp01, r01〉 ⇓
(n1)
P,m 〈u1, h1〉,

5. 〈h02, pp02, r02〉 ⇓
(n2)
P,m 〈u2, h2〉,

6. for all i, j ∈ N0, if i →m j there exists a register domain assignment rda′j ∈
RDA such that the judgment m, regionm,mda, fda, ada, ret, se ` i : rdai →
rda′j is derivable and rda′j v rdaj , and

7. for all i ∈ N0, if there exists no j ∈ N0 such that i→m j, then the judgment
m, regionm,mda, fda, ada, ret, se ` i : rdai → rdai is derivable.

We have to show that there exists a partial injective function on locations β′ ∈ B,
such that β ⊆ β′, h1 ∼β′ h2 and, if ret = low, u1 ∼β′ u2.
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By unfolding the semantics of methods, we know that the executions of m
are of the form

〈h01, pp01, r01〉
(n0

1) P,m 〈h11, pp11, r11〉 · · · 〈hi1, ppi1, ri1〉
(ni

1) P,m 〈u1, h1〉

and

〈h02, pp02, r02〉
(n0

2) P,m 〈h12, pp12, r12〉 · · · 〈h
j
2, pp

j
2, r

j
2〉

(nj
2) P,m 〈u2, h2〉

for natural numbers i, j, n01, n
0
2, . . . , n

i
1, n

j
2 ∈ N0, heaps h11, h

1
2, . . . , h

i
1, h

j
2 ∈ H,

register states r11, r
1
2, . . . , r

i
1, r

j
2 ∈ R, and program points pp11, pp

1
2, . . . , pp

i
1, pp

j
2 ∈

N0 such that n01 + . . .+ ni1 = n1 and n02 + . . .+ nj2 = n2.
We show the goal by induction over an upper bound for the number of method

calls n0 ∈ N0 where n1 ≤ n0 and n2 ≤ n0.

Base case. Assume n0 = 0. Then also n1 = n2 = 0. We distinguish cases over
the security environment of the program point of the return instruction ppi1.

Case 1 (se[ppi1] = low). Then, by the security of typable execution sequences
without invocation (Lemma 8), we know that that there exists a d ∈ N0 such
that ppi1 = ppd2 and that there exists a β′′ ∈ B such that β ⊆ β′′, hi1 ∼β′′ hd2,
and ri1 ∼β′′,rda

ppi1

rd2 . Since ppi1 = ppd2 and ppi1 is a return statement, also the

second sequence terminates with execution step d, i.e., d = j. With premise 7 of
this lemma and locally respect for return (Lemma 2), we conclude for the last
execution step that there exists a partial injective function on locations β′ ∈ B,
such that β′′ ⊆ β′, h1 ∼β′ h2 and, if ret = low, u1 ∼β′ u2. The goal β ⊆ β′

follows from β ⊆ β′′ and β′′ ⊆ β′.

Case 2 (se[ppi1] = high). Then there is a state 〈hc1, ppc1, rc1〉 for some c ∈ N0 such
that either there is a preceding state with se(ppc−11 ) = low or 〈hc1, ppc1, rc1〉 =
〈h01, pp01, r01〉, and for all n ∈ N0 with c ≤ n ≤ i it holds that se(ppn1 ) = high, i.e.,
no more state in a low security environment occurs in the remainder of the first
execution before termination.

In the first case, by security of typable execution sequences without invo-
cation (Lemma 8), we know that there exists a state 〈hd−12 , ppd−12 , rd−12 〉 for
some d ∈ N0 in the second execution such that ppc−11 = ppd−12 = pp for some
pp ∈ N0 and that there exists a β′′′ ∈ B such that β ⊆ β′′′, hc−11 ∼β′′′ hd−12 , and
rc−11 ∼β′′′,rdapp

rd−12 . The state 〈hd−12 , ppd−12 , rd−12 〉 must also be the last state in
a low security environment before termination of the second execution, as oth-
erwise Lemma 8 could be applied to derive another state with a program point
in a low security environment in the first execution, which is a contradiction
to our assumption. By locally respect (Lemma 1), we know that the execution
of ppc−11 and ppd−12 in indistinguishable register states and heaps yields states
〈hc1, ppc1, rc1〉, and 〈hd2, ppd2, rd2〉 such that there exists a β′′ ∈ B such that β′′′ ⊆ β′′,
hc1 ∼β′′ hd2, rc1 ∼β′′,rdappc1

rd2 , and rc1 ∼β′′,rda
ppd2

rd2 .

In the second case, we have β′′ = β, pp = ppc1 = pp01 = pp02 = ppd2, rc1 =
r01 ∼β′′,rdapp r

0
2 = rd2 , and hc1 = h01 ∼β′′ h02 = hd2 by assumption. As before, this
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implies that also the second execution sequence does not contain a state with a
program point in a low security environment, as otherwise a contradiction would
be derivable.

In both cases, we can apply Lemma 7 (indistinguishable after high branch)
to the execution sequences

〈hc1, ppc1, rc1〉
(0)
 P,m · · · 〈hi1, ppi1, ri1〉 and

〈hd2, ppd2, rd2〉
(0)
 P,m · · · 〈hj2, pp

j
2, r

j
2〉

and obtain hc1 ∼β′′ hi1 and hd2 ∼β′′ h
j
2. With hc1 ∼β′′ hd2 and symmetry and

transitivity of indistinguishability immediately follows hi1 ∼β′′ h
j
2.

We can apply step consistent for return (Lemma 5) to the final execution step
in both sequences and get h1 ∼β′′ hi1, h2 ∼β′′ hj2, ret = high if u1 6= void, and

ret = high if u2 6= void. From h1 ∼β′′ hi1, h2 ∼β′′ hj2, and hi1 ∼β′′ h
j
2, we know

that h1 ∼β′′ h2 given the symmetry and transitivity of the indistinguishability
relation for heaps.

Finally, if ret = low, we know from ret = high if u1 6= void, and ret = high
if u2 6= void, that u1 = u2 = void and, thus, u1 ∼β′′ u2.

Induction hypothesis. We assume that the property made explicit by Defini-
tion 30 holds for terminating execution sequences in arbitrary methods m with
strictly less than n0 method calls, given that they start in the same program
point and indistinguishable register states and heaps.

Induction step. Assume n0 > 0. Let 〈hc1, ppc1, rc1〉 for some c ∈ N0 be the first
state in the first execution sequence in which m[ppc1] is a method call instruction.
As m is typable, we know that se(ppc1) = low as required by the typing rules for
method invocation instructions.

By Lemma 8, we know that a state 〈hd2, ppd2, rd2〉 for some d ∈ N0 in the second
execution exists, such that no method invoking instruction occurs in the second
execution before this state, ppc1 = ppd2 = pp for some pp ∈ N0, and a function β′′

exists, such that β ⊆ β′′, hc1 ∼β′′ hd2, and rc1 ∼β′′,rdapp r
d
2 .

As m[pp] is a method invoking instruction, the next execution steps from the
states 〈hc1, pp, rc1〉 and 〈hd2, pp, rd2〉 are of the form

〈hc1, pp, rc1〉
(z1+1)
 P,m 〈hc+1

1 , pp+ 1, rc+1
1 〉 and

〈hd2, pp, rd2〉
(z2+1)
 P,m 〈hd+1

2 , pp+ 1, rd+1
2 〉

where z1, z2 ∈ N0. As the total amount of method calls is not greater than n0,
we know that z1 < n0 and z2 < n0. With the induction hypothesis, the lemma
locally respect for methods (Lemma 3), and monotonicity of the indistinguisha-
bility of register states (Lemma 20), we know that there exists a rda′ ∈ RDA
and a β′′′ ∈ B with β′′ ⊆ β′′′ such that hc+1

1 ∼β′′′ hd+1
2 and rc+1

1 ∼β′′′,rda′ r
d+1
2 .

With premise (6) of this lemma, we get rc+1
1 ∼β′′′,rdapp+1

rd+1
2 . Since the re-

maining executions can only contain n1 − (z1 + 1) and n2 − (z2 + 1) method
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invoking instructions, we can apply the induction hypothesis and conclude that
there exists a partial injective function on locations β′ ∈ B, such that β ⊆ β′,
h1 ∼β′ h2 and, if ret = low, u1 ∼β′ u2.

With the last lemma, security of typable methods, Theorem 1 can be proven.

Proof (Soundness of the type system). We assume that program P is typable.
To show that P then also satisfies TIN-ADL, we have to show

1. for all method names of entry points mid ∈ EPP there exists p0, . . . pn, ret ∈
SL for some n ∈ N0 such that (mid, [p0, . . . pn], ret) ∈ mda, and

2. for all method names of entry points mid ∈ EPP , methods m ∈ MP ,
classes c ∈ CIDP , and security domains p0, . . . pn, ret ∈ SL such that
(mid, [p0, . . . pn], ret) ∈ mda, if
– m = lookup-static(mid),
– m = lookup-direct(mid, c),
– m = lookup-super(mid, c), or
– m = lookup-virtual(mid, c)

holds, then m must satisfy TIN-ADL with respect to (mid, [p0, . . . pn], ret).

The satisfaction of condition 1 directly follows from the definition of typabil-
ity of programs. It remains to show the satisfaction of condition 2.

Let mid ∈ EPP be a method name of an entry point, m ∈MP be a method
of P , c ∈ CIDP be a class name, and p0, . . . pn, ret ∈ SL be security do-
mains such that (mid, [p0, . . . pn], ret) ∈ mda, and m = lookup-static(mid), m =
lookup-direct(mid, c), m = lookup-super(mid, c), or m = lookup-virtual(mid, c).
We have to show that m satisfies TIN-ADL with respect to (mid, [p0, . . . pn], ret).

Since EPP ⊆ MIDP , it follows from the typability of program P that m is
either a framework method or it is typable with respect to (mid, [p0, . . . pn], ret).

If m ∈ framework, then m satisfies TIN-ADL with respect to all applicable
method signatures by assumption.

If m /∈ framework, then it is typable with respect to (mid, [p0, . . . pn], ret).
Hence, m also satisfies TIN-ADL with respect to (mid, [p0, . . . pn], ret) using
Lemma 9.

Thus, if program P is typable, then P also satisfies TIN-ADL.

6 Related Work

The objective of our work was the development of an information-flow analysis
that soundly prevents information leakage through the bytecode of Android apps.
Thus, the related work for this report comprises research on language-based
information-flow security and on Android security. Language-based information-
flow security has a long tradition, and a comrehensive overview to the field was
given by Sabelfeld and Myers [SM03]. As for the Android security research,
various methods have been proposed to prevent information leakage through
apps, and Enck [Enc11] provides a broad overview of different directions here.
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In this section, we first focus on relevant type-based information-flow security
analyses with proven soundness, then we take a closer look on static analyses
for the detection of information leaks in Android apps.

The first security-type analysis equipped with a formal proof of soundness was
proposed by Volpano, Irvine, and Smith [VIS96]. They developed a security-type
system for an imperative high-level programming language with formal semantics
and proved that if a program in the given language is typable, it satisfies a
noninterference-like security condition. Banerjee and Naumann [BN05] adopted
this concept to define a sound security-type analysis for programs written in a
fragment of JavaCard that supports objects and method invocation including
dynamic dispatch. Although such type systems for high-level languages could
be used to analyze the source code of Android apps, they are hard to apply if
the source code is not available. For some apps, the source code even cannot be
obtained using decompilers [EOMC11]. Our security type system was developed
specifically to analyze Dalvik bytecode, such that access to the source code of
an app or decompilation of Dalvik binaries are not necessary.

The first type-based information-flow analysis with proven soundness for a
low-level language was proposed by Kobayashi and Shirane [KS02]. They ana-
lyzed a subset of the Java virtual machine language, i.e., Java bytecode, without
objects and method calls and proved the soundness of the type system with
respect to a noninterference-like security property. Barthe, Pichardie, and Rezk
[BPR08] provided a type system and operational semantics for a larger subset of
Java bytecode that includes objects, method calls, arrays, and exceptions. They
defined a notion of noninterference for the execution semantics of Java bytecode
and proved that the proposed type system enforces this notion of noninterfer-
ence. Some aspects of our security-type system were adopted from [BPR08], e.g.,
the handling of indirect information flows in an unstructured bytecode language
and some definitions of indistinguishability. Yet, there exist nontrivial differences
between Java bytecode and Dalvik bytecode that have to be considered when
defining a sound analysis method for Dalvik. For example, Dalvik programs
have multiple potential entry points at which execution of the program may
start while Java programs have a single main-method. Moreover, Dalvik byte-
code operates on registers whereas the Java virtual machine uses an operand
stack for computation results and parameters.

There exist different tools for the static detection of information leaks in
Android apps, e.g., [FCF09, GCEC12, KYYS12, LLW+12, MS12, YY12, ZO12,
FAR+13, OMJ+13]. However, only few come with a proof of soundness, i.e., for-
mal guarantees to what extent their analyses enforce information-flow security.
We are aware of two such tools.

The tool SCanDroid [FCF09] was developed based on a security-type anal-
ysis for a language in which the communication of apps with other apps can
be captured [Cha09]. The goal of this analysis is to check that apps cannot
circumvent their access permissions by colluding with other apps. To this end,
the security-type analysis uses Android access permissions as security types and
tracks information-flows across different apps. The soundness of the analysis was

60



proven with respect to an operational semantics for the language. In addition
to tracking information-flows across apps, which is not the focus of our work,
SCanDroid can also track data flows within apps. Here, our analysis has two ad-
vantages: it does not only detect direct data leaks but also indirect leaks through
control flow dependencies, and the security types in our analysis are independent
of the statically declared Android permissions such that the same program can
be analyzed with respect to different information-flow requirements.

ScanDal [KYYS12] is a static analysis tool to detect data leaks in Android
apps. The analysis of ScanDal is based on abstract interpretation of programs
represented in an own intermediate language, Dalvik Core, and it has been
proven sound with respect to the formal semantics of Dalvik Core. In addi-
tion to detecting data leaks in Android apps, our security-type analysis takes
indirect information leaks through control-flow dependencies into account.

7 Conclusion

In this report we presented the type-based information-flow analysis for Dalvik
bytecode — together with its soundness result — that is implemented in Cassan-
dra. This analysis not only supports the detection of direct information leaks but
also of indirect leaks through control-flow dependencies on secrets. Such indirect
leaks disclose private information at least partially and, if exploited repeatedly,
may even leak complex information.

We carefully modeled the operational semantics for ADL, an abstract version
of the Dalvik bytecode language, formalized the desired noninterference-like se-
curity property, defined the corresponding security-type system, and proved its
soundness with respect to the security property and the semantics. Interestingly,
conducting this soundness proof not only increased the confidence in the security
guarantees that Cassandra provides, but also helped to detect and correct mis-
takes in Cassandra’s implementation. For example, a leak of secret array indices
was not detected, values could be leaked through fields inherited from classes of
the Android framework, and objects on which methods were invoked could be
leaked.

At the moment of writing this report, Cassandra as well as the presented
underlying theory covered 211 out of 218 Dalvik bytecode instructions. Support
for missing instructions (check-cast, monitor-enter, monitor-exit, move-

exception, packet-switch, sparse-switch, and throw) is the subject of our
ongoing work. Using Cassandra, we observed that a frequent cause of imprecision
of the underlying type-based security analyses is the lack of object-sensitivity.
In the future, we plan to investigate how our type system could be adapted to
increase the precision in such cases without losing soundness.

Acknowledgements. We thank Alexander Lux and Jens Sauer for their sugges-
tions during the development of the presented security-type system. This work
was supported by the DFG under the project RSCP (MA3326/4-2) in the Pri-
ority Program RS3, and by the German Federal Ministry of Education and
Research (BMBF) within EC SPRIDE.
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Appendices

A Properties of Indistinguishability Relations

We prove twelve auxiliary lemmas in order to establish symmetry and transitivity
of the indistinguishability relations. We refrain from explicitly proving reflexivity
of the indistinguishability relations as it is apparent from their definition. In
addition, we prove monotonicity of the indistinguishability of register states with
respect to register security domains.

Lemma 10 (Symmetry of value indistinguishability). Let x, y ∈ V and
β ∈ B be a partial injective function on locations. Then x ∼β y implies y ∼β−1 x.

Proof. If x = y = void or x, y ∈ N with x = y, we have y ∼β−1 x by definition.
If x, y ∈ L, we have β(x) = y. As β is an injective function, this implies y ∈
dom(β−1) and β−1(y) = x. Therefore, we can conclude that y ∼β−1 x.

Lemma 11 (Transitivity of value indistinguishability). Let x, y, z ∈ V
and β, β′ ∈ B be a partial injective function on locations. Then x ∼β y and
y ∼β′ z imply x ∼β′◦β z.

Proof. If x = y = z = void or x, y, z ∈ N with x = y = z, we have x ∼β′◦β z
by definition. If x, y, z ∈ L, we have β(x) = y and β′(y) = z, which implies
β′(β(y)) = z. Therefore, we can conclude that x ∼β′◦β z.

Lemma 12 (Symmetry of register indistinguishability). For r, r′ ∈ R, a
given function rda ∈ RDA and a partial injective function on locations β ∈ B,
r ∼β,rda r

′ implies r′ ∼β−1,rda r.

Proof. r ∼β,rda r
′ means that for all x ∈ X ∪ Xres it holds that if rda(x) = low

then r(x) ∼β r′(x). We need to show that for all x ∈ X ∪ Xres it holds that if
rda(x) = low then r′(x) ∼β−1 r(x). Let x ∈ X ∪Xres and rda(x) = low. We know
that r(x) ∼β r′(x) and can apply Lemma 10 so that we have r′(x) ∼β−1 r(x).
Hence, we can conclude that r′ ∼β−1,rda r.

Lemma 13 (Transitivity of register indistinguishability). For r, r′, r′′ ∈
R, a given function rda ∈ RDA and partial injective functions on locations
β, β′ ∈ B, r ∼β,rda r

′ and r′ ∼β′,rda r
′′ imply r ∼β′◦β,rda r

′′.

Proof. r ∼β,rda r
′ and r′ ∼β′,rda r

′′ mean that for all x ∈ X ∪ Xres it holds that
if rda(x) = low then r(x) ∼β r′(x) and r′(x) ∼β′ r′′(x). We need to show that
for all x ∈ X ∪ Xres it holds that if rda(x) = low then r(x) ∼β′◦β r′′(x). Let
x ∈ X ∪Xres and rda(x) = low. We know that r(x) ∼β r′(x) and r′(x) ∼β′ r′′(x)
and can apply Lemma 11 to have r(x) ∼β′◦β r′′(x). Hence, we can conclude that
r ∼β′◦β,rda r

′′.

Lemma 14 (Symmetry of object indistinguishability). Let o1, o2 ∈ O be
two objects in a program P with the lookup function lookup-fieldP and β ∈ B
a partial injective function on locations such that o1 ∼β o2. Then o2 ∼β−1 o1
holds.
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Proof. We know that o1.class = o2.class and for all f ∈ dom(o1.fields) it holds
that there exists fid ∈ dom(lookup-field) such that if f = lookup-field(fid) and
fda(fid) = low then o1.f ∼β o2.f . As o2.class = o1.class is satisfied by symmetry
of equality, we still need to show for all f ∈ dom(o2.fields) that there exists
fid ∈ dom(lookup-field) such that if f = lookup-field(fid) and fda(fid) = low
then o2.f ∼β−1 o1.f . Let f ∈ dom(o2.fields) and fid ∈ dom(lookup-field) such
that f = lookup-field(fid) and fda(fid) = low. As o1 and o2 are objects of the
same class, dom(o2.fields) = dom(o1.fields). Thus, we have o1.f ∼β o2.f and can
apply Lemma 10 to get o2.f ∼β−1 o1.f . We can conclude that o2 ∼β−1 o1.

Lemma 15 (Transitivity of object indistinguishability). Let o1, o2, o3 ∈
O be three objects in a program P with the lookup function lookup-fieldP and
β, β′ ∈ B be two partial injective functions on locations, such that o1 ∼β o2 and
o2 ∼β′ o3. Then o1 ∼β′◦β o3 holds.

Proof. We know that o1.class = o2.class and for all f ∈ dom(o1.fields) it holds
that there exists fid ∈ dom(lookup-field) such that if f = lookup-field(fid) and
fda(fid) = low then o1.f ∼β o2.f . We also have o2.class = o3.class and for all
f ∈ dom(o2.fields) it holds that there exists fid ∈ dom(lookup-field) such that
if f = lookup-field(fid) and fda(fid) = low then o2.f ∼β′ o3.f . As o1.class =
o3.class is satisfied by transitivity of equality, we still need to show for all f ∈
dom(o1.fields) it holds that there exists fid ∈ dom(lookup-field) such that if f =
lookup-field(fid) and fda(fid) = low then o1.f ∼β′◦β o3.f . Let f ∈ dom(o1.fields)
and fid ∈ dom(lookup-field) such that f = lookup-field(fid) and fda(fid) = low.
As o1, o2, and o3 are objects of the same class, dom(o1.fields) = dom(o2.fields),
i.e., f ∈ dom(o2.fields). Thus, we have o1.f ∼β o2.f and o2.f ∼β′ o3.f and can
apply Lemma 11 to get o1.f ∼β′◦β o3.f . We can conclude that o1 ∼β′◦β o3.

Lemma 16 (Symmetry of array indistinguishability). Let a1, a2 ∈ A be
two arrays and β ∈ B be a partial injective function on locations such that
a1 ∼β a2. Then a2 ∼β−1 a1 holds.

Proof. We know that a1.length = a2.length and ada = low implies for all indices
i ∈ N0 such that i < a1.length that a1[i] ∼β a2[i]. As a2.length = a1.length is
satisfied by symmetry of equality, we still need to show that ada = low implies
a2[i] ∼β−1 a1[i] for all i ∈ N0 with i < a2.length. Let ada = low and i ∈ N0

such that i < a2.length. As the lengths are equal, we have a1[i] ∼β a2[i]. By
Lemma 10, this implies a2[i] ∼β−1 a1[i]. Thus, we can conclude that a2 ∼β−1 a1.

Lemma 17 (Transitivity of Array Indistinguishability). Let a1, a2, a3 ∈
A be three arrays and β, β′ ∈ B be two partial injective functions on locations,
such that a1 ∼β a2 and a2 ∼β′ a3. Then a1 ∼β′◦β a3 holds.

Proof. We know that a1.length = a2.length and ada = low implies for all indices
i ∈ N0 with i < a1.length that a1[i] ∼β a2[i]. We also know that a2.length =
a3.length and ada = low implies that for all indices i ∈ N0 with i < a2.length that
a2[i] ∼β′ a3[i]. As a1.length = a3.length is satisfied by transitivity of equality,
we still need to show that ada = low implies for all i ∈ N0 with i < a1.length
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that a1[i] ∼β′◦β a3[i]. Let ada = low and i ∈ N0 such that i < a1.length.
As the lengths are equal, we have i < a2.length and therefore a1[i] ∼β a2[i]
and a2[i] ∼β′ a3[i]. By Lemma 11, this implies a1[i] ∼β′◦β a3[i]. Thus, we can
conclude that a1 ∼β′◦β a3.

Lemma 18 (Symmetry of heap indistinguishability). Let h1, h2 ∈ H be
two heaps and β ∈ B be a partial injective function on locations such that h1 ∼β
h2. Then h2 ∼β−1 h1 holds.

Proof. As β is a partial injective function on locations with dom(β) ⊆ dom(h1)
and rng(β) ⊆ dom(h2), β−1 is a partial injective function on locations with
dom(β−1) ⊆ dom(h2) and rng(β−1) ⊆ dom(h1). We need to show that for
all l ∈ dom(β−1), either l ∈ domO(h2) and β−1(l) ∈ domO(h1) and h2(l) ∼β−1

h1(β−1(l)), or l ∈ domA(h2) and β−1(l) ∈ domA(h1) and h2(l) ∼β−1 h1(β−1(l)).
If l ∈ dom(β−1) and l ∈ domO(h2) and β−1(l) ∈ domO(h1), we know that
h1(β−1(l)) ∼β h2(l), because β is a partial injective function on locations, and
can apply Lemma 14 to get h2(l) ∼β−1 h1(β−1(l)). If l ∈ domA(h2) and β−1(l) ∈
domA(h1), we know that h1(β−1(l)) ∼β h2(l) because β is a partial injective
function on locations and can apply Lemma 16 to get h2(l) ∼β−1 h1(β−1(l)).
Thus, we can conclude that h2 ∼β−1 h1.

Lemma 19 (Transitivity of heap indistinguishability). Let h1, h2, h3 ∈ H
be three heaps and β, β′ ∈ B be two partial injective functions on locations such
that h1 ∼β h2 and h2 ∼β′ h3. Then h1 ∼β′◦β h3 holds.

Proof. As β is a partial injective function on locations with dom(β) ⊆ dom(h1)
and rng(β) ⊆ dom(h2) and β′ is a partial injective function on locations with
dom(β′) ⊆ dom(h2) and rng(β′) ⊆ dom(h3), β′ ◦β is a partial injective function
on locations with dom(β′◦β) ⊆ dom(h1) and rng(β′◦β) ⊆ dom(h3). We need to
show that for all l ∈ dom(β′ ◦ β), either l ∈ domO(h1) and β′(β(l)) ∈ domO(h3)
and h1(l) ∼β′◦β h3(β′(β(l))), or l ∈ domA(h1) and β′(β(l)) ∈ domA(h3) and
h1(l) ∼β′◦β h3(β′(β(l))).

If l ∈ dom(β′ ◦β) and l ∈ domO(h1), we know that β(l) ∈ domO(h2) because
h1 ∼β h2 and furthermore β′(β(l)) ∈ domO(h3) because h2 ∼β′ h3. Moreover we
can apply Lemma 15 to h1(l) ∼β h2(β(l)) and h2(β(l)) ∼β′ h3(β′(β(l)), which
both holds by assumption and the definition of heap indistinguishablility, and
conclude h1(l) ∼β′◦β h3(β′(β(l))).

If l ∈ dom(β′ ◦β) and l ∈ domA(h1), we know that β(l) ∈ domA(h2) because
h1 ∼β h2 and furthermore β′(β(l)) ∈ domA(h3) because h2 ∼β′ h3. Moreover,
we can apply Lemma 17 to h1(l) ∼β h2(β(l)) and h2(β(l)) ∼β′ h3(β′(β(l)),
which both holds by assumption and the definition of heap indistinguishablility,
and conclude h1(l) ∼β′◦β h3(β′(β(l))). Thus, we can conclude that h1 ∼β′◦β h3.

Lemma 20 (Monotonicity of register state indistinguishability). Let
r1, r2 ∈ R be two register states, β ∈ B be a partial injective function on lo-
cations, and rda ∈ RDA such that r1 ∼β,rda r2. Then for all rda′ ∈ RDA it
holds that if rda v rda′ then r1 ∼β,rda′ r2.
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Proof. Let r1, r2 ∈ R be two register states, β ∈ B be a partial injective function
on locations, and rda, rda′ ∈ RDA such that r1 ∼β,rda r2 and rda v rda′. We need
to show that r ∼β,rda′ r

′.
We know for all x ∈ X ∪ Xres that if rda(x) = low then r(x) ∼β r′(x). As

rda v rda′, for each register either rda(x) = rda′(x) or rda(x) v rda′(x) holds.
In the former case, indistinguishability is satisfied by assumption. In the latter
case, rda′(x) must be high and, thus, indistinguishability is trivially satisfied.
Therefore, we know for all x ∈ X ∪Xres that if rda′(x) = low then r(x) ∼β r′(x).
Hence, we can conclude r ∼β,rda′ r

′.
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B Mapping of Dalvik Opcodes to Abstract Instructions

Table 1. Control flow instructions

Abstract Instruction Concrete Dalvik Opcodes

nop nop

goto n goto, goto/16, goto/32

if-test va, vb, n, rop if-eq, if-ne, if-lt, if-ge, if-gt, if-le

if-testz va, n, rop if-eqz, if-nez, if-ltz, if-gez, if-gtz,

if-lez

Table 2. Arithmetic Instructions (1)

Abstract Instruction Concrete Dalvik Opcodes

move va, vb move, move/from16, move/16, move-object,

move-object/from16, move-object/16

move-wide va, vb move-wide, move-wide/from16, move-wide/16

const va, n const, const/4, const/16, const/high16

const-wide va, n const-wide/16, const-wide/32, const-wide,

const-wide/high16

cmp va, vb, vc cmpl-float, cmpg-float

cmp-wide va, vb, vc cmpl-double, cmpg-double, cmp-long

unop va, vb, uop neg-int, not-int, neg-float, int-to-float,

float-to-int, int-to-byte, int-to-char,

int-to-short

unop-wide va, vb, uop neg-long, not-long, neg-double,

long-to-double, double-to-long

unop-wideS va, vb, uop long-to-int, long-to-float, double-to-int,

double-to-float

unop-wideT va, vb, uop int-to-long, int-to-double, float-to-long,

float-to-double

binop va, vb, vc, bop add-int, sub-int, mul-int, div-int,

rem-int, and-int, or-int, xor-int,

shl-int, shr-int, ushr-int, add-float,

sub-float, mul-float, div-float, rem-float

binop-wide va, vb, vc, bop add-long, sub-long, mul-long, div-long,

rem-long, and-long, or-long, xor-long,

shl-long, shr-long, ushr-long, add-double,

sub-double, mul-double, div-double,

rem-double
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Table 3. Arithmetic Instructions (2)

Abstract Instruction Concrete Dalvik Opcodes

binop-2addr va, vb, bop add-int/2addr, sub-int/2addr,

mul-int/2addr, div-int/2addr,

rem-int/2addr, and-int/2addr,

or-int/2addr, xor-int/2addr,

shl-int/2addr, shr-int/2addr,

ushr-int/2addr, add-float/2addr,

sub-float/2addr, mul-float/2addr,

div-float/2addr, rem-float/2addr

binop-2addr-wide va, vb, bop add-long/2addr, sub-long/2addr,

mul-long/2addr, div-long/2addr,

rem-long/2addr, and-long/2addr,

or-long/2addr, xor-long/2addr,

shl-long/2addr, shr-long/2addr,

ushr-long/2addr, add-double/2addr,

sub-double/2addr, mul-double/2addr,

div-double/2addr, rem-double/2addr

binop-lit va, vb, n, bop add-int/lit16, rsub-int, mul-int/lit16,

div-int/lit16, rem-int/lit16,

and-int/lit16, or-int/lit16,

xor-int/lit16, add-int/lit8,

rsub-int/lit8, mul-int/lit8, div-int/lit8,

rem-int/lit8, and-int/lit8, or-int/lit8,

xor-int/lit8, shl-int/lit8, shr-int/lit8,

ushr-int/lit8

Table 4. Array-Related Instructions

Abstract Instruction Concrete Dalvik Opcodes

array-length va, vb array-length

new-array va, vb new-array

filled-new-array

va, vb, vc, vd, ve, n
filled-new-array

filled-new-array-range va, n filled-new-array/range

fill-array-data va, u0, . . . un fill-array-data

aget va, vb, vc aget, aget-object, aget-boolean,

aget-byte, aget-char, aget-short

aget-wide va, vb, vc aget-wide

aput va, vb, vc aput, aput-object, aput-boolean,

aput-byte, aput-char, aput-short

aput-wide va, vb, vc aput-wide
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Table 5. Object-Related Instructions

Abstract Instruction Concrete Dalvik Opcodes

instance-of va, vb, cl instance-of

new-instance va, cl new-instance

const-string va, s const-string, const-string/jumbo

const-class va, cl const-class

iget va, vb, fid iget, iget-object, iget-boolean,

iget-byte, iget-char, iget-short

iget-wide va, vb, fid iget-wide

iput va, vb, fid iput, iput-object, iput-boolean,

iput-byte, iput-char, iput-short

iput-wide va, vb, fid iput-wide

sget va, fid sget, sget-object, sget-boolean,

sget-byte, sget-char, sget-short

sget-wide va, fid sget-wide

sput va, fid sput, sput-object, sput-boolean,

sput-byte, sput-char, sput-short

sput-wide va, fid sput-wide

Table 6. Method-Related Instructions

Abstract Instruction Concrete Dalvik Opcodes

invoke-virtual

va, vb, vc, vd, ve, n,mid
invoke-virtual

invoke-super

va, vb, vc, vd, ve, n,mid
invoke-super

invoke-direct

va, vb, vc, vd, ve, n,mid
invoke-direct

invoke-interface

va, vb, vc, vd, ve, n,mid
invoke-interface

invoke-static

va, vb, vc, vd, ve, n,mid
invoke-static

invoke-virtual-range va, n,mid invoke-virtual/range

invoke-super-range va, n,mid invoke-super/range

invoke-direct-range va, n,mid invoke-direct/range

invoke-interface-range

va, n,mid
invoke-interface/range

invoke-static-range va, n,mid invoke-static/range

move-result va move-result, move-result-object

move-result-wide va move-result-wide

return-void return-void

return va return, return-object

return-wide va return-wide
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C Semantics of Further Instructions

rMoveWide
m[pp] = move-wide va, vb

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ r(vb), va+1 7→ r(vb+1)]〉

rConstWide
m[pp] = const-wide va, n

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ lower(n), va+1 7→ upper(n)]〉

rCmpWide>
m[pp] = cmp-wide va, vb, vc (r(vb) • r(vb+1)) > (r(vc) • r(vc+1))

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ −1]〉

rCmpWide=
m[pp] = cmp-wide va, vb, vc (r(vb) • r(vb+1)) = (r(vc) • r(vc+1))

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ 0]〉

rCmpWide<
m[pp] = cmp-wide va, vb, vc (r(vb) • r(vb+1)) < (r(vc) • r(vc+1))

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ 1]〉

rUnopWide
m[pp] = unop-wide va, vb, uop x = uop(r(vb) • r(vb+1))

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ lower(x), va+1 7→ upper(x)]〉

rUnopWideS
m[pp] = unop-wideS va, vb, uop x = uop(r(vb) • r(vb+1))

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ x]〉

rUnopWideT
m[pp] = unop-wideT va, vb, uop x = uop(r(vb))

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ lower(x), va+1 7→ upper(x)]〉

rBinopWide

m[pp] = binop-wide va, vb, vc, bop
x = (r(vb) • r(vb+1)) bop (r(vc) • r(vc+1))

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ lower(x), va+1 7→ upper(x)]〉

rBinopWide2addr

m[pp] = binop-wide-2addr va, vb, bop
x = (r(va) • r(va+1)) bop (r(vb) • r(vb+1))

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ lower(x), va+1 7→ upper(x)]〉

Figure 14. Semantics of instructions for 64 bit values (1)
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rIgetWide

m[pp] = iget-wide va, vb, fid fid ∈ dom(lookup-fieldP )
r(vb) ∈ dom(h) o = h(r(vb))

f = lookup-fieldP (fid) f ∈ dom(o.fields)

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ lower(o.f), va+1 7→ upper(o.f)]〉

rIputWide

m[pp] = iput-wide va, vb, fid fid ∈ dom(lookup-fieldP )
r(vb) ∈ dom(h) o = h(r(vb))

f = lookup-fieldP (fid) f ∈ dom(o.fields)

〈h, pp, r〉 (0)
 P,m 〈h[r(vb) 7→ o[f 7→ (r(va) • r(va+1))]], pp + 1, r〉

rSgetWide

m[pp] = sget-wide va, fid fid ∈ dom(nameToReference)
l = nameToReference(fid) fid ∈ dom(lookup-fieldP )

f = lookup-fieldP (fid) f ∈ dom(h(l).fields) x = h(l).f

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ lower(x), va+1 7→ upper(x)]〉

rSputWide

m[pp] = sput-wide va, fid fid ∈ dom(nameToReference)
l = nameToReference(fid) fid ∈ dom(lookup-fieldP )
f = lookup-fieldP (fid) x = h(l) f ∈ dom(x.fields)

〈h, pp, r〉 (0)
 P,m 〈h[l 7→ x[f 7→ (r(va) • r(va+1))]], pp + 1, r〉

rAgetWide

m[pp] = aget-wide va, vb, vc r(vb) ∈ dom(h) ar = h(r(vb))
x = ar[r(vc)] 0 ≤ r(vc) < ar.length

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ lower(x), va+1 7→ upper(x)]〉

rAputWide

m[pp] = aput-wide va, vb, vc r(vb) ∈ dom(h) ar = h(r(vb))
x = ar[r(vc) 7→ (r(va) • r(va+1))] 0 ≤ r(vc) < ar.length

〈h, pp, r〉 (0)
 P,m 〈h[r(vb) 7→ x], pp + 1, r〉

rReturnWide
m[pp] = return-wide va

〈h, pp, r〉 (0)
 P,m 〈r(va) • r(va+1), h〉

rMoveRW
m[pp] = move-result-wide va

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ r(resultlower), va+1 7→ r(resultupper)]〉

Figure 15. Semantics of instructions for 64 bit values (2)
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rCmp>
m[pp] = cmp va, vb, vc r(vb) > r(vc)

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ −1]〉

rCmp=
m[pp] = cmp va, vb, vc r(vb) = r(vc)

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ 0]〉

rCmp<
m[pp] = cmp va, vb, vc r(vb) < r(vc)

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ 1]〉

rBinop2addr
m[pp] = binop-2addr va, vb, bop x = r(va) bop r(vb)

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ x]〉

rBinopLit
m[pp] = binop-lit va, vb, n, bop x = r(vb) bop n

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r[va 7→ x]〉

rIfTestzTrue
m[pp] = if-testz va, n, rop r(va) rop 0

〈h, pp, r〉 (0)
 P,m 〈h, pp + n, r〉

rIfTestzFalse
m[pp] = if-testz va, n, rop ¬(r(va) rop 0)

〈h, pp, r〉 (0)
 P,m 〈h, pp + 1, r〉

rIS

m[pp] = invoke-super vk0 , vk1 , vk2 , vk3 , vk4 , n,mid
(mid, h(r(vk0)).class) ∈ dom(lookup-superP )
m′ = lookup-superP (mid, h(r(vk0)).class)

〈h, 0, defaultRegisters([r(vk0), . . . , r(vkn−1)])〉 ⇓(n
′)

P,m′ 〈u, h
′〉

〈h, pp, r〉 (n′+1)
 P,m 〈h′, pp + 1, r[resultlower 7→ lower(u), resultupper 7→ upper(u)]〉

rISR

m[pp] = invoke-super-range vk, n,mid
(mid, h(r(vk)).class) ∈ dom(lookup-superP )
m′ = lookup-superP (mid, h(r(vk)).class)

〈h, 0, defaultRegisters([r(vk), . . . r(vk+n−1)])〉 ⇓(n
′)

P,m′ 〈u, h
′〉

〈h, pp, r〉 (n′+1)
 P,m 〈h′, pp + 1, r[resultlower 7→ lower(u), resultupper 7→ upper(u)]〉

Figure 16. Semantics of other instructions (1)
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rID

m[pp] = invoke-direct vk0 , vk1 , vk2 , vk3 , vk4 , n,mid r(vk0) ∈ dom(h)
(mid, h(r(vk0)).class) ∈ dom(lookup-directP )
m′ = lookup-directP (mid, h(r(vk0)).class)

〈h, 0, defaultRegisters([r(vk0), . . . , r(vkn−1)])〉 ⇓(n
′)

P,m′ 〈u, h
′〉

〈h, pp, r〉 (n′+1)
 P,m 〈h′, pp + 1, r[resultlower 7→ lower(u), resultupper 7→ upper(u)]〉

rIDR

m[pp] = invoke-direct-range vk, n,mid
(mid, h(r(vk)).class) ∈ dom(lookup-directP ) r(vk) ∈ dom(h)

m′ = lookup-directP (mid, h(r(vk)).class)

〈h, 0, defaultRegisters([r(vk), . . . r(vk+n−1)])〉 ⇓(n
′)

P,m′ 〈u, h
′〉

〈h, pp, r〉 (n′+1)
 P,m 〈h′, pp + 1, r[resultlower 7→ lower(u), resultupper 7→ upper(u)]〉

rII

m[pp] = invoke-interface vk0 , vk1 , vk2 , vk3 , vk4 , n,mid r(vk0) ∈ dom(h)
(mid, h(r(vk0)).class) ∈ dom(lookup-virtualP )
m′ = lookup-virtualP (mid, h(r(vk0)).class)

〈h, 0, defaultRegisters([r(vk0), . . . , r(vkn−1)])〉 ⇓(n
′)

P,m′ 〈u, h
′〉

〈h, pp, r〉 (n′+1)
 P,m 〈h′, pp + 1, r[resultlower 7→ lower(u), resultupper 7→ upper(u)]〉

rIIR

m[pp] = invoke-interface-range vk, n,mid r(vk) ∈ dom(h)
(mid, h(r(vk)).class) ∈ dom(lookup-virtualP )
m′ = lookup-virtualP (mid, h(r(vk)).class)

〈h, 0, defaultRegisters([r(vk), . . . r(vk+n−1)])〉 ⇓(n
′)

P,m′ 〈u, h
′〉

〈h, pp, r〉 (n′+1)
 P,m 〈h′, pp + 1, r[resultlower 7→ lower(u), resultupper 7→ upper(u)]〉

rISt

m[pp] = invoke-static vk0 , vk1 , vk2 , vk3 , vk4 , n,mid
mid ∈ dom(lookup-staticP ) m′ = lookup-staticP (mid)

〈h, 0, defaultRegisters([r(vk0), . . . , r(vkn−1)])〉 ⇓(n
′)

P,m′ 〈u, h
′〉

〈h, pp, r〉 (n′+1)
 P,m 〈h′, pp + 1, r[resultlower 7→ lower(u), resultupper 7→ upper(u)]〉

rIV

m[pp] = invoke-virtual vk0 , vk1 , vk2 , vk3 , vk4 , n,mid r(vk0) ∈ dom(h)
(mid, h(r(vk0)).class) ∈ dom(lookup-virtualP )
m′ = lookup-virtualP (mid, h(r(vk0)).class)

〈h, 0, defaultRegisters([r(vk0), . . . , r(vkn−1)])〉 ⇓(n
′)

P,m′ 〈u, h
′〉

〈h, pp, r〉 (n′+1)
 P,m 〈h′, pp + 1, r[resultlower 7→ lower(u), resultupper 7→ upper(u)]〉

Figure 17. Semantics of other instructions (2)
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rFilledNewArray

m[pp] = filled-new-array vk0 , vk1 , vk2 , vk3 , vk4 , n 0 ≤ n
h ∈ dom(nextFreeLocation) l = nextFreeLocation(h)

x = defaultArray(n) ar = x[0 7→ r(vk0), . . . , n− 1 7→ r(vkn−1)]

〈h, pp, r〉 (0)
 P,m 〈h[l 7→ ar], pp + 1, r[resultlower 7→ l]〉

rFillArrayData

m[pp] = fill-array-data va, u0, . . . , un

r(va) ∈ dom(h) ar = h(r(va)) 0 ≤ n < ar.length
x = ar[0 7→ u0, . . . , n 7→ un] for all 0 ≤ i ≤ n

〈h, pp, r〉 (0)
 P,m 〈h[r(va) 7→ x], pp + 1, r〉

Figure 18. Semantics of other instructions (3)
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D Typing Rules of Further Instructions

tMoveW
m[pp] = move-wide va, vb t = rda(vb) t rda(vb+1) t se(pp)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t, va+1 7→ t]

tCW
m[pp] = const-wide va, n

m, . . . , ret, se(pp) ` pp : rda→ rda[va 7→ se(pp), va+1 7→ se(pp)]

tCmpW

m[pp] = cmp-wide va, vb, vc
t = rda(vb) t rda(vb+1) t rda(vc) t rda(vc+1) t se(pp)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t]

tUnopW
m[pp] = unop-wide va, vb, uop t = rda(vb) t rda(vb+1) t se(pp)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t, va+1 7→ t]

tBinopW

m[pp] = binop-wide va, vb, vc, bop
t = rda(vb) t rda(vb+1) t rda(vc) t rda(vc+1) t se(pp)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t, va+1 7→ t]

tBinop2W

m[pp] = binop-2addr-wide va, vb, bop
t = rda(va) t rda(va+1) t rda(vb) t rda(vb+1) t se(pp)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t, va+1 7→ t]

tIgetWide

m[pp] = iget-wide va, vb, fid fda(fid) = st
t = rda(vb) t st t se(pp)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t, va+1 7→ t]

tIputWide

m[pp] = iput-wide va, vb, fid fda(fid) = st
rda(va) t rda(va+1) t rda(vb) t se(pp) v st

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

tSgetWide
m[pp] = sget-wide va, fid fda(fid) = st t = st t se(pp)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t, va+1 7→ t]

tSputWide

m[pp] = sput-wide va, fid fda(fid) = st
rda(va) t rda(va+1) t se(pp) v st

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

Figure 19. Security typing rules for instructions for 64 bit values (1)
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tAgetW
m[pp] = aget-wide va, vb, vc t = se(pp) t ada t rda(vb) t rda(vc)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t, va+1 7→ t]

tAputW

m[pp] = aput-wide va, vb, vc
rda(va) t rda(va+1) t se(pp) t rda(vb) t rda(vc) v ada

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

tMoveResW

m[pp] = move-result-wide va
t = rda(resultlower) t rda(resultupper) t se(pp)

m, · · · ` pp : rda→ rda[va 7→ t, va+1 7→ t]

tReturnW
m[pp] = return-wide va se(pp) t rda(va) t rda(va+1) v ret

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

Figure 20. Security typing rules for instructions for 64 bit values (2)

tCmp
m[pp] = cmp va, vb, vc t = rda(vb) t rda(vc) t se(pp)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t]

tBinop2
m[pp] = binop-2addr va, vb, bop t = rda(va) t rda(vb) t se(pp)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ t]

tBinopL
m[pp] = binop-lit va, vb, n, bop

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda[va 7→ rda(vb) t se(pp)]

tIfTestz
m[pp] = if-testz va, n, rop ∀j ∈ regionm(pp).rda(va) v se(j)

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

tFNA

m[pp] = filled-new-array va, vb, vc, vd, ve, n
x = [va, vb, vc, vd, ve]

⊔n
i=1 rda(x[i]) v ada

m, · · · ` pp : rda→ rda[resultlower 7→ se(pp), resultupper 7→ se(pp)]

tFillAData

m[pp] = fill-array-data va, u0, . . . un

rda(va) t se(pp) v ada

m, regionm,mda, fda, ada, ret, se ` pp : rda→ rda

Figure 21. Security typing rules for other instructions (1)
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tI

m[pp] = invoke-* va, vb, vc, vd, ve, n,mid x = [va, . . . , ve]
(mid, [rda(x[1]), . . . , rda(x[n])], st) ∈ mda

rda(va) = low se(pp) = low

m, · · · ` pp : rda→ rda[resultlower 7→ st, resultupper 7→ st]

tIR

m[pp] = invoke-*-range va, n,mid
(mid, [rda(va), . . . , rda(va+n−1)], st) ∈ mda

rda(va) = low se(pp) = low

m, · · · ` pp : rda→ rda[resultlower 7→ st, resultupper 7→ st]

tIS

m[pp] = invoke-static va, vb, vc, vd, ve, n,mid
x = [va, . . . , ve] (mid, [rda(x[1]), . . . , rda(x[n])], st) ∈ mda

se(pp) = low

m, · · · ` pp : rda→ rda[resultlower 7→ st, resultupper 7→ st]

Figure 22. Security typing rules for other instructions (2)

The rules invoke-* and invoke-*-range apply to all non-static invoke instruc-
tions.
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