
This work has been funded by the DFG as part of the project Secure Refinement of Crypto-
graphic Algorithms (E3) within the CRC 1119 CROSSING.

Vulnerabilities Introduced by
Features for Software-based
Energy Measurement
Technical Report TUD-CS-2017-0304
November 2017

Heiko Mantel, Johannes Schickel, Alexandra Weber, Friedrich Weber

Technische Universität Darmstadt

Modeling and Analysis
of Information Systems

Vulnerabilities Introduced by Features for
Software-based Energy Measurement

Heiko Mantel, Johannes Schickel, Alexandra Weber, and Friedrich Weber

Department of Computer Science, TU Darmstadt, Germany
{mantel, schickel, weber, fweber}@mais.informatik.tu-darmstadt.de

Abstract. The growing need to save energy has led to the introduc-
tion of new features into CPUs. Such features allow software-based en-
ergy measurement in order to track and limit consumption as necessary,
e.g., for green IT. Despite the importance of these new CPU features to
datacenters, their consequences on software security are not understood
yet. In this article, we investigate a security issue caused by these fea-
tures, namely software-based energy side channels. We identify a weak-
ness in Bouncy Castle that allows an attacker to distinguish two secret
RSA keys based on their induced energy consumption characteristics.
Through software-based energy measurement, the attacker can sample
the energy consumption even without physical access to the system. We
show how very few such samples already give the attacker a high proba-
bility of success. From an initial investigation of countermeasures against
software-based energy side channels, we conclude that the mitigation of
such weaknesses requires further attention.

1 Introduction

Side channels are unintended communication channels arising from physical ex-
ecution characteristics of a program. Characteristics known to introduce side
channels include: execution time [4, 10, 11, 20], power consumption [21, 22, 35],
and cache behavior [8, 29, 49]. All of these characteristics can be exploited by a
remote attacker [8, 11, 35]. In this article, we focus on a different class, namely
software-based energy side channels, and present a method to exploit them.

Software-based energy measurement features, e.g., in Intel CPUs, support the
achievement of energy-consumption goals in datacenters (see, e.g., [19, Ch. 14. 9]).
In view of green IT and increasing energy prices, features for monitoring energy
consumption become more and more important.

Our research project was triggered by the introduction of such software-
based energy measurement features. Our goal was to clarify whether features for
software-based energy measurement introduce any danger for a software-based
energy side channel that an attacker could exploit to obtain secret information.

For a detailed investigation, we focus on the example of Intel RAPL, a software-
based energy measurement feature introduced by Intel in desktop and server
CPUs [19]. We investigate how Intel RAPL introduces weaknesses such that an
attacker could obtain secret information through an software-based energy side

channel. To this end, we perform distinguishing experiments at the example of
the RSA implementation in the cryptographic library Bouncy Castle. We mea-
sure the energy consumption of RSA decryption operations in software using
Intel RAPL. That is, we do not require physical access to the system.

Based on our experiments, we detect a weakness that Intel RAPL introduces
into Bouncy Castle RSA. We find that two RSA keys are distinguishable by the
energy consumption of RSA decryption, measured via Intel RAPL. This weakness
is exposed across a broad spectrum of attacker models, ranging from an invasive
attacker with root privileges to a passive attacker observing a concurrent process.

We quantify the severity of the detected weakness based on statistical meth-
ods. We define a decision procedure with which an attacker could guess the
key based on his measurements. For this procedure and our measurements, we
compute the probability that the attacker guesses the key correctly after mak-
ing a certain number of side-channel observations. In our experiments, we find
that with just 25 side-channel observations, the probability for a correct guess
is above 99%. Hence, the weakness in Bouncy Castle RSA is a serious concern.

Two obvious countermeasures against the described energy side channels are:
forbidding access to Intel RAPL completely or very restrictive access control. In
addition, more flexible software-level countermeasures would be desirable. We
investigate the effectiveness of such countermeasures at the example of cross-
copying [2]. Unfortunately, our experiments show that cross-copying is not very
effective as a countermeasure. Moreover, based on the experiences gained, it is
unclear to us how an effective software-level countermeasure could look like.

In summary, the main contribution of this article is a cross-cutting study of
the security implications of software-based energy measurement features at the
example of the feature Intel RAPL. The study covers

– a qualitative analysis how attackers with different capabilities could make
use of energy side channels,

– a quantitative analysis how easily attackers could make use of such side
channels, and

– an initial investigation of potential countermeasures against energy side
channels.

This article is structured as follows. In Section 2, we recapitulate key con-
cepts needed. We define the attacker models we consider in Section 3 and present
our approach to assess such side channels in Section 4. We present our quali-
tative results on Bouncy Castle RSA in Section 5 and our quantitative results
in Section 6. In Section 7 we summarize our evaluation of cross-copying. After
discussing related work in Section 8, we conclude in Section 9.

2 Preliminaries

2.1 Side Channels

A prime example of a side channel goes back to Kocher’s seminal work on timing
attacks [20]. Kocher shows that a naive square-and-multiply implementation of

3

modular exponentiation is vulnerable to timing attacks. Modular exponentia-
tion is, for example, used in RSA decryption. Decryption of an RSA ciphertext
requires computation of p = cd (mod n) [41], where c is the ciphertext and d
is the secret exponent. A naive implementation is given in Figure 1. Line 5 is
only executed when the condition in Line 4 evaluates to true. Execution of Line
5 takes additional time. Since the condition depends on bits from the exponent,
the execution time of the program encodes the Hamming weight of the exponent.
An attacker can exploit this variation in execution times to extract the secret
exponent d (as shown in [20]).

In the style of Millen [36], a side channel can be modeled as an information-
theoretic channel [15], where the input alphabet and output alphabets are mod-
eled by a random variables X and Y , respectively. The input alphabet are the
possible secret inputs a program can process, and the output alphabet are the
possible observations an observer can make through the side channel.

The leakage through a side channel can be measured by the mutual infor-
mation [15] of X and Y , i.e., by the amount of information that Y contains
about X. The information contained in the variables is measured using a notion
of entropy. Multiple definitions of entropy exist. In this article, we rely on the
classical definition of Shannon entropy [45].

The mutual information of a channel depends on the prior probability dis-
tribution of secrets in X (e.g., if one secret is chosen with probability 1, no
additional information can be gained through the side channel). The channel
capacity [15] C(X;Y) is defined as the worst-case mutual information across
all prior distributions. In this article, we use channel capacity to quantify the
effectiveness of a countermeasure against software-based energy side channels.

2.2 Software-Based Energy Measurement

Energy (measured in J for joule) and power (measured in W for watt) are
well-defined physical concepts. They are related as follows: Energy E is the
aggregation of instantaneous power values over time, i.e., E =

∫ t1
t0
p(t)dt, where

p(t) is the instantaneous power consumption [17].

1: Input: (d, n), c
2: r ← 1
3: for i = 1 to i = bitLength(d) do
4: if d%2 == 1 then
5: r ← (r ∗ y)%n
6: end if
7: y ← (y ∗ y)%n
8: d← d >> 1
9: end for
10: return r%n

Fig. 1: Square-and-multiply modular exponentiation

4

We define the energy consumption of a software S as the energy consumed
by the CPU and the main memory during execution of S. Energy consumption
is caused, for example, by accessing data in the main memory or by the CPU
doing arithmetic calculations. Our definition is similar to [38]’s definition.

Software-based energy measurement allows a software to monitor the energy
consumption of the system through functionality provided by the hardware itself.
For example, the Power Capping framework (powercap) on Linux [1] exposes an
energy counter to userspace software.

Running Average Power Limit (Intel RAPL) is a set of energy sensors intro-
duced with Intel’s Sandy Bridge processor architecture [18]. While Intel RAPL’s
primary purpose is to enforce power consumption limits [19, Ch. 14], it also ex-
poses the energy consumption of the CPU through the model-specific register
(MSR) MSR_PKG_ENERGY_STATUS. This register is updated every millisec-
ond. The energy measurements provided by Intel RAPL are accurate [18].

Linux exposes Intel RAPL to userspace through the msr kernel module [28] and
powercap. The module msr provides access to MSRs through pseudo-files. For ex-
ample, the MSRs of the first CPU core can be accessed through /dev/cpu/0/msr.
Both, loading the module and accessing its pseudo-files, requires root privileges.
Unlike the pseudo-files for MSRs, powercap’s pseudo-file /sys/class/powercap/intel-
rapl/intel-rapl:0/energy_uj can be accessed by any user, even without root priv-
ileges. From this file, the user can obtain an energy consumption measurement
in the unit of µJ = 10−6J .

2.3 Distinguishing Experiments

In a distinguishing experiment, two distinct secret inputs are passed to a program
and a side channel output is repeatedly measured for each input. For instance,
Mantel and Starostin [33] use distinguishing experiments to show that a program
exhibits a timing-side-channel vulnerability.

Based on the empirical data obtained in a distinguishing experiment, different
statistical tools can be used to quantify the side-channel leakage of the program
under test. For a given attacker strategy, the success probability can be computed
based on hypothesis testing. Independent of a concrete attacker strategy, the
side-channel capacity C(X;Y) of the program can be estimated with a statistical
procedure (e.g, the one by Chatzikokolakis, Chothia, and Guha [12]).

A test of hypothesis (or short test) is a tool to investigate conformance of
a hypothesis with observations from an experiment [46, p. 64]. The hypothesis
to test is called the null hypothesis (H0). We denote the alternative hypothesis
by H1. There are two error cases in a test: (a) the test accepts H0 although H1

holds, or (b) the test refutes H0 although H0 holds. Case (a) is called a false
positive, Case (b) is called a false negative. The probabilities for a false positive
and a false negative are denoted by P (H0|H1) and P (H1|H0), respectively.

The binomial distribution (or Bernoulli distribution) is the probability dis-
tribution for the number of successes in n independent experiments [46, p. 112].
The probability that in n experiments, each featuring success probability p, r

5

successes are observed is given as follows:

Pn,p(r) =

(
r

n

)
prpn−r

Where
(
r
n

)
= n!

r!(n−r)! is the binomial coefficient. We write Pn,p(r ≤ X) for
the probability that at most X out of n experiments exhibit a success. This
probability is given by:

Pn,p(r ≤ X) =

X∑
i=0

Pn,p(i)

Conversely, the probability that more than X successes are observed in n exper-
iments is given by:

Pn,p(r > X) = 1− Pn,p(r ≤ X)

Chothia and Smirnov show in [13] how tests of hypothesis can be used to
distinguish the e-passport of a victim from e-passports of other people. Based
on a simple selection criterion, their distinguishing attack tests the hypothesis
that the passport under attack belongs to the victim (H0). Using P (H0|H1)
and P (H1|H0), Chothia and Smirnov calculate the number of observations an
attacker needs to distinguish passports with error rates below 1%.

2.4 Program Transformations for Side Channels

Multiple source-to-source program transformations were proposed for mitigating
timing side channels, including cross-copying [2], conditional assignment [37],
transactional branching [6], and unification [24]. The cross-copying technique
transforms a program such that alternative branches execute in constant time
whenever the choice of the branch might depend on secrets. Cross-copying pads
branches by adding copies of the statements in one branch to the end of the
respective other branch. Instead of the original statements, dummy statements
are used in the copies, i.e., statements that do not affect the program’s state,
but require the same execution time as the respective original statements.

The cross-copying technique was analytically verified to soundly enforce a
timing-sensitive noninterference-like property [2]. In addition, cross-copying’s ef-
fectiveness to mitigate timing side channels was evaluated experimentally. In [33],
an estimation of side-channel capacity based on experimental results confirmed
the effectiveness of cross-copying when applied to modular exponentiation.

2.5 RSA in Bouncy Castle

Bouncy Castle is a collection of cryptography implementations for Java, main-
tained by Legion of the Bouncy Castle Inc. [27]. It contains implementations for
various popular symmetric and asymmetric cryptography primitives. A provider
class allows the use of Bouncy Castle through the Java Cryptography Exten-
sion (JCE). In the form of Spongy Castle [42], Bouncy Castle is widely used

6

on Android, e.g., in the WhatsApp messenger [29]. Bouncy Castle’s popularity
makes side-channel weaknesses a serious security threat. Recently, Lipp, Gruss,
Spreitzer, Maurice, and Mangard have shown Bouncy Castle 1.5’s AES imple-
mentation is vulnerable to cache side-channel attacks [29].

Bouncy Castle contains implementations of various variants of the RSA asym-
metric encryption scheme. The RSA encryption and decryption functionality is
implemented in the Java class RSAEngine. RSAEngine can be used either directly
or as backend in cipher modes, such as OAEP [7] and PKCS1 [43]. An RSA key
can be generated using the class RSAKeyPairGenerator.

3 Attacker Models

In this section, we capture the capabilities of an attacker who can exploit software-
based energy side channels by an attacker model. More concretely, we introduce
three attacker models relevant for software-based energy side channels.

In each of the models, the attacker can execute an attack procedure on the
machine running the victim program, but the attacker cannot obtain the secret
directly. The attack procedure has standard capabilities, in particular, it can
query energy consumption information using a system API.

We define the following three attacker models, presented in decreasing order
of capabilities:

invasive An attacker under invasive can trigger victim program executions
at will. In addition, he can modify the victim program to add code
paths to measure the energy consumption of parts of the program.
He also has privileged access to the system, e.g., he can alter the
system configuration itself during run-time.

sequential An attacker under sequential can trigger victim program execu-
tions at will.

concurrent An attacker under concurrent is passive. In particular, he cannot
trigger victim program executions at will.

Attackers under invasive and sequential are active, i.e., they can trigger vic-
tim program executions at will such that they can obtain any number of ob-
servations. In contrast, concurrent can only passively observe executions of the
victim program. Thus, he is dependent on a third party triggering executions
of the victim program to obtain measurements. The attacker model invasive is
used as a reference point in our study. An attacker under this model can precisely
measure the energy consumption of a single function and thus identify whether
a function is vulnerable to an energy side channel.

We substantiate our attacker models in the context of the Linux operating
system. For all three attacker models, the attack procedure on Linux can read
pseudo-files in the /sys and /proc file systems. These file systems are standard
Linux file systems containing information about the system itself and currently
running processes. Through the /sys file system, an attacker can read power-
cap’s pseudo-files containing information about the energy consumption of the

7

system. An attacker under invasive is privileged by the possession of root per-
missions. This allows the attacker to load kernel modules and to modify system
configuration by writing into the /sys file system.

We will implement attack procedures for each of the attacker models in Sec-
tion 4 and use them to investigate software-based energy side channels in Sections
5 and 6.

4 Our Approach

The core of many side-channel attacks is to distinguish between secrets from a
restricted set (e.g., a set of secrets varying only in one bit or byte), based on
a collection of samples obtained through a side channel. Already Kocher’s [20]
timing attack in 1996 was based on bit-wise distinguishing between secret inputs.
Bernstein [8] distinguished between AES keys on the byte-level. More recently,
AlFardan and Paterson [3] mounted a distinguishing attack on implementations
of the TLS record protocol. Their attack distinguishes between two plaintexts by
the time taken to decryption them. Furthermore, they describe an attack that
recovers entire plaintexts using byte-wise distinguishing based on running times.

Using distinguishing experiments [33], one can detect weaknesses in imple-
mentations that allow to distinguish between two secret inputs, e.g., as a basic
step in a side-channel attack. We follow the approach of distinguishing experi-
ments to assess the vulnerability of cryptographic implementations. We define a
general procedure for distinguishing experiments, because no explicit definition
existed so far. One of the steps in our procedure for distinguishing experiments,
namely the sample-collection step, depends on the attacker model. We imple-
ment this phase for all three attacker models defined in Section 3.

4.1 Procedure for Distinguishing Experiments

An implementation imp is assessed with respect to a particular security concern,
namely the leakage of a secret input s to an attacker under an attacker model a.
For instance, imp could be an RSA implementation, s could be the secret RSA
key, and a could be the model sequential of an energy-side-channel attacker.
The assessment consists of four steps, visualized in Figure 2: input generation,
sample collection, result computation, and result evaluation.

Input
Generation

Sample
Collection

Result
Computation

Result
Evaluation

Fig. 2: Procedure for a distinguishing experiment

In the first step, input generation, two input vectors to the implementation
imp are generated. The input vectors differ only in the secret input s. All val-
ues in the input vectors must be within the spectrum of valid input data. For

8

instance, to assess the leakage of a secret RSA key, two valid secret RSA keys
are generated randomly.

In the sample collection step, the implementation imp is run on the two input
vectors that were generated in the previous step. For both runs, the observation
made under the attacker model a is recorded. This step is repeated many times
to obtain a collection of observations for each input.

Next, in the result computation step, the arithmetic means of the two collec-
tions of observations are computed and the collections are plotted as histograms.
That is, for each collection, the frequency with which each observation occurs in
the collection is computed and visualized.

The last step is the result evaluation. From the difference between the mean
observations for the two inputs, one can already assess whether an attacker
would be able to distinguish between the two inputs. Furthermore, the degree
of overlap between the histograms for the two outputs allows one to assess how
difficult the distinction would be.

Based on the means and histograms obtained with a distinguishing exper-
iment, one can detect weaknesses in implementations (if the means and his-
tograms are clearly distinguishable). This allows a proactive assessment with
which weaknesses can be identified early, before they are exploited by concrete
attacks. In addition to such qualitative results, quantitative results can be ob-
tained through a statistical test, as we describe in Section 6.

4.2 Sample Collection

To carry out distinguishing experiments against software-based energy side chan-
nels, we implement the sample collection step for each of our the attacker models
sequential , concurrent , and invasive.

Sample Collection under sequential Our measurement procedure for energy
samples under sequential is shown in Figure 3 as pseudocode. For experimental
evaluation, we implemented the procedure in Python.

Firstly (Line 2), the attacker reads the energy-consumption counter through
powercap. To this end, the function readCounter is called. Secondly, the
attacker waits busily for the first change to the energy-consumption counter
(Lines 3 – 5). Once the counter has been refreshed, the attacker invokes an ex-
ecution of the victim program (Line 6) using the invocation command supplied
as input to the attack procedure. After executing the victim program, the at-
tacker queries the energy-consumption counter again (Line 7). The difference
between the values of the counter before and after the victim’s execution is the
attacker’s sample. If the sample is negative, that is, if there was a wraparound of
the counter, the sample is discarded (Line 9). Otherwise, the sample is returned.

Sample Collection under concurrent Unlike attackers under sequential , an
attacker under concurrent cannot actively trigger executions of the victim pro-
gram. Hence, an attacker under concurrent needs to identify when a decryption

9

1: function readCounter
2: contents ← read /sys/class/powercap/

intel-rapl/intel-rapl:0/energy_uj
3: return toInteger(contents)
4: end function

1: Parameters: cmdLine
2: Einstant ← readCounter()
3: repeat . Align beginning of measurement with register update
4: Ebegin ← readCounter()
5: until Ebegin 6= Einstant

6: invoke(cmdLine) . Execute victim program
7: Eend ← readCounter()
8: if Eend < Ebegin then
9: discard measurement . A wraparound has occurred
10: else
11: return Eend − Ebegin

12: end if

Fig. 3: Measurement procedure under sequential

operation takes place. For our analysis, we model the step as follows: The at-
tacker waits for execution of the victim program. When the program starts its
execution, the attacker obtains the current energy consumption counter, waits
for the program to terminate, and obtains the energy consumption counter. The
difference between both values is the energy consumption of the victim program.

We use Python to implement the measurement procedure. Pseudocode for
the procedure is shown in Figure 4. The attacker waits until the victim program
is executed (Lines 2 – 17). He detects the invocation of a program by monitoring
the /proc filesystem. He recognizes the victim program by the command that was
used to invoke it (Line 11). Once the victim program is executed, the attacker
measures the energy consumption (Lines 19 – 27).

Sample Collection under invasive Under invasive, an attacker can modify
the source code of the program under attack. We consider an attack procedure
where an attacker under invasive encapsulates a routine in the victim program
to log its energy consumption. To measure the energy consumption, the attacker
accesses the machine-specific registers exposed through the msr kernel module.

We implement a measurement functionality for energy consumption of the
CPU through Intel RAPL in C, using the msr kernel module. We use this measure-
ment functionality in Java through a Java Native Interface module. Pseudocode
for the measurement under invasive is shown in Figure 5.

The victim program is modified such that it calls NativeAlignedMSR.start
before the victim routine and NativeAlignedMSR.stop after the victim routine.
The attacker collects samples by calling NativeAlignedMSR.getComsumption.
To obtain precise measurements, we follow the alignment approach from [18]. On
program start up, we monitor 1000 Intel RAPL register updates to estimate the

10

1: Parameters: victimComm . the command name of the victim program
2: function waitForVictim
3: while true do
4: lastpid← fifth field of /proc/loadavg
5: repeat
6: newlastpid← fifth field of /proc/loadavg
7: until lastpid 6= newlastpid
8: pid← lastpid
9: while pid ≤ newlastpid do
10: commpid ← contents of /proc/pid/comm
11: if commpid = victimComm then
12: return pid
13: end if
14: pid← pid+ 1
15: end while
16: end while
17: end function
18: pid← waitForVictim()
19: Ebegin ← readCounter()
20: while /proc/pid/ exists do
21: do nothing
22: end while
23: Eend ← readCounter()
24: if Eend < Ebegin then
25: discard measurement . A wraparound has occurred
26: else
27: return Eend − Ebegin

28: end if

Fig. 4: Measurement procedure under concurrent

the power consumption of the system. We use the estimated power consumption
to adjust for the energy consumption while waiting for register updates.

5 Qualitative Results on Bouncy Castle RSA

We investigate the consequences of software-based energy measurement on soft-
ware security at the example of Intel RAPL and Bouncy Castle RSA. Using a
distinguishing experiment, we identify that running Bouncy Castle RSA on a
system with Intel RAPL gives rise to a weakness. The energy consumption of
the decryption operation allows to distinguish between secret RSA keys. In the
following, we describe the setup and results of our experiment in detail.

5.1 Experimental Setup

Assessed Implementation To assess the vulnerability of Bouncy Castle RSA,
we implement a Java program RSA that decrypts an RSA ciphertext using

11

1: function NativeAlignedMSR.start
2: eBefore← value of MSR counter upon next update
3: end function
4: function NativeAlignedMSR.stop
5: eAfter ← value of MSR counter upon next update
6: end function
7: function NativeAlignedMSR.getComsumption
8: return eAfter - eBefore
9: end function

Fig. 5: Measurement procedure under invasive

1: Input: (d, n), ct
2: rsa← New RSAEngine()
3: rsa.init(false, (d, n))
4: result← rsa.processBlock(ct, 0, ct.length)
5: return result

Fig. 6: RSA decryption

Bouncy Castle 1.53. It takes a secret key and a ciphertext as input. It decrypts
the ciphertext, using the secret key, and then returns the resulting plaintext.

Figure 6 lists the pseudo-code of the program. Line 4 decrypts the ciphertext
ct using the secret key (d, n). processBlock is a method from Bouncy Castle’s
RSAEngine class, which implements the RSA decryption.

We use our implementation for distinguishing experiments with respect to
sequential and concurrent . As described in Section 4.2, attackers under invasive
encapsulate the victim routine. To account for such encapsulation, we implement
an additional wrapper for Bouncy Castle RSA.

The wrapper for Bouncy Castle RSA under invasive is shown as pseudocode
in Figure 7. The code inserted by an attacker under invasive is represented by
Line 3, Line 5, and Line 7. Line 5 starts the attacker’s measurement procedure.
Line 7 stops the attacker’s measurement procedure.

Machine Configuration We conduct our experiments on a Lenovo ThinkCen-
tre M93p featuring one RAPL-capable Intel i5-4590 CPU @ 3.30GHz with 4GB
of RAM. The machine runs Ubuntu 14.10 with a Linux kernel version 3.16.0-44-
generic from Ubuntu’s repository. The programs are executed using an Open-
JDK 7 64-bit server Java Virtual Machine version 7u79-2.5.5-0ubuntu0.14.10.2
from Ubuntu’s repository. To simulate a server machine that is shared between
attacker and victim, we disable the X-server.

In the distinguishing experiments under invasive, we account for the addi-
tional root privileges of an attacker under this model. To this end, we disable all
but the first CPU core, as a user with root permissions would do to reduce the
noise in his energy-consumption measurements.

12

1: Input: (d, n), ct
2: rsa← New RSAEngine()
3: measurement← New NativeAlignedMSR()
4: rsa.init(false, (d, n))
5: measurement.start()
6: result← rsa.processBlock(ct, 0, ct.length)
7: measurement.stop()
8: print measurement.getConsumption()
9: return result

Fig. 7: Modified RSA decryption

Parameters and Sampling We generate two RSA keys k1 and k2 to supply
as input to our RSA decryption program during our distinguishing experiment.
First, we randomly select two 1536 bit primes p and q to calculate the 3072 bit
modulus n = p ∗ q shared by our keys. Then, we randomly select a ciphertext
c < n. Finally, to select private exponents for the two keys k1 and k2, we exploit
that d ∗ e ≡ 1 (mod (p − 1) ∗ (q − 1)) must hold for valid RSA keys [41]. For
k1, we randomly generate a public exponent ek1 and calculate the corresponding
private exponent dk1. For k2, we fix the public exponent to ek2 = 65 537 and
calculate the corresponding private exponent dk2. The secret exponents that we
obtain for k1 and k2 have Hamming weight 1460 and 1514, respectively.

In our distinguishing experiments, we utilize our measurement procedures
to collect 100 000 samples per secret key under the attacker models sequential
and concurrent . For the attacker model concurrent , under which an attacker
cannot trigger executions of the victim program himself, we invoke the victim
program after random delays between 100ms and 1000ms. Under invasive, we
collect 60 000 samples per secret key (note that, for invasive a sample takes
approximately 2.5s instead of at most 1.3s for concurrent).

We reject outliers that lie further than six median absolute deviations from
the median. For k1, we reject 1.24% of the samples under sequential , 10.78% of
the samples under concurrent , and 2.22% of the samples under invasive. For k2,
we reject 1.11% of the samples under sequential , 11.01% of the samples under
concurrent , and 2.28% of the samples under invasive. We plot the collected
samples for each key and attacker model as histograms.

5.2 Results for sequential

The samples collected in our distinguishing experiment under sequential are
depicted in Figure 8. One histogram of energy-consumption samples is given per
input. The histograms are colored based on the input: The blue (left) histogram
corresponds to the samples for k1 with Hamming weight 1460, and the red (right)
histogram corresponds to the samples for k2 with Hamming weight 1514.

The estimated mean energy consumption for k1 is 5.07J , and for k2 the
estimated mean energy consumption is 5.14J . The peaks of the histograms and
the mean energy consumptions for the inputs are clearly distinct.

13

4.9 5.0 5.1 5.2 5.3 5.4
Energy Consumption (in J)

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

Hamming weight 1460
Hamming weight 1514

Fig. 8: Results for sequential

Based on the histograms, an attacker under the model sequential can distin-
guish between the two secret RSA keys. Hence, there is a weakness in Bouncy
Castle RSA in the presence of the Intel RAPL feature.

5.3 Results for concurrent

Figure 9 shows the histograms of the samples per key under concurrent . Again,
the blue (left) histogram corresponds to k1 (Hamming weight 1460) and the red
(right) histogram corresponds to k2 (Hamming weight 1514).

The mean energy consumptions are 7.20J and 7.32J for the keys with Ham-
ming weights 1460 and 1514, respectively. The peaks of the two histograms are
clearly distinct. Interestingly, the overlap of the histograms is even a bit smaller
compared to the overlap of the histograms under sequential . We will get back to
this peculiarity in Section 6.

The mean energy consumptions and the histograms for the two RSA keys
are clearly distinct. This means that the weakness we detected in Bouncy Castle
RSA is even exposed to the weaker attacker model concurrent , under which an
attacker only passively observes an RSA decryption.

Remark 1. Note that, the energy consumption measured under concurrent in-
creased significantly by 2.13J and 2.18J , respectively, compared the observations
under sequential . This increase is due to the attacker actively monitoring the
/proc filesystem to identify termination of the RSA process.

14

7.0 7.2 7.4 7.6
Energy Consumption (in J)

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

Hamming weight 1460
Hamming weight 1514

Fig. 9: Results for concurrent

5.4 Results for invasive

Figure 10 shows the results of our experiment under invasive. Again, the blue
(left) histogram shows the energy-consumption samples for k1, and the red
(right) histogram shows the energy-consumption samples for k2.

The mean energy consumption for the keys k1 and k2 is 1.84J and 1.91J ,
respectively. The peaks of the two histograms are clearly distinct.

The clearly distinct peaks and distinct mean values imply that an attacker
can distinguish the keys based on the energy-consumption characteristics of the
decryption that they induce. The degree to which the histograms and means
differ is similar to the model under sequential . That is, the additional attacker
capabilities of invasive do not significantly amplify the weakness.

Remark 2. Note that, the energy consumption measured under invasive is no-
ticeably lower than the consumption measured under sequential and concurrent .
This is due to the different experimental setup we used with sequential and con-
current . In the setup used for sequential and concurrent , the additional CPU
cores consume additional energy. Furthermore, sequential and concurrent start
and stop their measurement outside the victim program, i.e., they also measure
the energy consumed by the wrapper around RSA.

Overall, we identify a weakness in Bouncy Castle RSA that is exposed across
the attacker models sequential , concurrent , and invasive. For all three mod-
els, the mean energy consumption of the decryption routine differs significantly
between the two RSA keys that we consider.

15

1.6 1.7 1.8 1.9 2.0 2.1 2.2
Energy Consumption (in J)

0

200

400

600

800

1000

1200

Fr
eq

ue
nc

y

Hamming weight 1460
Hamming weight 1514

Fig. 10: Results for invasive

Based on the histograms from our distinguishing experiments, an attacker
is able to clearly distinguish between the two secret keys if he collects enough
samples. In the following section, we quantify exactly how many samples an
attacker needs in order to be successful.

6 Quantification of the Weakness

The results of our distinguishing experiments show that it is intuitively possible
that an attacker can distinguish RSA keys by exploiting a weakness in Bouncy
Castle RSA via Intel RAPL. We further investigate the likelihood of an attacker to
distinguish keys. To this end, we devise a test procedure that allows an attacker
to guess which of the two RSA key is used during decryption. Based on the false
positive and false negative rates of the test procedure, we compute how many
measurements an attacker requires to correctly guess the key in 99% of all cases.

6.1 A Distinguishing Test

Side-channel attacks, e.g., [8, 13], can be mounted in two phases. In the first
phase, the attacker collects a set of offline observations through the side channel
as reference point, possibly on a different machine with the same software and
hardware setup as the machine he shares with the victim. During the second
phase, the attacker collects a set of online observations on the machine he shares
with the victim. By relating his online side-channel observations with the offline
observations, the attacker deduces information about the secret being processed.

16

0 2 4 6 8 10
Energy Consumption (in J)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ili

ty

k1
k2
dp
P(k1|k2)
P(k2|k1)

Fig. 11: Example of a distinguishing test

For our distinguishing experiment setting, the offline observations are the
collected energy-consumption characteristics of the RSA decryption operation
for both, k1 and k2. The online observations would be side-channel observations
collected to identify which key is used during a system run. To guess which
key the system is using, the attacker compares how likely the learned energy-
consumption characteristics allow to explain the observations. We model the
guess by a statistical test to distinguish between the keys.

The attacker’s distinguishing test works as follows: Given two keys, k1 and
k2, with mean energy consumptions of mk1 and mk2, where mk1 < mk2, the
attacker determines a distinguishing point dp using the following formula:

dp =
mk1 +mk2

2

If the attacker observes an energy consumption less than dp, the attacker guesses
k1 was used. In case the observed energy consumption is higher than or equal
to dp, the attacker guesses k2 was used. A false positive is: k2 was used for
decryption, but the attacker guesses k1 was used. A false negative is: k1 was
used for decryption, but the attacker guesses k2 was used.

A visualization of an example for the test is given in Figure 11. The distribu-
tion of energy consumption values for k1 and k2 each follow a normal distribu-
tion. More concretely, for k1 the distribution follows N (4.5J, 0.81), while for k2
the distribution follows N (5.5J, 0.49). Thus, the decision point is at 5J . The area
under the curve k2 to the left of dp corresponds to the false positive probability
of the test. In this example, the probability is P (k1|k2) = 23.75%. Conversely,

17

the area under the curve k1 to the right of dp corresponds to the false negative
probability of the test. The probability for our example is P (k2|k1) = 28.93%.

The attacker can use majority voting to increase his chances of guessing the
correct key. For this, he observes multiple decryption operations and uses his
test on each observation. Based on the individual guesses, he chooses the key on
which the majority of guesses agreed. Let n be the number of observations the
attacker makes. Then the false positive probability is given as:

pnP (k1|k2) = Pn,P (k1|k2)(r > b
n

2
c)

and the false negative probability is given by:

pnP (k2|k1) = Pn,P (k2|k1)(r > b
n

2
c)

Based on P (k1|k2) and P (k2|k1), one can determine the number n of observa-
tions needed for the attacker in order to distinguish between the keys with 99%
success rate, i.e., with pnP (k1|k2) < 1% and pnP (k2|k1) < 1%.

In our example, which is visualized in Figure 11, majority voting allows
to determine the number of observations as follows. Based on the false posi-
tive probability P (k1|k2) = 23.75%, we calculate that an attacker requires 17
observations to achieve a false positive rate below 1% in the majority voting
case. More concretely, the majority voting features a false positive probability of
p17P (k1|k2) = 0.87%. Conversely, the number of observations required to obtain a
false negative rate below 1% for P (k2|k1) = 28.93% is 29. For 29 observations,
the false negative probability for majority voting is p29P (k2|k1) = 0.81%. We con-
clude that the attacker requires 29 observations to distinguish between the two
keys successfully in 99% of all cases.

6.2 Quantitative Results

n 1 observ. 7 observ. 13 observ. 17 observ. 19 observ. 25 observ.

invasive pnP (k1|k2) 27.54% 9.64% 4.05% 2.35% 1.80% 0.82%

pnP (k2|k1) 23.48% 5.74% 1.73% 0.81% 0.55% 0.18%

sequential pnP (k1|k2) 24.75% 6.83% 2.30% 1.16% 0.83% 0.31%

pnP (k2|k1) 19.77% 3.20% 0.66% 0.24% 0.14% 0.03%

concurrent pnP (k1|k2) 13.69% 0.87% 0.07% 0.01% 0.007% 0.0006%

pnP (k2|k1) 13.39% 0.80% 0.06% 0.01% 0.005% 0.0005%

Table 1: False-positive and false-negative rates for attackers

For a quantitative evaluation of the weakness in Bouncy Castle RSA, we need
to know the false positive and false negative probabilities of the distinguishing

18

test. We estimate the probabilities based on the energy consumption charac-
teristics collected offline by the attacker on his reference system. To estimate
P (k1|k2), we count the number of offline observations below dp of decryption
samples with k2 and divide them by the total number of offline observations for
k2. Conversely, to estimate the false negative probability we count the number
of offline observations above dp of decryption samples of k1 and divide them by
the total number of offline observations for k1. Formally, the probabilities can be
estimated as follows. Let Ok1 be the set of all offline observations for decryption
operations with k1 and let Ok2 be the set of all offline observations for k2.

P (k1|k2) = {x|x ∈ Ok2 ∧ x < dp}
|Ok2|

P (k2|k1) = {x|x ∈ Ok1 ∧ x ≥ dp}
|Ok1|

We evaluate the weakness for all three attacker models, i.e., invasive, se-
quential , and concurrent , using our distinguishing test. For invasive, the distin-
guishing point is at dp = 1.88J , due to the means for k1 and k2 being 1.84J and
1.91J , respectively (see Section 5.4). For sequential , the distinguishing point is at
dp = 5.10J , due to the means for k1 and k2 being 5.07J and 5.14J , respectively
(see Section 5.2). For concurrent , the distinguishing point is at dp = 7.26J , due
to the means for k1 and k2 being 7.20J and 7.32J , respectively (see Section 5.3).

Table 1 lists the false positive and false negative probabilities pnP (k1|k2) and
pnP (k1|k2) that result from given amounts n of online observations under the three
attacker models. Note that, P (k1|k2) = p1P (k1|k2) and P (k2|k1) = p1P (k2|k1). In
addition to p1P (k1|k2) and p1P (k2|k1), we only list the cases in which one of the
probabilities falls below 1% for the first time. We highlight the first value below
1% for each of the probabilities by printing it in bold face.

The false positives for 1 observation range from 13.69% for concurrent to
27.54% for invasive. The false negatives for 1 observation range from 13.39%
for concurrent to 23.48% for invasive. Already for 7 online observations, the
false positive and false negative probabilities fall below 1% for concurrent . At
13 observations, the false negative probability for sequential falls below 1%.
The false negative probability of invasive falls below 1% at 17 observations. For
sequential the false positive probability falls below 1% at 19 observations. At 25
observations the false positive probability for invasive falls below 1%.

The distinguishing tests show that, in the worst case, only 25 observations are
required to distinguish key k1 from key k2 in 99% of all cases. In this case of 25
observations, concurrent ’s test exhibits false negative and false positive probabil-
ities below 0.001% each. This means that, given only 25 decryption observations,
concurrent can distinguish both keys in 99.999% of all cases. Moreover, to distin-
guish both keys in 99% of all cases, concurrent requires only 7 observations. The
finding that concurrent , our weakest attacker model, can distinguish both keys
with high likelihood at 7 observations and, even worse, with near certainty at 25
observations, gives us reason to classify the weakness we discovered as severe.

19

Comparing the distinguishing tests for the attackers modeled by invasive,
sequential , and concurrent gives the surprising result that concurrent requires
the least amount of observations to distinguish both keys in 99% of the cases.
An attacker under concurrent only requires 7 observations to distinguish both
keys, i.e., less than a third of the observations an attacker under invasive needs
(n = 25). Intuitively, an attacker under invasive should be able to distinguish
the keys more easily compared to sequential and concurrent , due to its ability
to carry out more precise measurements.

After investigating the histograms from Section 5 again, our explanation why
an attacker under concurrent can distinguish keys more easily than an attacker
under invasive is as follows. For all attacker our models, invasive, sequential , and
concurrent , the overlap between both histograms seems to be roughly 0.25J wide.
The estimated means differ by 0.07J , 0.07J , and 0.12J , respectively. Together
with visual inspection, we identify that, while the overlapping area remains sim-
ilar with decreasing attacker capabilities, the peaks move further apart. Thus,
the likelihood to observe an energy consumption value from the overlapping area
decreases. As a result, for concurrent , the likelihood that a value between both
peaks is observed is the lowest across the attacker models. This means that an
attacker under concurrent has the highest likelihood to distinguish between the
two RSA keys, which is also shown by our quantitative results.

7 A Security Evaluation of Cross-Copying

As we have shown in the previous sections, software-based energy side channels
are a serious threat. Such side channels could be avoided by restricting access to
software-based energy management. Unfortunately, such a restriction would limit
the use of features like Intel RAPL, e.g., in green IT. On the other hand, software-
level countermeasures would allow to use software-based energy measurement
while mitigating the leakage through energy side channels.

One candidate software-level countermeasure is cross-copying [2] – originally
a countermeasure against timing side channels. Cross-copying ensures that all
secret-dependent branches execute equivalent statements. Intuitively, execution
of equivalent statements should consume equivalent amounts of energy. Thus,
we anticipate that cross-copying mitigates software-based energy side channels.

In the following, we evaluate the effectiveness of cross-copying to mitigate
software-based energy side channels, based on information theory. We do not aim
to remove the weakness in Bouncy Castle RSA. Rather, we are interested whether
cross-copying can, in principle, protect against weaknesses due to software-based
energy side channels.

7.1 Case Study

To investigate whether cross-copying can help to mitigate leakage through software-
based energy side channels, we quantify its effectiveness on a small example pro-
gram. Motivated by the weakness that we detected in the Bouncy Castle RSA

20

1: Input: (d, n), c
2: r ← 1
3: for i = 1 to i = bitLength(d) do
4: if d%2 == 1 then
5: r ← (r ∗ y)%n
6: else
7: rdummy ← (rdummy ∗ y)%n
8: end if
9: y ← (y ∗ y)%n
10: d← d >> 1
11: end for
12: return r%n

Fig. 12: Cross-copied modular exponentiation

implementation, we base the example on RSA. More concretely, we use a naive
implementation of square-and-multiply modular exponentiation (Figure 1).

We first check that there is a concern for software-based energy side channel
leakage already in this simple implementation. To this end, we approximate the
channel capacity for this example. In the next step, we check whether cross-
copying mitigates this threat. To this end, we approximate the channel capacity
of a cross-copied version of the example program. We evaluate the effectiveness
of the countermeasure by the reduction in channel capacity that it causes.

The cross-copied example program is given in Figure 12. As visible in the
figure, cross-copying inserts a dummy assignment (Line 7) into the else-branch of
the secret-dependent branching. The branches now contain equivalent statements
whose execution is anticipated to consume an equivalent amount of energy.

7.2 Experimental Setup

For brevity, we call the naive square-and-multiply implementation baseline and
the cross-copied implementation cross-copied. For experimental evaluation, we
use [33]’s Java implementation of baseline and cross-copied. We adapt the imple-
mentations to log the energy consumption measured through powercap. To avoid
zero energy consumption results due to execution times below 1ms, we repeat
the computation 1.31× 105 times. This results in approximately 100 updates of
the energy-consumption counter for a single execution of the baseline version.
We estimate the channel capacity using an iterative Blahut-Arimoto algorithm
[5,9] based on the samples collected during the distinguishing experiment.

We conduct distinguishing experiments in a system setting similar to an
attacker under invasive in Section 5.1. In addition, we disable the network to
reduce noise in the measurements and we disable the just-in-time (JIT) compiler
of the Java VM to prevent optimizations from interfering with our results. We
use two input vectors that share n = 4096 and c = 1234 567 890. One secret
exponent with Hamming weight 5 (d = 2080 374 784) and one secret exponent

21

Baseline Cross-Copied

mean(E)(nJ)
Input 1 Input 2 Input 1 Input 2

15370.07± 3.18 18925.46± 4.00 20372.21± 4.48 21040.05± 3.97

C(X;Y) 0.9922± 0.0 0.9171± 0.0097

Table 2: Statistical results for modular exponentiation

with Hamming weight 25 (d = 33 554 431) are used as the first and second value
of the secret input, respectively.

We follow [33] and collect 10 000 samples per input. We reject outliers that
lie further than six median absolute deviations from the median. In the baseline
version, we reject 1.32% and 1.07% of all samples for input one and input two,
respectively. For cross-copied, 1.77% and 2.73% of all samples are rejected for
inputs one and two, respectively.

7.3 Experimental Results

Table 2 presents the results of our experiments. The mean energy-consumptions
for baseline and cross-copied for each input and the channel capacities for base-
line and cross-copied are given with 95% confidence intervals.

The mean energy consumption for the first input to baseline is roughly
15 373.73nJ . The mean energy consumption for the second input to baseline
is roughly 18 934.13nJ . These means are clearly distinguishable. Hence, there is
a clear security concern already in this simple example.

The channel capacity quantifies the threat to the implementation. Since we
consider a scenario in which the attacker tries to distinguish between two inputs
to the implementation, the secret is 1 bit, namely the choice of the input. Since
C(X;Y) is approximately 0.9922 bits/symbol, one attacker observation reveals
almost the entire secret under the worst-case prior distribution of inputs.

We investigate the results for cross-copied. Here, the mean energy consump-
tions for the two inputs are roughly 20 372.21nJ and 21 040.05nJ , respectively.
Intuitively, these means are still clearly distinguishable.

The quantification of the security concern for the cross-copied version con-
firms that the concern is still substantial. The channel capacity is approximately
0.9171 bits/symbol. Cross-copied can still leak 91% of the secret under the worst-
case prior input distribution. This shows that [33]’s cross-copying implementa-
tion does not mitigate the software-based energy side channel significantly.

We can only speculate why cross-copying is not effective against the energy
side channel in our experiments. The difference of data dependencies introduced
by the branches might be responsible. In the else branch (Figure 12 Line 7), the
result is written to rdummy instead of r. This might cause a subtle difference in
energy consumption, for example, due to different patterns of pipeline stalling.
In the future, we want to conduct further experiments to test this hypothesis.

22

8 Related Work

8.1 Power-Consumption Side Channels

Power-consumption side channels are exploited, e.g., by the techniques Simple
Power Analysis (SPA) and Differential Power Analysis (DPA). These techniques
were first introduced by Kocher, Jaffe, and Jun in 1999 by attacks on smartcards
implementing the DES cryptosystem [21]. In both techniques, traces of the power
consumption of a circuit are measured and analyzed. For SPA, the traces are
directly interpreted, and can lead to revealing the secret key of a device during
cryptographic computations [21, 22]. DPA is a statistical method to identify
correlations between data processed and power consumption [21,22]. Variations
of power analysis have been used in attacks on implementations of cryptographic
primitives, e.g., of DES [21, 26, 44], of RSA [21, 22, 34, 39], and of AES [22,
31, 40]. All these attacks obtain traces of a device’s power consumption from
measurements with dedicated hardware.

Recently, power-consumption side channels were exploited without dedicated
hardware [35, 48]. We briefly give an overview on Michalevsky, Schulman, Aru-
mugam, Boneh, and Nakibly’s work on tracking Android devices through power
analysis [35]. They measure the power consumption of a device using its battery
monitoring unit. By the measured power consumption, they can identify known
routes, track users in real-time, and identify new routes.

Our work on software-based energy side channels differs from the previously
described work on power analysis in the two following aspects.

(a) We investigate a fundamentally weaker attacker model. Our attacker is
only able to measure the energy consumption, which is the aggregate of instan-
taneous power consumption. As a result, the observations required for an attack
through software-based energy side channels are more coarse-grained.

(b) On the technical side, we use software-based measurement techniques
available on machines without battery, e.g., on desktop and server machines.
Software-based techniques allow an attacker to conduct his attack without dedi-
cated hardware and without physical access to the device under attack. Thus, the
observations required to exploit software-based energy side channels are easier
to obtain than power traces and might be obtainable remotely in the cloud.

Overall, we think that software-based energy side channels are an interesting
target for future security research because they are based on more coarse-grained
observations that are easier to obtain.

8.2 Quantitative Side-Channel Analysis

Side channels have been the focus of many research projects since their first
appearance in Kocher’s work in 1996 [20]. A multitude of work focuses on ex-
ploiting side channels, e.g., [3, 4, 8, 10, 11, 20, 29, 49]. In addition, analysis of side
channels using information-theoretic methods has become an area of focus. Köpf
and Basin propose a model to analyze adaptive side-channel attacks using in-
formation theory [23]. More concretely, they analyze the attacker’s uncertainty

23

of a secret in respect to the number of side-channel measurements the attacker
obtained. CacheAudit [16] by Doychev, Feld, Köpf, Mauborgne, and Reineke is
a tool employing information theory to give upper bounds of information leak-
age through cache side channels in x86 binaries. Other work on analysis of side
channels using information theory includes [25,30,32,47].

The mentioned works are foremost of analytic nature. On the empirical anal-
ysis of side channels, we are aware of only a few works, e.g., [14,33]. Mantel and
Starostin evaluate the practical reduction of program transformations to miti-
gate timing side channels [33]. For their evaluation, they consider the capacity
of the timing side channel in a program. They introduce the idea of distinguish-
ing experiments to obtain experimental results on the capacity of timing side
channels in benchmark programs.

We apply [33]’s concept of distinguishing experiments to demonstrate that
software-based energy side channels exist. Following [33]’s approach, we use the
channel capacity of a software-based energy side channel for evaluation of the
effects of cross-copying on the software-based energy side channel. In summary,
we build on [33]’s techniques, but apply them to a novel kind of side channel.

Our distinguishing test to quantitatively evaluate the weakness in Bouncy
Castle RSA is a variant of [13]’s test to distinguish e-passports. Distinguishing
e-passports is done through sending a random message and a replayed message
to a passport to obtain the difference in response times. Using a normal distri-
bution as model of response times and a manually selected distinguishing point,
Chothia and Smirnov calculate the number of observations needed to distin-
guish passports in 98% of all cases. We transfer the test to our setting. Unlike
Chothia and Smirnov, we estimate error probabilities based on offline samples
alone, because our observations do not follow a normal distribution.

9 Conclusion

Software-based energy measurement features facilitate the optimization of en-
ergy consumption, which is crucial in datacenters. We showed, at the example of
Intel RAPL and Bouncy Castle RSA, that these important features also introduce
a security issue. Based on only 25 energy samples measured with Intel RAPL, an
attacker can distinguish between two RSA keys with 99% success probability.

To counter software-based energy side channels, one could deny untrusted
applications access to measurement features. This countermeasure would ex-
clude a large fraction of programs from the optimization of energy consumption.
Hence, more fine-grained countermeasures against this vulnerability are desir-
able. We have investigated the effectiveness of cross-copying, which is a technique
for mitigating timing side channels, as a countermeasure against software-based
energy side channels and showed that it does not qualify as a general solution.
Therefore, it makes sense to look for alternative, more effective countermeasures
against software-based energy side channels.

Overall, the challenge is to obtain flexible solutions for energy savings and
reliable security guarantees in combination. We have shown that achieving this

24

combination is not straightforward, because software-based energy side channels
are a serious security issue. Naturally, our study is only a first step and further
investigation of software-based energy side channels is needed.

Acknowledgements We thank Artem Starostin and Ximeng Li for helpful sug-
gestions, respectively, in the initial and final phase of our research project. This
work has been funded by the DFG as part of the project Secure Refinement of
Cryptographic Algorithms (E3) within the CRC 1119 CROSSING.

References

[1] Power Capping Framework. https://www.kernel.org/doc/Documentation/
power/powercap/powercap.txt, accessed 2017-04-11

[2] Agat, J.: Transforming out timing leaks. In: POPL 2000, Proceedings of the 27th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Boston, Massachusetts, USA. pp. 40–53. ACM (2000)

[3] AlFardan, N.J., Paterson, K.G.: Lucky thirteen: Breaking the TLS and DTLS
record protocols. In: 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA. pp. 526–540 (2013)

[4] Andrysco, M., Kohlbrenner, D., Mowery, K., Jhala, R., Lerner, S., Shacham, H.:
On subnormal floating point and abnormal timing. In: 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA. pp. 623–639 (2015)

[5] Arimoto, S.: An algorithm for computing the capacity of arbitrary discrete mem-
oryless channels. IEEE Trans. Information Theory 18(1), 14–20 (1972)

[6] Barthe, G., Rezk, T., Warnier, M.: Preventing timing leaks through transactional
branching instructions. Electr. Notes Theor. Comput. Sci. 153(2), 33–55 (2006)

[7] Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: Santis, A.D. (ed.)
Advances in Cryptology - EUROCRYPT ’94, Workshop on the Theory and Ap-
plication of Cryptographic Techniques, Perugia, Italy, Proceedings. Lecture Notes
in Computer Science, vol. 950, pp. 92–111. Springer (1994)

[8] Bernstein, D.J.: Cache-timing attacks on aes (2005)
[9] Blahut, R.E.: Computation of channel capacity and rate-distortion functions.

IEEE Trans. Information Theory 18(4), 460–473 (1972)
[10] Bortz, A., Boneh, D.: Exposing private information by timing web applications.

In: Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.) Pro-
ceedings of the 16th International Conference on World Wide Web, WWW 2007,
Banff, Alberta, Canada. pp. 621–628. ACM (2007)

[11] Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: Atluri, V.,
Díaz, C. (eds.) Computer Security - ESORICS 2011 - 16th European Symposium
on Research in Computer Security, Leuven, Belgium. Proceedings. Lecture Notes
in Computer Science, vol. 6879, pp. 355–371. Springer (2011)

[12] Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical measurement of informa-
tion leakage. In: Esparza, J., Majumdar, R. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems, 16th International Conference, TACAS
2010, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2010, Paphos, Cyprus. Proceedings. Lecture Notes in Computer
Science, vol. 6015, pp. 390–404. Springer (2010)

25

https://www.kernel.org/doc/Documentation/power/powercap/powercap.txt
https://www.kernel.org/doc/Documentation/power/powercap/powercap.txt

[13] Chothia, T., Smirnov, V.: A traceability attack against e-passports. In: Sion, R.
(ed.) Financial Cryptography and Data Security, 14th International Conference,
FC 2010, Tenerife, Canary Islands, Revised Selected Papers. Lecture Notes in
Computer Science, vol. 6052, pp. 20–34. Springer (2010)

[14] Cock, D., Ge, Q., Murray, T.C., Heiser, G.: The last mile: An empirical study
of timing channels on sel4. In: Ahn, G., Yung, M., Li, N. (eds.) Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security,
Scottsdale, AZ, USA. pp. 570–581. ACM (2014)

[15] Cover, T.M., Thomas, J.A.: Elements of information theory (2. ed.). Wiley (2006)
[16] Doychev, G., Köpf, B., Mauborgne, L., Reineke, J.: Cacheaudit: A tool for the

static analysis of cache side channels. ACM Trans. Inf. Syst. Secur. 18(1), 4:1–4:32
(2015)

[17] Farkas, K.I., Flinn, J., Back, G., Grunwald, D., Anderson, J.M.: Quantifying
the energy consumption of a pocket computer and a java virtual machine. In:
Brandwajn, A., Kurose, J., Nain, P. (eds.) Proceedings of the 2000 ACM SIG-
METRICS international conference on Measurement and modeling of computer
systems, Santa Clara, CA, USA. pp. 252–263. ACM (2000)

[18] Hähnel, M., Döbel, B., Völp, M., Härtig, H.: Measuring energy consumption for
short code paths using RAPL. SIGMETRICS Performance Evaluation Review
40(3), 13–17 (2012)

[19] Intel: Intel-64 and IA-32 Architectures Software Developer’s Manual. Volume 3
(3A, 3B, & 3C): System Programming Guide (2017)

[20] Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In: Koblitz, N. (ed.) Advances in Cryptology - CRYPTO ’96, 16th
Annual International Cryptology Conference, Santa Barbara, California, USA,
Proceedings. Lecture Notes in Computer Science, vol. 1109, pp. 104–113. Springer
(1996)

[21] Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, Proceedings. Lecture Notes in Com-
puter Science, vol. 1666, pp. 388–397. Springer (1999)

[22] Kocher, P.C., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power
analysis. J. Cryptographic Engineering 1(1), 5–27 (2011)

[23] Köpf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel
attacks. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) Proceedings of
the 2007 ACM Conference on Computer and Communications Security, CCS 2007,
Alexandria, Virginia, USA. pp. 286–296. ACM (2007)

[24] Köpf, B., Mantel, H.: Transformational typing and unification for automatically
correcting insecure programs. Int. J. Inf. Sec. 6(2-3), 107–131 (2007)

[25] Köpf, B., Smith, G.: Vulnerability bounds and leakage resilience of blinded cryp-
tography under timing attacks. In: Proceedings of the 23rd IEEE Computer Secu-
rity Foundations Symposium, CSF 2010, Edinburgh, United Kingdom. pp. 44–56.
IEEE Computer Society (2010)

[26] Ledig, H., Muller, F., Valette, F.: Enhancing collision attacks. In: Joye, M.,
Quisquater, J. (eds.) Cryptographic Hardware and Embedded Systems - CHES
2004: 6th International Workshop Cambridge, MA, USA. Proceedings. Lecture
Notes in Computer Science, vol. 3156, pp. 176–190. Springer (2004)

[27] Legion of the Bouncy Castle Inc.: The Legion of the Bouncy Castle. https://
www.bouncycastle.org/, accessed 2017-08-14

[28] Linux Programmer’s Manual: msr - x86 CPU MSR access device. http://man7.
org/linux/man-pages/man4/msr.4.html (2009), accessed 2017-04-11

26

https://www.bouncycastle.org/
https://www.bouncycastle.org/
http://man7.org/linux/man-pages/man4/msr.4.html
http://man7.org/linux/man-pages/man4/msr.4.html

[29] Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: Armageddon: Cache
attacks on mobile devices. In: Holz, T., Savage, S. (eds.) 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA. pp. 549–564 (2016)

[30] Macé, F., Standaert, F., Quisquater, J.: Information theoretic evaluation of side-
channel resistant logic styles. In: Paillier, P., Verbauwhede, I. (eds.) Cryptographic
Hardware and Embedded Systems - CHES 2007, 9th International Workshop,
Vienna, Austria, Proceedings. Lecture Notes in Computer Science, vol. 4727, pp.
427–442. Springer (2007)

[31] Mangard, S.: A simple power-analysis (SPA) attack on implementations of the
AES key expansion. In: Lee, P.J., Lim, C.H. (eds.) Information Security and
Cryptology - ICISC 2002, 5th International Conference Seoul, Korea, Revised
Papers. Lecture Notes in Computer Science, vol. 2587, pp. 343–358. Springer
(2002)

[32] Mantel, H., Weber, A., Köpf, B.: A Systematic Study of Cache Side Channels
across AES Implementations. In: Proceedings of the 9th International Symposium
on Engineering Secure Software and Systems. pp. 213–230 (2017)

[33] Mantel, H., Starostin, A.: Transforming out timing leaks, more or less. In: Pernul,
G., Ryan, P.Y.A., Weippl, E.R. (eds.) Computer Security - ESORICS 2015 -
20th European Symposium on Research in Computer Security, Vienna, Austria,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 9326, pp. 447–467.
Springer (2015)

[34] Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Power analysis attacks of modular
exponentiation in smartcards. In: Koç, Ç.K., Paar, C. (eds.) Cryptographic Hard-
ware and Embedded Systems, First International Workshop, CHES’99, Worcester,
MA, USA, Proceedings. Lecture Notes in Computer Science, vol. 1717, pp. 144–
157. Springer (1999)

[35] Michalevsky, Y., Schulman, A., Veerapandian, G.A., Boneh, D., Nakibly, G.: Pow-
erspy: Location tracking using mobile device power analysis. In: Jung, J., Holz,
T. (eds.) 24th USENIX Security Symposium, USENIX Security 15, Washington,
D.C., USA. pp. 785–800 (2015)

[36] Millen, J.K.: Covert channel capacity. In: Proceedings of the 1987 IEEE Sym-
posium on Security and Privacy, Oakland, California, USA. pp. 60–66. IEEE
Computer Society (1987)

[37] Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security
model: Automatic detection and removal of control-flow side channel attacks. In:
Won, D., Kim, S. (eds.) Information Security and Cryptology - ICISC 2005, 8th
International Conference, Seoul, Korea, Revised Selected Papers. Lecture Notes
in Computer Science, vol. 3935, pp. 156–168. Springer (2005)

[38] Noureddine, A., Rouvoy, R., Seinturier, L.: Monitoring energy hotspots in software
- energy profiling of software code. Autom. Softw. Eng. 22(3), 291–332 (2015)

[39] Novak, R.: Spa-based adaptive chosen-ciphertext attack on RSA implementation.
In: Naccache, D., Paillier, P. (eds.) Public Key Cryptography, 5th International
Workshop on Practice and Theory in Public Key Cryptosystems, PKC 2002, Paris,
France, Proceedings. Lecture Notes in Computer Science, vol. 2274, pp. 252–262.
Springer (2002)

[40] Renauld, M., Standaert, F., Veyrat-Charvillon, N.: Algebraic side-channel attacks
on the AES: why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.) Cryp-
tographic Hardware and Embedded Systems - CHES 2009, 11th International
Workshop, Lausanne, Switzerland, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 5747, pp. 97–111. Springer (2009)

27

[41] Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signa-
tures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

[42] Roberto Tyley: Spongy Castle by rtyley. https://rtyley.github.io/
spongycastle/, accessed 2017-08-14

[43] RSA Laboratories: PKCS #1 v2.2: RSA Cryptography
Standard. https://www.emc.com/collateral/white-papers/
h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf (2012), accessed
2017-08-15

[44] Schramm, K., Wollinger, T.J., Paar, C.: A new class of collision attacks and
its application to DES. In: Johansson, T. (ed.) Fast Software Encryption, 10th
International Workshop, FSE 2003, Lund, Sweden, Revised Papers. Lecture Notes
in Computer Science, vol. 2887, pp. 206–222. Springer (2003)

[45] Shannon, C.E.: A mathematical theory of communication. Mobile Computing and
Communications Review 5(1), 3–55 (2001)

[46] Snedecor, G.W., Cochran, W.G.: Statistical Methods (8. ed.). Iowa State Univer-
sity Press (1989)

[47] Standaert, F., Malkin, T., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) Advances in Cryptology -
EUROCRYPT 2009, 28th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cologne, Germany. Proceedings. Lec-
ture Notes in Computer Science, vol. 5479, pp. 443–461. Springer (2009)

[48] Yan, L., Guo, Y., Chen, X., Mei, H.: A study on power side channels on mobile
devices. In: Mei, H., Lü, J., Ma, X., Wang, Q., Yin, G., Liao, X. (eds.) Proceedings
of the 7th Asia-Pacific Symposium on Internetware, Internetware 2015, Wuhan,
China. pp. 30–38. ACM (2015)

[49] Yarom, Y., Falkner, K.: FLUSH+RELOAD: A high resolution, low noise, L3 cache
side-channel attack. In: Fu, K., Jung, J. (eds.) Proceedings of the 23rd USENIX
Security Symposium, San Diego, CA, USA. pp. 719–732 (2014)

A RSA Parameters

We list the ciphertext c, the modulus n, and, for each of k1 and k2, the private
exponent d. Table 3 lists the bit length and Hamming weight of the individual
key parameters.

Variable Bit Length Hamming Weight
n 3071 1550
dk1 2880 1460
dk2 3070 1514

Table 3: RSA parameter information

c = 21 444 858 737 899 529 054 620 511 370 454 507

092 966 801 560 642 267 256 271 104 479 565 623

317 752

28

https://rtyley.github.io/spongycastle/
https://rtyley.github.io/spongycastle/
https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf

n =2701 439 070 847 831 436 302 643 023 883 472 860

688 598 232 186 843 078 227 336 630 239 028 012

256 550 437 650 268 769 791 198 665 992 795 439

484 217 556 231 560 025 070 371 698 339 396 459

200 881 954 828 050 340 830 157 513 508 421 214

770 279 402 829 167 697 307 613 566 394 176 659

624 110 756 710 628 073 014 761 357 607 996 466

364 229 898 558 058 073 647 928 107 882 490 406

530 947 890 797 815 573 279 825 845 151 878 854

668 533 049 684 979 849 046 263 217 739 454 991

182 947 451 853 315 650 216 590 304 861 483 322

060 060 830 631 094 083 537 687 041 942 037 690

007 693 207 305 415 195 214 688 380 836 084 216

172 144 792 635 213 107 935 419 683 137 307 723

939 160 685 162 963 798 575 432 937 877 504 919

069 927 206 463 822 812 215 130 775 583 846 864

507 114 293 297 396 044 572 999 463 005 723 946

293 357 342 314 317 073 651 823 518 140 604 749

430 721 177 242 193 915 300 702 995 100 318 209

072 680 035 930 026 760 088 409 999 868 552 738

596 292 995 373 879 363 788 033 672 926 557 820

859 907 396 638 610 163 158 192 481 639 061 519

053 725 943 865 537 221 937 014 172 943 369 946

317 527 944 500 414 286 628 781 268 545 323 413

089 483 205 130 985 579 709 706 141 004 772 358

028 235 835 383 909 088 091 781

dk1= 834 165 241 298 999 430 572 239 556 741 255 001

409 654 369 991 231 022 229 220 766 012 080 697

463 656 309 174 093 432 158 675 603 340 216 003

665 704 131 245 121 040 967 995 188 366 594 646

886 723 499 562 164 775 785 136 008 896 297 468

405 676 356 520 936 826 945 820 428 827 348 255

217 929 032 541 402 713 897 358 199 944 878 768

362 082 394 995 264 828 906 821 922 160 081 896

178 733 905 626 880 183 545 477 730 549 240 816

967 899 639 830 638 962 585 672 589 316 902 773

29

646 421 798 550 172 445 107 122 780 716 202 671

225 380 537 248 843 847 787 001 886 230 297 573

272 017 826 827 441 391 799 971 383 481 609 479

693 434 609 255 364 781 237 298 674 935 211 620

000 100 041 121 931 493 922 732 461 726 369 423

008 396 966 929 501 865 211 495 345 778 306 377

790 415 705 746 828 081 157 687 854 396 051 014

887 511 709 430 472 332 036 102 915 852 198 291

900 816 398 410 487 823 293 583 922 839 328 518

348 451 707 669 403 333 993 535 972 295 702 111

655 470 282 959 323 284 437 483 178 409 938 904

891 941 353 380 152 662 307 486 605 772 459 905

400 151 595 208 101 373 686 515 401 901 692 964

058 539 933 630 431 256 790 357 003 951 566 054

871

dk2= 849 669 096 348 419 204 365 570 298 477 349 071

171 614 131 865 471 357 729 223 033 692 678 706

938 741 080 172 802 999 095 258 832 447 464 674

826 253 513 078 126 047 832 149 347 969 391 019

019 909 054 959 345 128 332 576 053 617 789 744

725 266 175 298 192 375 980 008 826 221 571 989

636 873 751 134 110 143 415 982 969 381 778 707

618 076 367 532 496 926 501 132 827 071 452 381

857 918 868 318 894 249 233 517 709 784 025 494

473 083 475 794 688 338 318 669 205 292 634 477

215 223 397 852 394 761 705 823 824 009 487 094

582 053 403 448 414 519 187 059 874 506 785 829

441 820 347 012 931 983 749 032 937 029 535 204

674 669 118 349 387 871 614 945 298 028 125 580

430 251 234 668 630 080 219 358 718 245 352 291

415 465 763 013 100 923 209 592 436 665 013 250

115 828 673 733 662 998 810 262 212 481 440 283

643 807 643 936 814 117 781 430 012 258 146 460

658 672 860 115 805 136 484 154 272 106 257 859

724 501 287 380 315 081 559 737 344 179 353 409

746 394 603 117 859 928 408 887 186 955 223 875

953 551 569 984 766 380 086 437 972 232 285 448

30

676 372 452 773 194 118 503 147 494 678 742 399

709 855 779 414 952 984 145 813 209 160 450 714

556 753 389 051 248 506 613 925 218 229 813 615

602 923 271 485 462 745 822 621

B Java Sources for Target Programs

31

1 pub l i c RSA(/∗ [. . .] ∗/) {
2 r sa = new RSAEngine () ;
3 RSAKeyParameters key ;
4 // [. . .]
5 key = new RSAKeyParameters (true , new Big Intege r (n) , new

Big Intege r (d)) ;
6 // [. . .]
7 r sa . i n i t (f a l s e , key) ;
8 }
9

10 pub l i c void decrypt () {
11 r sa . proces sBlock (input , 0 , input . l ength) ;
12 }
13
14 p r i va t e RSAEngine r sa ;
15 p r i va t e RSAKeyParameters key ;
16 p r i va t e byte [] input ;

Fig. 13: RSA decryption sources

1 p r i va t e f i n a l s t a t i c i n t n = 4096 ;
2 p r i va t e i n t r ;
3 // [. . .]
4 pub l i c i n t modExp(i n t y , i n t k) {
5 r = 1 ;
6 f o r (i n t i = 0 ; i < 32 ; i++) {
7 i f (k % 2 == 1)
8 r = (r ∗ y) % n ;
9 y = (y ∗ y) % n ;

10 k >>=1;
11 }
12 return r % n ;
13 }

Fig. 14: [33]’s baseline modExp sources

1 p r i va t e f i n a l s t a t i c i n t n = 4096 ;
2 p r i va t e i n t r ;
3 p r i va t e i n t rSkip ;
4 // [. . .]
5 pub l i c i n t modExpCC(in t y , i n t k) {
6 r = 1 ;
7 rSkip = 1 ;
8 f o r (i n t i = 0 ; i < 32 ; i++) {
9 i f (k % 2 == 1)

10 r = (r ∗ y) % n ;
11 e l s e
12 rSkip = (rSkip ∗ y) % n ;
13 y = (y ∗ y) % n ;
14 k >>=1;
15 }
16 return r % n ;
17 }

Fig. 15: [33]’s cross-copied modExp sources

32

	Vulnerabilities Introduced by Features for Software-based Energy Measurement

