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Abstract. To date, Android is by far the most prevalent operating sys-
tem for mobile devices. With Android devices taking a vital role in the
everyday life of users, applications on these devices are handling vast
amounts of private and potentially sensitive information, as well as sen-
sitive sensor data like the device location. The built-in security mecha-
nisms of the Android platform offer only limited protection for this data
and device resources, and are not sufficient to enforce fine-grained policies
on how data is used by applications. We present CliSeAuDroid, a run-
time enforcement mechanism for Android applications that can enforce
fine-grained security policies, either locally within a single application,
across multiple applications, or even across multiple devices. We show
that CliSeAuDroid can effectively ensure user-defined security require-
ments that protect sensitive data and resources on Android devices and
adds only little runtime overhead to protected applications.

1 Introduction

Over the last decade, the Android platform has gained increasing popularity. To
date, it is the most prevalent mobile operating system, with a market share of
85.9% in the first quarter of 2018.1 Users are entrusting more and more private
data to mobile applications, including, e.g., financial data for online banking,
calendar entries, or health data. This makes mobile applications also a prime
target for attackers. In addition to sensitive user data, mobile devices also expose
a variety of privacy-relevant sensors, like the device camera or audio recording.

At the core of the built-in security mechanisms of the Android platform is
the Android permission system. Whenever an application tries to access sensi-
tive data or device resources, this access is controlled by the middleware layers
of the Android platform. Before such an access can happen for the first time, the
device user has to explicitly grant the corresponding permission to the applica-
tion. Once an application has been granted a permission, however, the further
usage of assets protected by this permission is only little controlled. Another
challenge for Android security efforts is the fragmentation of the Android land-
scape into the many active Android versions. The slow migration of existing
1 https://www.gartner.com/newsroom/id/3876865.
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devices to current Android versions means that new security features cannot be
incorporated by applications running on older devices. While the current major
version of the Android platform, Android 8, has been available for roughly one
year, only 14.6% of all active devices are running on Android 8 in August 2018
[1]. Android versions older than Android 6, which introduced major improve-
ments on permission management, are still used by roughly 32% of all active
devices.

The shortcomings of the security mechanisms on the Android platform have
attracted growing attention by the scientific community over the last years,
leading to many security concepts in the area of Android security. Most of these
concepts complement the built-in security mechanisms rather than replacing
them. These concepts range from static analyses assessing the security of appli-
cations before they are installed (e.g., [5,8,18]), over adaptations or modifications
of the operating system kernel or middleware layers (e.g., [6,7,9]), to dynamic
approaches hardening applications on the application layer (e.g., [15,16,19]).

In this paper, we present CliSeAuDroid, a novel, flexible and light-weight
dynamic enforcement mechanism for fine-grained security policies for Android
applications.2 CliSeAuDroid resides completely on the application level, and
can be instantiated to address various security considerations not addressed by
built-in security mechanisms. Our approach can be used to enforce all of local,
cross-application, and cross-device security policies. By local policies, we refer
to policies that involve only a single application. By cross-application and cross-
device policies, we refer to policies that involve multiple applications on a single
device or across devices, respectively. Such policies require coordination between
applications and devices for effectively enforcing given security requirements.
The capability to enforce cross-device policies for multiple devices of a user is
desirable, and is not addressed by previous work on Android application security.

In detail, the contributions of this article are the following:

– We present CliSeAuDroid, a dynamic enforcement mechanism for user-
defined, fine-grained security policies for Android applications. CliSeAu-
Droid can enforce both local policies and distributed policies on the same
device or across devices. CliSeAuDroid incorporates the crosslining [11]
technique that separates the interaction with the target program from the
decision making. Such a separation is crucial for ensuring the reachability of
the decision maker in distributed settings, especially on Android, where only
one application can actively run in the foreground at a time.

– We evaluate the effectiveness and efficiency of the enforcement capabilities of
CliSeAuDroid in case studies involving real, open-source Android applica-
tions. We show that CliSeAuDroid can effectively enforce both local poli-
cies and distributed policies. Our results indicate that the runtime overhead
added by the enforcement are small, leading to no perceivable delay in the

2 The implementation of CliSeAuDroid, all case study policies, and our results are
available online. See Sect. 3 for details.
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application execution for local enforcement. Distributed enforcement involv-
ing network communication shows a mean overhead below one second for
up to four devices involved in the enforcement.

2 Android Application Security in a Nutshell

The Android platform provides various security mechanisms that are built into
the platform implementation at different levels of the platform architecture. At
the core of the security mechanisms for applications are a strong sandboxing
mechanism, and a permission system for restricting access of applications to
potentially sensitive user data and device resources.

2.1 The Android Security Architecture

The Android software stack is built on top of a Linux kernel. End-user applica-
tions run on top of multiple layers of middleware offered by the system architec-
ture, consisting of the Android runtime, libraries, and the Java API framework.
These middleware layers manage most of the interaction of applications with
lower system levels, including access to protected resources on the device or to
implementations of the IPC mechanisms.3

All applications on the Android platform are strictly sandboxed. Concep-
tually, this is achieved by providing distinct Linux UIDs to each application
together with mandatory access control enforced by SELinux on the kernel level
of the Android platform.4 This sandboxing also applies for privileged system
applications, as well as native code parts of applications. The strict sandboxing
ensures that applications cannot access data that is local to other applications.
Furthermore, the sandboxing mechanism ensures that access to protected sys-
tem resources and data is managed by the Android platform implementation for
each application, adhering to security policies established at the kernel level.

The core of the Android security architecture that is building on the strong
sandboxing is its permission system that restricts the usage of certain desig-
nated operations and resources on a device.5 These permissions are divided into
three categories: normal permissions, signature permissions, and dangerous per-
missions. Data and resources protected by normal permissions are considered
as low-risk operations and are granted to applications automatically when they
request them, not requiring user confirmation. Signature permissions are granted
to each application that requests them, provided that the application defin-
ing the permission has been signed with the same certificate as the requesting
application. This can, for instance, be facilitated for custom-defined permissions
that are shared between applications from the same developer. Dangerous per-
missions are considered to pose a significant risk for the user’s privacy or the
device’s functionality. Examples for those dangerous permissions are sending
3 https://developer.android.com/guide/platform/.
4 https://developer.android.com/guide/components/fundamentals.
5 https://developer.android.com/guide/topics/permissions/overview.

https://developer.android.com/guide/platform/
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/topics/permissions/overview
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SMS messages (SEND SMS ) or accessing the current device location via GPS
(ACCESS FINE LOCATION ). Dangerous permissions are not granted to the
application automatically, but have to be accepted by the user manually.

Prior to Android 6, permission requests were only posed at installation time
of an application. Hence, users had only limited control over the behavior of
applications: an installed application either got access to all requested permis-
sions, or could not be installed on the device. From Android 6 onwards, these
install-time requests were replaced with runtime requests. When installing an
application, users are still presented with all permissions that the application
requests. The actual granting of these permissions, however, is performed when
the application tries to use them for the first time. Dangerous permissions can
be revoked or regranted at any time using the system settings of the device.

Exemplary Shortcomings of Built-in Security Mechanisms. The built-in security
mechanisms of the Android platform offer only a limited granularity for control-
ling sensitive data and resources on devices. For instance, the granting procedure
for permissions at the first time of use is not sufficient to provide users with a
fine-grained control over sensitive data and resources. Consider, for instance, a
simple security requirement stating that an installed application may not send
SMS messages to expensive premium SMS services (this requirement has been
considered in other work, e.g., by DroidForce [19]). Using the built-in per-
mission system, users have the choice to either grant the application with the
permission to send SMS messages when it first asks for it, or can deny it. How
the permission is actually used after granting the permission is not controlled
by the Android system. In particular, an application requiring the permission to
send SMS messages for benign purposes can also abuse this permission to send
expensive messages without users noticing.

Naturally, on-device security mechanisms are limited to controlling applica-
tions on that very device. However, this can be insufficient to enforce user-specific
security policies. Consider, for instance, a variant of the premium SMS require-
ment stating that multiple installed applications may send SMS messages also to
expensive premium numbers, but within each 24-h interval only three such mes-
sages may be sent altogether from all devices of the user. In order to ensure this
property, global knowledge of the execution history across devices is required.
This cannot be achieved by the built-in Android security architecture.

2.2 State of the Art

To overcome the limitations of Android’s built-in security mechanisms, a large
variety of security solutions has been proposed in the literature, ranging from
static analyses that assert application security before installation, to dynamic
approaches that enforce security requirements at runtime.

Static Approaches. Static analysis techniques can be used for establishing trust
in applications, enabling informed user decisions whether to install a given appli-
cation or not. A large number of static analysis techniques for Android appli-
cations has been proposed. A recent, comprehensive literature survey of static
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analysis mechanisms for Android has analyzed over 120 research papers on static
analysis approaches for Android applications [17]. These static approaches range
from tools that build on analysis techniques that are proven to be sound (like,
e.g., [8,18]) to tools that aim for a high recall in combination with high precision,
but do not build on such formal foundations (like, e.g. [5]).

While static approaches can detect potential security violations in applica-
tions, they do not modify application behavior at runtime to make it compliant
to a given security policy. In addition, static approaches can be overly restric-
tive, as they cannot take runtime information into consideration to determine
whether sensitive information is actually leaked for a certain program run.

OS-Level and Middleware-Level Dynamic Enforcement. Application security can
be ensured dynamically by enforcement mechanisms that are integrated into the
operating system kernel or the middleware. Such approaches can offer a high level
of protection by providing additional security features on devices. However, such
approaches usually require substantial modifications of the platform running on
the device, like rooting the device or flashing modified system images.

The Android Security Framework (ASF) [6] provides a module-based mech-
anism to extend the Android security mechanisms. The ASF resides on multiple
layers of the Android platform, providing an API for security module developers.
Security modules are provided in the form of code, and can be used to implement
security enforcement for applications running on top of the ASF. The CRePE
mechanism introduced context-aware enforcement of security policies for the
Android platform [9]. CRePE resides in the Android middleware, and provides a
hook-based system to detect access to permission-protected APIs of the Android
system. It consists of a centralized policy provision and management system that
is able to track the current device context, like, e.g., the current location of the
device. Similar to CRePE, the Security Enhanced Android Framework (Seaf)
provides a modified Android middleware layer that incorporates hooks to detect
access to protected resources [7]. It provides both, a more fine-grained access
control model for Android and behavior-based enforcement of security policies.
This behavior-based enforcement can, e.g., be used to detect suspicious orderings
of permission usages that indicate malicious behavior of a target application.

Application-Level Dynamic Enforcement. As an orthogonal approach to modifi-
cations of the operating system kernel or the Android middleware, enforcement
mechanisms can reside completely on the application level. While such mecha-
nisms are not closely integrated into the low-level parts of the system, they come
with the advantage that usually no modification of the platform is required for
enforcing security policies. Since this approach does not offer monitoring capa-
bilities on the lower levels of the system (like, e.g., hooks), application-level
enforcement mechanisms usually involve application instrumentation.

DroidForce [19] is a tool for enforcing complex, data-centric, system-
wide policies for Android applications. Conceptually, DroidForce consists of
a policy enforcement point that is inlined into target applications, and a cen-
tral enforcement decision point on the device. Hence, enforcement decision in
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DroidForce are always made centrally, and can consider the state of multiple
applications on the same device. For detecting security-relevant program points,
DroidForce incorporates a machine-learning approach. The framework pre-
sented in [16] provides capabilities to protect data usage on Android devices.
The focus of this framework is the enforcement of attribute-based usage con-
trol depending on local or remote attributes that may change over time. Data
providers embed usage control policies in data, which are then enforced by a
central data protection system application on the device. Approaches that build
on dynamic taint-tracking systems like, for instance, TaintDroid [10] follow an
approach that is focused on data-flow tracking. Such approaches can analyze the
flow of sensitive data inside or across applications, e.g., in order to prevent pro-
cessing of sensitive data by third-party libraries. Many variants of dynamic or
hybrid taint-tracking have been proposed, ranging from basic data-flow tracking
to more sophisticated analyses that, e.g., consider native code inside apps [15].

3 CliSeAuDroid

With CliSeAuDroid, we present a novel runtime enforcement mechanism that
enables the enforcement of fine-grained, user-defined security policies for Android
applications both locally (i.e., within a single application), and in a distributed
fashion (i.e., across different applications on the same device, or across differ-
ent devices). CliSeAuDroid operates completely on the application layer, and
can be applied to applications running on unmodified and unrooted Android
devices. Policies for CliSeAuDroid are provided as Java source code, and are
compiled for execution on devices. This approach provides support for using
method and field invocations at the target program in the decision-making pro-
cess, in particular involving the Android application lifecycle. In terms of the
Android permission system, CliSeAuDroid offers a more fine-grained possibil-
ity to specify permission access, as well as a more sophisticated way to specify
how data and device resources may be used after the corresponding permissions
have been granted to an application. The implementation of CliSeAuDroid
is provided as open-source software and available online. We provide the source
code of CliSeAuDroid, sample security policies, and our evaluation results at
www.mais.informatik.tu-darmstadt.de/assets/tools/cliseaudroid.zip.

3.1 Architecture

Figure 1 shows the architecture of CliSeAuDroid. It consists of four com-
ponents: the interceptor, the coordinator, the local policy, and the enforcer.
The interceptor component is responsible for monitoring the target application
(Arrow 1), and communicating intercepted program events to the coordinator
(Arrow 2). The coordinator component, in turn, checks with the local policy
component whether the observed program behavior complies with the enforced
security requirement (Arrow 3a). In case the observed behavior would violate

www.mais.informatik.tu-darmstadt.de/assets/tools/cliseaudroid.zip
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the security requirement, a suitable countermeasure is determined and com-
municated to the enforcer component (Arrow 4). Finally, the enforcer compo-
nent implements this countermeasure at the interaction point with the target
application (Arrow 5). CliSeAuDroid supports the enforcement of distributed,
system-wide security policies by communicating with other encapsulated appli-
cations. By system-wide policies, we refer to policies that consider all nodes in a
distributed system, and that require global knowledge of the system state. This
communication might involve other applications on the same device, or appli-
cations on a different device. In such settings, the coordinator can delegate the
decision-making to other encapsulated applications instead of deciding locally
(Arrow 3b).

Fig. 1. Architecture of CliSeAuDroid

All components of the enforcement mechanism are located at the applica-
tion level, depicted by the upper, dark-gray box in Fig. 1. This is achieved by
instrumenting the target application APK file, placing the interceptor compo-
nent and the enforcer component inlined into the target application code. The
decision-making part of the mechanism, i.e., the coordinator component and the
local policy component are located in a separate decider service. This technique
of splitting the enforcement into an inlined entity and an entity outside the
original application code, known as crosslining [11], guarantees that the decision
making components are reachable for other applications, even if the target appli-
cation is not actively running. The instrumentation results in an encapsulated
application, in which all components of CliSeAuDroid are included into the
target application. The inlined part of the security mechanism and the decider
service communicate via the binder interface provided by the Android kernel,
depicted by the lower, light-gray box of Fig. 1.
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The component design of CliSeAuDroid implements the concept of ser-
vice automata, a parametric framework for enforcing security requirements in
local and distributed systems at runtime [14]. The service automata framework
is parametric in the enforced security requirement, the possible countermeasures
on the target, and the monitored program events. For all communication within
the enforcement and for the decision-making, we abstract from target application
events by generating internal events based on the observed behavior. Implement-
ing the concept of Service Automata, CliSeAuDroid enables the decentralized
coordination between different target applications running on a single device or
across devices, and thus the enforcement of system-wide policies. A decentralized
coordination that does not require a central decision-making entity can be ben-
eficial depending on the application scenario, especially in distributed settings
involving mobile devices that might not be reachable continuously.

3.2 Implementation Details

The implementation of CliSeAuDroid builds on CliSeAu [11], an implementa-
tion of the service automata framework for Java programs. CliSeAu is designed
in a modular fashion that already enabled its extension for Ruby target pro-
grams [12]. The modular design of CliSeAu enabled us to reuse large parts of
the existing codebase, since most components are working with an internal event
abstraction that is target-language independent.

In addition to the existing codebase of CliSeAu, we developed software
components that are specifically tailored to the peculiarities of the Android
platform. The decision-making process is implemented as a background ser-
vice, that is kept alive even when the target application is not actively run-
ning. The communication of the interceptor and the enforcer components with
the decision-making service facilitate the Android inter-process communication
mechanisms, in particular the Android binder interface using Intents. Different
target applications instrumented with CliSeAuDroid communicate over plain
Java sockets. Currently, this requires a-priori knowledge of the IP addresses of
all targeted devices. However, CliSeAuDroid is designed in a modular fash-
ion that enables its adaptation to different communication strategies. Hence,
the socket-based communication can be adapted to a setting that is agnostic
of the actual IP addresses of target devices, e.g., using cloud-based communi-
cation mechanisms like Firebase Cloud Messaging [3]. Regardless of the actual
communication strategy, applications instrumented by CliSeAuDroid require
the permission for internet access for distributed enforcement scenarios. We also
enhanced the instrumentation infrastructure of CliSeAu to enable the instru-
mentation of Android applications using the AspectBench Compiler (abc) [4].

3.3 Application Instrumentation

The instrumentation process of CliSeAuDroid operates on the application
package file (APK) of the target application. APKs are container files, including
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the binary files of the application as well as necessary dependencies and appli-
cation resources. Figure 2 visualizes the instrumentation process of CliSeAu-
Droid. The instrumentation operates on three input artifacts: the APK file of
the target application, an instantiation of CliSeAuDroid for the target appli-
cation, and a pointcut specification of the security-relevant program points.

Fig. 2. Application instrumentation

The instantiation of CliSeAuDroid for the target program and policy con-
sists of an implementation of the local policy component, the enforcer compo-
nent, a factory class for abstracting from intercepted program behavior, and a
factory class for creating enforcer objects from decisions. These implementations
can be reused between different application scenarios, e.g., when the same policy
shall be enforced but different program points are relevant for the monitoring
process. The security-relevant program points are specified as AspectJ pointcuts.
Program points matching these pointcuts are intercepted during the enforcement
and translated to the internal event abstraction by a factory class.

The CliSeAuDroid instantiation for the target application is provided as
source code and compiled against a JAR file (generated with dex2jar) con-
taining class information of the target application. In particular, this JAR
includes dependencies inside the target application that are required for compil-
ing the policy instantiations. These dependencies include, for instance, informa-
tion about the fields of classes in the target application, or method signatures
of these classes. After compiling the CliSeAuDroid instantiation to class files,
they are converted to smali files using the dx and baksmali tools, because regular
Java class files cannot be directly used inside APK containers. In order to include
the generated smali files into the target APK, we first extract the existing smali
files from the APK using the apktool and subsequently repackage all files into a
single APK file using the apktool. Finally, the AspectBench Compiler (abc) [4]
combines the repackaged target APK that now contains all components required
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for an enforcement with CliSeAuDroid and the pointcut specification that pro-
vides the program points of the target application relevant for the enforcement.
The result is an instrumented APK that is monitored by CliSeAuDroid. In
case policy violations are detected, suitable countermeasures are taken. Note
that the instrumented APK file needs to be signed after the instrumentation, as
the existing signature of the APK is not preserved during the instrumentation.

4 Security Evaluation

CliSeAuDroid can enforce user-defined usage control policies for granted per-
missions and device resources locally, across applications and across devices.
We empirically evaluate the capabilities of CliSeAuDroid for enforcing such
fine-grained and system-wide security policies using exemplary case study poli-
cies highlighting security aspects that cannot be enforced by the Android plat-
form security architecture. The flexible and modular design of CliSeAuDroid
enables the enforcement of user-defined policies for a variety of requirements. The
policies can reuse existing code from other policy instantiations, or can be devel-
oped from scratch to match given scenarios. In this paper, we focus on example
policies that we also provide as part of our implementation. For evaluating the
effectiveness of enforcing these policies, we target open-source applications pub-
licly available on the F-Droid store [2] that make use of specific permissions that
we target in the case study policies.

4.1 Case Study Policies

We present three classes of security policies that we investigate in our case stud-
ies. For each of these classes, we present an exemplary instantiation for a specific
permission-protected part of the Android API.

Explicit Permission Usage Control. Permissions on the Android platform are
granted per application based on user confirmation. Once the permission has
been granted, users are not asked for confirmation again when the application
accesses an API protected by that permission. While there might be benign
reasons for an application to access a permission-protected API at the time a
permission is granted, the application can also misuse the permission later.

CliSeAuDroid can be instantiated to ask users for explicit confirmation
whenever the target application tries to access an API protected by a permission.
We evaluate an instantiation of such a policy for the SEND SMS permission. The
SmsUserConfirmation policy provides users with a fine-grained control over
permission usage for sending SMS messages. Instead of granting the SEND SMS
permission forever, users can choose to be asked every time the application tries
to send a SMS message. When the application first tries to access the permission-
protected API method for sending SMS messages, the user is presented with a
popup window. In this popup window, the user can decide to grant or deny
access for the permission to the application. In addition, the user can choose
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to remember this decision for the application. If the user does not choose to
remember this decision, he will be presented with a popup message asking for
permission each time the application tries to send a SMS message. Enforcing this
policy for applications running on older devices also provides a backport of the
permission model of Android starting from Android 5 in case the user chooses
to remember the decision.

Rate-Limiting Policies. Once an application has been granted with a specific per-
mission, there is no limit on the frequency the application can use API methods
protected by this permission. While users might be willing to grant applications
with a specific permission, they might want to ensure that the permission is not
used extensively.

CliSeAuDroid enables the enforcement of user-defined rate limits for
accessing permission-protected API methods. We evaluate an instantiation of
such a policy for the SEND SMS permission. The SmsRateLimiting policy
limits the amount of SMS messages that can be sent by a specific application.
Using the distributed enforcement capability of CliSeAuDroid, this policy can
also be applied to enforce rate limits across multiple applications and devices of
the user. This enables settings where a user wants to use applications that make
use of SMS messaging on more than one device, e.g., on a smartphone and on
a tablet device. Note that for both local and distributed rate limiting, we can
reuse the same instantiation of CliSeAuDroid. In distributed settings each
unit is instrumented separately and installed on the corresponding device. The
coordinator components of the different units will handle the decision-making
during runtime in a transparent fashion for the end user.

Provision of Fake Data. Denying applications access to permission-protected
APIs can lead to application crashes, as the application might depend on the
presence of data queried from the APIs. While users might want to deny certain
applications access to specific permissions, they might still have an interest in
using other functionalities of the application. Hence, avoiding application crashes
in such cases is a desirable goal for enforcement mechanisms.

CliSeAuDroid can be instantiated to deny applications access to spe-
cific permissions, providing fake data for the application instead. We evaluate
an instantiation of such a policy for the ACCESS FINE LOCATION permis-
sion. The FakeLocationProvision policy can prevent application crashes by
enabling the provision of fake location data to applications. Whenever the target
application tries to access the current location of the device, the return values
of the API calls are intercepted and modified to show a different location (e.g.,
in Antarctica). This enables users to still run the application, without provid-
ing it with the actual location of the device. Note that the generic architecture
of CliSeAuDroid also allows the provision of more sophisticated return data,
like, e.g., plausible movement profiles for fake locations. For the evaluation in
this article, we limit ourselves to a static return value that is used as fake data.
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4.2 Case Study Instantiations

In our evaluations, we target two open-source applications that are publicly
available on F-Droid: TinyTravelTracker6 and ShellMS7. The TinyTravelTracker
app collects GPS location data in the background in order to provide the user
with movement profiles. Naturally, TinyTravelTracker requires access to the
ACCESS FINE LOCATION permission for this purpose. The ShellMS app, in
turn, provides a background service that can be used by other applications on
the device or by users via the Android Debug Bridge (adb) for sending SMS
messages. Naturally, ShellMS requires the SEND SMS permission.

Evaluation Setup. We instantiate the FakeLocationProvision policy for
TinyTravelTracker. We instantiate both the SmsUserConfirmation policy,
and the SmsRateLimiting policies for ShellMS. For the SmsRateLimiting
policy, we evaluate four variants: a purely local variant involving only one
application instance and device, and distributed variants involving 2, 3, and 4
devices, correspondingly. We evaluated all policy instantiations on Google Nexus
5 devices running Android 4.4.3 in a local WiFi network.

Evaluation Results. The left-hand side of Fig. 3 shows a screenshot of an instru-
mented ShellMS instance using the SmsUserConfirmation policy. Our evalu-
ation confirms that CliSeAuDroid can effectively enforce the policy, and will
ask users for permission whenever the application tries to send SMS messages.
No SMS message was sent without explicit user confirmation in our experi-
ments. We further confirmed in our experiments that the SmsRateLimiting
policy was correctly preventing ShellMS from sending more messages than the
quota permits. We were able to confirm this both locally, and in our cross-device
experiments. The quota limit was enforced across all involved devices, regard-
less of where the permitted messages originated before. The right-hand side of
Fig. 3 shows a screenshot of an instrumented TinyTravelTracker instance for the
FakeLocationProvision policy. As can be seen in the figure, the application
is correctly prevented from access to the real device location and is provided with
a fake location in Antarctica instead. Note that we do not evaluate in full rigor
whether all invocations of security-relevant methods are intercepted and han-
dled by CliSeAuDroid. We rely on the automatized instrumentation by abc
for ensuring a sound instantiation of the monitoring. Defining suitable pointcuts
for given security requirements is part of policy development and controlled by
the user of CliSeAuDroid.

In summary, CliSeAuDroid succeeded in enforcing all of our security policy
instantiations, both locally on a single device and in distributed settings involv-
ing up to four devices. In our experiments, we did not observe any disruption of
regular application functionality that was not covered by the security policies.

6 https://f-droid.org/en/packages/com.rareventure.gps2/.
7 https://f-droid.org/en/packages/com.android.shellms/.

https://f-droid.org/en/packages/com.rareventure.gps2/
https://f-droid.org/en/packages/com.android.shellms/
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Fig. 3. Screenshots of encapsulated target applications

5 Performance Evaluation

Dynamically enforcing security policies at runtime comes at the cost of a per-
formance overhead. This overhead is caused by the additional time required for
monitoring application behavior, the time required for the decision making, and
the time required to impose countermeasures on the application. In addition to
the runtime overhead, some preprocessing time is required when instrumenting
the target application. In this section, we evaluate the performance overhead
introduced by CliSeAuDroid in both of these dimensions for the case study
policies presented in Sect. 4. We show that the runtime overhead of CliSeAu-
Droid achieves its goal of achieving a light-weight enforcement without adding
extensive runtime overhead, and that the runtime overhead of CliSeAuDroid
is not perceivable to end users for local enforcement.

5.1 Instrumentation Overhead

Instrumenting a target application with CliSeAuDroid is a one-time opera-
tion. Once an instance of the target application has been instrumented for a
specific device, the resulting APK file can be installed on the device like a regu-
lar application. The instrumentation process can thus be kept transparent to the
end user, who is provided with the instrumented APK file. When instrumenting
applications for a distributed setting, one instance of the target application is
instrumented per unit of the distributed system.
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Figure 4 summarizes the instrumentation times and size overheads for the dif-
ferent target applications and case study policies. Overall, our evaluation shows
that the instrumentation time is below three minutes for all our case study poli-
cies and applications. Since the instrumentation is carried out only once before
installing the target application on a device, we consider this an acceptable over-
head. Regarding application size, the instrumentation added less than 1 MB to
the original application size for each policy instantiation.

security policy instrumentation time size overhead

SmsUserConfirmation 35s 100.5kB (25.2%)
SmsRateLimiting 34s 96.7kB (24.3%)

FakeLocationProvision 150s 591.9kB (3.3%)

Fig. 4. Instrumentation time and application size overhead (per unit)

5.2 Runtime Overhead

We evaluate the runtime overhead introduced by CliSeAuDroid when running
an encapsulated application by measuring the time spent within the enforcement
components. For this, we measure the start time when we first intercept a pro-
gram event that is relevant for the enforced security policy. We measure the end
time at the point just before the enforcer applies the determined countermea-
sure to the target program. For our experiments, we carried out measurements
for each policy instantiation, discarding outliers that lie more than three abso-
lute standard deviations from the median. All experiments were carried out on
Google Nexus 5 devices running Android 4.4.3. The start and end times, respec-
tively, were logged to the device for evaluation. These log results were extracted
from the devices using the Android debug bridge (adb).

Figure 5 summarizes the mean overhead times (with 95% confidence inter-
vals) and the standard deviation introduced by CliSeAuDroid for each policy
instantiation. For the policies that do not involve direct user interaction (i.e.,
the SmsRateLimiting policy, and the FakeLocationProvision policy), we
carried out 2,000 experiments. For the SmsUserConfirmation policy involv-
ing user interaction, we carried out 100 experiments. Our results show that for
purely local enforcement within a single application, the mean overhead added
by CliSeAuDroid is below 6 ms for each runtime check on the invocation
of a security-relevant method. For distributed enforcement across devices, our
results show a comparably high overhead that is increasing with the amount of
network hops performed during the enforcement. In addition to the higher mean
enforcement overhead, we can also observe that the standard deviation is sig-
nificantly higher than for local enforcement. Figure 6 visualizes the distributions
of overhead times for local enforcement of the FakeLocationProvision and
SmsRateLimiting policies.
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security policy mean overhead standard deviation

SmsUserConfirmation 1.6726± 0.0232 ms 0.2753 ms
SmsRateLimiting (local) 5.4051± 0.0443 ms 2.3608 ms
SmsRateLimiting (2 hops) 423.4710± 5.3791 ms 287.8840 ms
SmsRateLimiting (3 hops) 616.0131± 7.0449 ms 377.2245 ms
SmsRateLimiting (4 hops) 712.3791± 6.2084 ms 332.2642 ms
FakeLocationProvision 3.6122± 0.0227 ms 1.1995 ms

Fig. 5. Runtime overhead introduced by CliSeAuDroid enforcement

Our results indicate that the runtime overhead introduced by CliSeAu-
Droid is within limits that are not perceivable to the end user for local enforce-
ment. Indeed, during our experiments we did not notice any disruption of
application functionality. This observation lines up with the overhead added by
CliSeAu for other target languages, and is competitive with other enforcement
mechanisms for the Android platform, like, e.g., DroidForce [19].

For distributed policies, we can observe a much higher overhead above 400
ms. This magnitude of runtime overhead can be clearly perceivable to end users.
However, depending on the application scenario, the security benefits can still
outweigh the overhead. Our experiments show that even with up to four devices
involved in the enforcement process, the overhead remains below 1 s. Interpreting
the overhead in distributed settings, the biggest part of the overhead seems to
stem from network communication overhead. We consider investigations of pos-
sibilities to decrease this overhead while still ensuring a sound enforcement as
an interesting direction for future work. Decreasing this overhead might involve
different communication technologies, or strategies to reduce the amount of com-
munication required for decision making, e.g., by precomputing decisions. Previ-
ous evaluations of such precomputation strategies showed a significant potential
for reducing overhead [13].

Fig. 6. Runtime overhead distribution introduced by local enforcement for the
SmsRateLimiting policy (left) and FakeLocationProvision policy (right)
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6 Conclusion

In this article, we presented CliSeAuDroid, a mechanism for dynamically
enforcing both local and system-wide security policies for Android applications at
runtime. CliSeAuDroid enables the enforcement of fine-grained security poli-
cies that cannot be enforced with built-in Android security mechanisms. Our
mechanism is implemented completely at the application layer, and can be used
on unmodified and unrooted Android devices.

We showed that CliSeAuDroid can effectively enforce realistic, user-defined
security policies for applications running on a single device or across devices. Our
experimental evaluation indicates that the performance overhead added by this
enforcement is small, and within boundaries that are not recognizable by end
users for local enforcement. When enforcing distributed policies, the performance
overhead is significantly higher, but was still below 1 second in our experiments.

The capability to enforce cross-device security policies adds to our confidence
that CliSeAuDroid is not just yet another tool for Android security, but pro-
vides a flexible and light-weight solution for security concerns in our increasingly
connected world.
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