
A Unifying Framework for Dynamic Monitoring
and a Taxonomy of Optimizations

Marie-Christine Jakobs and Heiko Mantel
{jakobs,mantel}@cs.tu-darmstadt.de

Department of Computer Science, TU Darmstadt, Germany

Abstract. Reducing the performance overhead of run-time monitoring
is crucial for making it affordable to enforce more complex requirements
than simple security or safety properties. Optimizations for reducing
the overhead are becoming increasingly sophisticated themselves, which
makes it mandatory to verify that they preserve what shall be enforced.

In this article, we propose a taxonomy for such optimizations and use it
to develop a classification of existing optimization techniques. Moreover,
we propose a semantic framework for modeling run-time monitors that
provides a suitable basis both, for verifying that optimizations preserve
reliable enforcement and for analytically assessing the performance gain.

1 Introduction

Run-time verification is a popular technique for ensuring that a program satisfies
given requirements. Conceptually, a monitor observes runs of a target program
and interferes, when a violation of some requirement is about to occur. In con-
trast to static analysis and formal verification, run-time verification does not
analyze all possible runs of the target program, but only the ones that actually
occur. This simplifies the analysis. In addition, a dynamic analysis has knowledge
of actual values in a run and can thereby achieve better precision.

The down-side of run-time monitoring (short: RTM) is that the monitor
induces a performance overhead each time the target program is run. This over-
head can become unacceptably high, and it is a common reason for abstaining
from using run-time monitoring in practice [7]. When complex requirements are
enforced by RTM and complex target programs are monitored, then the perfor-
mance overhead becomes an even bigger problem. This is, for instance, relevant
when using RTM in software reengineering for adding properties to existing
software.

The goal of optimizing RTM is to reduce this performance overhead. To
achieve acceptable performance, complex optimizations for RTM [34, 18] are sug-
gested. However, they are lacking full formal correctness proofs. When applying
such optimizations, one currently gives up formal guarantees of RTM [33, 29].
Thus, we need better foundations to prove complex optimizations for RTM.

As a first step, we provide the foundations to prove RTM optimizations from
two simple classes of optimizations. Along the way, we developed a semantic
framework for characterizing the behavior of run-time monitors. Our framework

Published in In: Margaria T., Steffen B. (eds): ISoLA 2020, LNCS volume 12477, pp. 72–92, 2020.
c© Springer Verlag
The final authenticated version is available online at https://doi.org/10.1007/978-3-030-61470-6 6.

2 M.-C. Jakobs, H. Mantel

allows us to carry the distinction of observable and controllable events [8] over
to optimizations. Moreover, we distinguish the affirmative treatment of require-
ments from a preventive treatment, which both occur in prior work. We clarify
where they differ technically and how they can be used interchangeably. We
aim at using our semantic framework in the future to verify further classes of
optimizations.

Several heterogeneous optimizations for RTM are proposed in the litera-
ture [11, 10, 34, 30, 18, 5, 35, 22, 3]. Since we aim at using run-time monitoring to
enforce specifications, we focus on optimizations that aim for soundness, i.e.,
to not miss any requirement violations. To identify (interesting) classes of op-
timizations proposed in the literature, we compare the existing approaches on
a conceptual level. Previously proposed taxonomies for RTM [14, 27, 32, 20] do
not cover optimizations. We introduce a 3-dimensional taxonomy for RTM op-
timizations, which considers how requirements are specified, how the necessary
information for the optimization is obtained, and how the optimization is per-
formed. We use our taxonomy to classify prior work on optimization of RTM.

In summary, we conduct first steps in a larger research effort to formally
prove optimizations for RTM. We show how to formally prove optimizations
for RTM and what needs to be done. As an unexpected bonus, our semantic
framework helped us to come up with new, more sophisticated optimizations.

2 Preliminaries

Basic Notions and Notation. We use 〈〉 to denote the empty sequence, 〈a〉 to
denote the sequence consisting of a single symbol a, and a.w to denote the
sequence starting with the symbol a, followed by the sequence w.

We define the concatenation of two sequences w1 and w2 (denoted by w1 ·w2)
recursively by 〈〉·w2 = w2 and (a.w1)·w2 = a.(w1 · w2). Overloading notation, we
use w.a as an abbreviation for w · 〈a〉. A sequence w1 is a prefix (w2 is a suffix) of
a sequence w if there exists a sequence w2 (a sequence w1) such that w = w1 ·w2

holds. A set of sequences L is prefix-closed (is suffix-closed) if w ∈ L implies
that w1 ∈ L holds for each prefix (for each suffix) w1 of w. The suffix-closure of
L (denoted SUF(L)) is the smallest suffix-closed super-set of L.

We define the projection of a sequence w to a set A (denoted by w|A) recur-
sively by 〈〉|A = 〈〉, (a.w)|A = w|A if a 6∈ A, and (a.w)|A = a.(w|A) if a ∈ A.

We lift concatenation and projection from sequences to sets of sequences by
L1 · L2 =

⋃
w1∈L1,w2∈L2

{w1 · w2} and by L|A =
⋃
w∈L{w|A}. We define the

∗-operator as the smallest fixed-point of L∗ = {〈〉} ∪ {a.w | a ∈ L ∧ w ∈ L∗}.
Projection preserves the ∈- and the ⊆-relationship, i.e., w ∈ L implies w|A ∈

L|A, and L1 ⊆ L2 implies L1|A ⊆ L|A2
. By contraposition, w|A /∈ L|A implies

w 6∈ L, and L1|A 6⊆ L2|A implies L1 6⊆ L2. We will exploit these facts in proofs.

We denote the space of total functions and the space of partial functions from
A to B by A → B and A ↪→ B, respectively. For f : A ↪→ B, we write f(a)↓ if
f is defined at a ∈ A, i.e. ∃b ∈ B. f(a) = b, and f(a)↑ if f is undefined at a.

A Unifying Framework for Dynamic Monitoring and a Taxonomy . . . 3

2.1 Labeled Transition Systems and Properties

We use labeled transition systems to formally characterize the behavior of pro-
grams in a uniform fashion. Given a program in some programming, byte-code
or machine language, it is straightforward to construct from the language’s small-
step operational semantics a corresponding labeled transition system where events
correspond to executing individual instructions. Our use of labeled transition
systems is also compatible with coarser-grained or finer-grained events.

Definition 1. A labeled transition system (brief: LTS) is a tuple (S, S0, E,∆),
where S is a set of states, S0 ⊆ S is a set of initial states, E is a set of events,
and ∆ ⊆ (S×E×S) is a transition relation.

The relation ∆∗ ⊆ (S×E∗×S) is defined inductively by (s, 〈〉, s) ∈ ∆∗ and
by (s, a.w, s′′) ∈ ∆∗ if ∃s′ ∈ S. ((s, a, s′) ∈ ∆ ∧ (s′, w, s′′) ∈ ∆∗).

As usual, we use traces to model program runs. The set of traces induced by an
LTS lts = (S, S0, E,∆) starting in s ∈ S is the smallest set Traces(lts, s) ⊆ E∗

such that Traces(lts, s) = {w ∈ E∗ | ∃s′ ∈ S. (s, w, s′) ∈ ∆∗}. The set of
traces induced by lts is Traces(lts) =

⋃
s0∈S0

Traces(lts, s0). Note that both sets,
Traces(lts) and Traces(lts, s) are prefix-closed.

We focus on properties in the sense of Alpern and Schneider [4].

Definition 2. A property over a set E is a function prop : E∗ → Bool.
A labeled transition system lts = (S, S0, E,∆) satisfies a property prop :

E∗ → Bool iff ∀tr ∈Traces(lts). prop(tr) = > holds.

2.2 Finite Automata and Formal Languages

We use automata to formally characterize the behavior of run-time monitors.

Definition 3. A finite automaton (brief: FA) is a tuple (S, S0, SF , A, δ), where
S and A are finite sets, S0 ⊆ S and SF ⊆ S are nonempty, and δ : (S×A) ↪→ S.

The function δ∗ : (S×A∗) ↪→ S is defined inductively by δ∗(s, 〈〉) = s and by
δ∗(s, a.w) = s′′ if ∃s′ ∈ S. (δ(s, a) = s′ ∧ δ∗(s′, w) = s′′).

Given a finite automaton fa = (S, S0, SF , A, δ), S is the set of states, S0 is the
set of initial states, SF is the set of final states, A is the alphabet , and δ is
the transition function of fa. An FA fa = (S, S0, SF , A, δ), is total in a ∈ A iff
∀s∈S. ∃s′∈S. δ(s, a) = s′, and fa is total in A′⊆A iff fa is total in each a∈A′.

A word over an alphabet A is a finite sequence over A. A language over an
alphabet A is a set of words over A. We call a language L over A simple iff
L = {}, L = {〈〉}, or L = {〈a〉} holds for some a ∈ A. A language L is regular
iff L can be composed from simple languages using the operators ∪, ·, and ∗.

Definition 4. A word w ∈ A∗ is accepted in s ∈ S by a finite automaton
fa = (S, S0, SF , A, δ) iff δ∗(s, w) ∈ SF . The language accepted by fa in s ∈ S is
the set of all such words, i.e., Lang(fa, s) = {w ∈ A∗ | δ∗(s, w) ∈ SF }.

A word w ∈ A∗ is accepted by fa iff fa accepts w in some initial state s0 ∈ S0.
The language accepted by fa is Lang(fa) =

⋃
s0∈S0

Lang(fa, s0).
A word w ∈ A∗ is rejected by fa iff w is not accepted by fa.

4 M.-C. Jakobs, H. Mantel

The expressiveness of finite automata is given by Kleene’s theorem [26]. The
language Lang(fa) is regular for each finite automaton fa, and, for each regular
language L, there exists a finite automaton fa with Lang(fa) = L.

Finite automata where every state is final, have a prominent role in this
article. The languages accepted by this class of finite automata coincide with
the languages that are regular and prefix closed [25].

We introduce three operations for adapting transition functions: The lifting
of a transition function δ : (S× A) ↪→S to an alphabet B augments the domain
of δ by adding stuttering steps for all pairs in (S×(B\A)). The restriction of δ
to B restricts the domain of δ to events in (A ∩ B). The completion of δ to B
adds a stuttering step for each b∈B and s∈S, wherever δ(s, b) is undefined.

Definition 5. Let δ : (S×A) ↪→ S be a transition function and B be an alphabet.
The lifting of δ to B is δ↑B: (S× (A∪B)) ↪→ S, the restriction of δ to B is
δ|B : (S×(A∩B)) ↪→ S, and the completion of δ to B is δ

�B : (S×A) ↪→ S with

δ↑B(s, a) = δ(s, a) if a∈A δ↑B(s, a) = s if a∈(B \A)
δ|B(s, a) = δ(s, a) if a∈(A ∩B)
δ �B(s, a) = δ(s, a) if δ(s, a)↓ δ �B(s, a) = s if a∈(A ∩B) ∧ δ(s, a)↑

Definition 6. The lifting of a finite automaton fa = (S, S0, SF , A, δ) to an
alphabet B is the finite automaton fa↑B = (S, S0, SF , (A∪B), δ↑B).

3 A Framework for Monitoring and Enforcement

A run-time monitor checks whether actions of a target program are permissible
before they occur. If the monitor classifies an action as affirmative, then the ac-
tion may occur, and, otherwise, the monitor takes appropriate countermeasures.

Historically, the field of run-time monitoring has close ties to automata the-
ory. This connection is beneficial since constructions and insights from automata
theory can be exploited in the development and analysis of RTM solutions.

The use of automata for run-time monitoring, however, is not uniform. For
using finite automata, e.g., one can observe two approaches:
1. Each word accepted by an FA corresponds to an affirmative behavior.
2. Each word accepted by an FA corresponds to a preventive behavior.

At the level of formal languages, the approaches are duals of each other, and
switching from the one to the other is straightforward: Given a regular language
L specifying the affirmative behaviors, one can use an FA that recognizes L for
monitoring (following the first approach). Alternatively, one can use an FA that
recognizes the complement of L (following the second approach to monitoring).

Due to this duality at the level of formal languages, the two approaches
are sometimes treated as if they were fully interchangeable. However, when
implementing run-time monitoring, one needs to commit to one of these ap-
proaches. This choice might impact performance overhead, and this is not merely
an implementation-level issue, as we will clarify in Section 4.

In the development of our semantic framework, we carefully distinguish
– between finite automata and the requirements that shall be enforced and
– between two approaches of using finite automata for RTM.

A Unifying Framework for Dynamic Monitoring and a Taxonomy . . . 5

As usual, we use formal languages to specify the requirements to be enforced.
However, to clearly distinguish between the two approaches to run-time moni-
toring, we refer to such languages as policies, if they specify affirmative runs, and
as anti-policies, if they specify preventive runs. We deliberately do not identify
policies/anti-policies with accepting automata, because this would limit the use
of our framework for verifying soundness of optimizations.

We formally introduce a notion of monitors on top of finite automata. This
allows us to explicitly distinguish between events of the target that can be fully
controlled from events that can be observed but not controlled. This distinction
is relevant for the enforceability of properties [8], as well as for the performance
overhead (see Section 4). We use the term monitor when following the first
approach to RTM and the term watch-dog when following the second approach.

The interplay between target programs, monitors/watch-dogs, properties,
and policies/anti-policies is visualized on the left-hand side of Fig. 1.

3.1 Policies and Anti-Policies

We use policies and anti-policies to specify restrictions that shall be enforced
when a target program is running. A policy specifies which behaviors are af-
firmed, while an anti-policy specifies which behaviors are prevented.

Definition 7. A policy is a pair pol = (A,Tr), where A is an alphabet, and
Tr⊆A∗ is a non-empty and prefix-closed language over A, the affirmative traces.

An anti-policy is a pair apol = (A′,Tr ′), where A′ is an alphabet and Tr ′⊆
A′∗ is a language over A′ with 〈〉 /∈ Tr ′, the preventive traces.

We define the meaning of policies/anti-policies for labeled transition systems:

Definition 8. The properties specified by pol = (A,Tr) and apol = (A′,Tr ′),
respectively, for a set E are propEpol , propEapol : E∗ → Bool defined by:

propEpol(w) =

{
> if w|A ∈ Tr
⊥ otherwise.

propEapol(w) =

{
⊥ if ∃w1, w2 ∈ E∗. (w = w1 · w2 ∧ w1|A′ ∈ Tr ′)
> otherwise.

Intuitively, policies and anti-policies are dual concepts. The following theorem
substantiates this conceptual duality more precisely based on our definitions.

Theorem 1. Let pol = (A,Tr) be a policy and apol = (A,Tr ′) be an anti-policy.
If Tr ′ = A∗\Tr then propEpol(w) = propEapol(w) holds for all w ∈ E∗.

monitored
program

target
program

monitor

[watch-dog]

property
satisfies

finite
automaton

policy

[anti-policy]

enforces

[prevents]

specifies

MON (lts,mon)

[WDO(lts,wdo)]

lts

mon
[wdo]

propE
pol

[propE
apol]

satisfies

famon

[fawdo]

pol

[apol]

enforces

[prevents]

specifies

Fig. 1. Run-time monitoring and enforcement conceptually (lhs) and formally (rhs)

6 M.-C. Jakobs, H. Mantel

Theorem 1 can be used to construct from a policy an anti-policy that specifies
the same property. This construction is universal in the set of events. In the
other direction, constructing a policy from an anti-policy apol =(A,Tr ′) is only
possible if Tr ′ is suffix-closed, as, otherwise, (A, (A∗\Tr ′)) is not a policy.

3.2 Monitors and Enforcement of Policies

For monitors, we use transition functions as follows to specify which actions are
affirmed in which states: If the transition function is defined for a given state
and action, then this action is affirmed in this state and, otherwise, not. This
reflects, e.g., the behavior of security automata [33] or truncation automata [29].

A monitor might only supervise a subset of a target program’s actions.
Among those actions, we distinguish between actions whose occurrences the
monitor can prevent and actions whose occurrences the monitor cannot prevent.
This allows us to faithfully capture actions whose occurrences simply cannot be
prevented (e.g., the progress of time). This distinction will also be relevant for
our performance model (see Section 4) and optimizations (see Section 5).

The distinction of observable and controllable events has been exploited be-
fore in other contexts. For instance, Basin et al. [8] use it to analyze enforceability.

As a notational convention, we use Γo to denote the set of events whose
occurrences a monitor can observe but not control, and we use Γc to denote the
set of events whose occurrences a monitor can observe and also control.

Definition 9. A monitor is a tuple mon = (MS ,ms0,Γo ,Γc , δ), where
– MS is a finite set of monitor states with initial state ms0∈MS,
– Γo is a finite set of observed events,
– Γc is a finite set of controlled events with Γo ∩ Γc = ∅, and
– δ : (MS×(Γo∪Γc)) ↪→ MS) is a transition function that is total in (MS×Γo).

For the rest of this subsection, let mon = (MS ,ms0,Γo ,Γc , δ) be a monitor, let
Γ = Γo ∪ Γc , and let lts = (S, S0, E,∆) be a labeled transition system.

We model the effects of supervising a target program by a monitor.

Definition 10. Monitoring the labeled transition system lts with monitor mon
results in the labeled transition system MON (lts,mon) = (S′, S′0, E,∆

′), where

S′ = S ×MS ,
S′0 = S0 × {ms0} , and

((s,ms), e, (s′,ms ′))∈∆′ iff

(s, e, s′) ∈ ∆
∧ (e ∈ Γ ⇒ ms ′ = δ(ms, e))
∧ (e 6∈ Γ ⇒ ms ′ = ms) .

 .

Definition 10 captures the intended operational behavior of monitors: A monitor
updates its state whenever events occur that the monitor can observe (i.e., events
in Γo∪Γc). When non-observable events occur, the monitor does not modify its
state. Moreover, a monitored program can perform an event in Γc only if the
target program and the monitor can make a transition for this event. If the event
is in E\Γc , then it suffices that the target can make a transition for this event.1

1 Recall from Definition 9 that a monitor is total in Γo .

A Unifying Framework for Dynamic Monitoring and a Taxonomy . . . 7

Before characterizing the effects of monitoring denotationally, let us make
the conceptual similarity between monitors and finite automata precise.

Definition 11. famon = (MS , {ms0},MS ,Γ , δ) is the FA induced by mon.

Note that all monitor states are final states of the finite automaton famon . This
reflects that the acceptance of an event by a monitor solely depends on whether
the transition relation is defined for the current monitor state and this event.

Recall from Section 2 that the expressiveness of finite automata where all
states are final is the class of regular languages that are prefix-closed [25].

The denotational effects of monitoring a target by a monitor now can be
captured concisely by using the lifting of famon to the events of the target:

Theorem 2. Traces(MON (lts,mon)) = Traces(lts) ∩ Lang(fa↑Emon) holds.

Given pol = (A,Tr), one can construct a monitor that soundly enforces this
policy via the construction of an FA that accepts a sub-language of Tr .

Theorem 3. Let fa = (MS , {ms0},MS ,Γ , δ) and mon = (MS ,ms0, ∅,Γ , δ).
Then, for every policy pol = (A,Tr), the following implication holds:

Lang(fa) ⊆ Tr implies that MON (lts,mon) satisfies propEpol .

Therefore, we say that fa enforces pol if Lang(fa) ⊆ Tr holds. In the theorem,
the set Γo of the monitor is empty. We will clarify in Section 4 what the benefits
are of moving events from Γc to Γo and in Section 5 when it is safe to do so.

The right-hand side of Fig. 1 visualizes the interplay between the formal
representations of target programs, monitors, properties, and policies.

3.3 Watch-dogs and Prevention of Anti-Policies

As explained, we use the terms watch-dog and anti-policy instead of monitor and
policy, respectively, when the specification focuses on preventive behavior. We
observed that in this case, finite automata are usually used in a slightly differ-
ent way than described in Section 3.2, including prior work on optimizations of
run-time monitoring. As such technical details matter when verifying optimiza-
tions, we extend our semantic framework to watch-dogs and clarify the technical
differences to monitors. We also present a construction suitable for moving from
watch-dogs to monitors while preserving the behavior of a monitored target.

If a watch-dog reaches a final state, then a preventive behavior has occurred.
Therefore, a watch-dog must take countermeasures before it reaches a final state.

The main differences to the definition of monitors (see Definition 9) are the
existence of a set of final states and that the transition function is total.

Definition 12. A watch-dog is a tuple wdo = (WS ,ws0,WSF ,Γo ,Γc , δ) where
– WS is a finite set of watch-dog states with initial state ws0∈WS,
– WSF ⊆WS is a set of final watch-dog states with ws0 /∈WSF ,
– Γo is a finite set of observed events,
– Γc is a finite set of controlled events with Γo ∩ Γc = ∅, and
– δ : (WS × (Γo ∪ Γc))→WS) is a transition function that is total and

for which δ(ws, γ) ∈ (WS \WSF) holds for all γ∈ Γo and ws ∈WS.

8 M.-C. Jakobs, H. Mantel

For the rest of this subsection, let wdo = (WS ,ws0,WSF ,Γo ,Γc , δ) be a
watch-dog, let Γ = Γo ∪ Γc , and let lts = (S, S0, E,∆) be an LTS.

We model the effects of supervising a target program by a watch-dog.

Definition 13. Monitoring lts with the watch-dog wdo results in the labeled
transition system WDO(lts,wdo) = (S′, S′0, E,∆

′), where
S′ = S ×WS ,
S′0 = S0 × {ws0} , and

((s,ws), e, (s′,ws ′))∈∆′ iff

(s, e, s′) ∈ ∆
∧ (e∈Γ ⇒ (ws ′=δ(ws, e) ∧ ws ′ /∈WSF))
∧ (e 6∈Γ ⇒ ws ′=ws)}

 .

Note that Definition 13 faithfully captures the intended operational behavior of
watch-dogs: A monitored target can perform an event in Γc only if the non-
monitored target is able to make a transition for this event and if the occurrence
of this event would not result in a final watch-dog state. If the event is in E\Γc ,
then it suffices that the target is able to make a transition for this event.2

We identify which finite automaton corresponds to a given watch-dog:

Definition 14. fawdo = (WS , {ws0},WSF ,Γ , δ) is the FA induced by wdo.

Analogously to Section 3.2, we capture the denotational effects of monitoring a
target by a watch-dog using the liftings of fawdo to the events of the target:

Theorem 4. Traces(WDO(lts,wdo))=Traces(lts) \ SUF(Lang(fa↑Ewdo)) holds.

Note that, in Theorem 4, the suffix closure of the automaton’s language occurs
on the right-hand side of the equation. This is a difference to the analogous
theorem for monitors (i.e., Theorem 2). Operationally, this is due to the fact
that an action of a target program is prevented by a watch-dog if the action
would result in the watch-dog reaching a final state. That is, a watch-dog not
only prevents all words that it accepts but also all suffixes of such words.

Remark 1. Note that for the finite automaton corresponding to a monitor, every
state is final and the transition function may be partial. In contrast, for a finite
automaton corresponding to a watch-dog, at least the initial state must not be
final, and the transition function must be total. Despite these differences in the
underlying classes of automata, one can construct a monitor from a watch-dog
while preserving the behavior of all monitored target systems. To this end, one
changes the transition function of fawdo to be undefined for all arguments that
would lead to a final state, afterwards one removes all final states from the set
of states, and finally, one applies the usual complement constructions on finite
automata by making all final states non-final and vice versa.

4 A Performance Model for Monitors

Run-time monitoring and enforcement inherently comes at the cost of some
performance overhead. A monitor needs to learn about the action that the target

2 Recall that a watch-dog cannot reach a final state when events in Γo occur.

A Unifying Framework for Dynamic Monitoring and a Taxonomy . . . 9

program is about to perform. The monitor then needs to decide whether to affirm
or prevent an action. If an action is affirmed, the target needs to be enabled to
perform the action and, otherwise, countermeasures must be taken.

Usually the individual actions of a monitor are rather fast, but such delays
accumulate during a run. This is why it has become good practice to accom-
pany the development of tools for run-time monitoring and enforcement with
experimental performance evaluations, e.g., at a benchmark like DaCapo [9].

The overhead caused by monitoring depends on how the monitor itself is
implemented and also on how the combination with the target program is tech-
nically realized. The inlining-technique [19] is a popular technique that incor-
porates the monitor code sequentially into the target’s code. Outlining places
the monitor into a separate process [27] that runs in parallel to the target. The
crosslining technique [23] combines the two by sequentially inlining parts of the
monitor code while outlining other parts to run in parallel.

While experimental performance evaluations of tools for run-time monitoring
and enforcement have become common practice, there is little work on analytical
performance evaluations. A notable exception is an article by Drábik et al. [15].
They propose a framework for analyzing the costs of enforcement.

In this section, we propose a novel performance model for run-time monitor-
ing and enforcement. Our model is similar in spirit to the one in [15], but we
take a broader set of events and context-dependence of costs into account.

We introduce performance vectors to model the time needed by a monitor
to observe an action, to check whether it is permissible, to permit an action to
happen, and to terminate a run. In addition, a performance vector models any
base overhead that is induced by the mere existence of a monitor.

Definition 15. A performance vector for a set of events E is a tuple µ =
(µo, µc, µp, µt, µ∅), where µo, µc, µp, µt, µ∅ : ((E × E∗)→ Time).
A performance vector µ=(µo, µc, µp, µt, µ∅) is context independent iff µα(e, w)=
µα(e, w′) holds for all α∈{o, c, p, t, ∅}, e∈E, and w,w′∈E∗.

Intuitively, µo(e, tr) models the time a monitor needs to learn that the target
is about to perform the event e∈E. The second parameter, i.e. tr , models the
context in which e occurs by the trace of events that have happened before.

Similarly, µc(e, tr) models the time needed to check whether e is permissible
in context tr . The functions µp and µt model the time needed for enabling the
target to perform e and for preventing e by terminating the run, respectively. The
values of µp and µt shall include time needed to update the monitor’s internal
state. The function µ∅ models the base overhead of monitoring for events that
the monitor can neither observe nor control.

We parametrized the functions in a performance vector by both, an event
and a context. This design choice allows one to specify the performance overhead
very precisely. If determining such a precise performance vector, in practice, is
infeasible or too expensive, one can coarsen the model, e.g., by defining a context-
independent performance vector that approximates the actual performance costs.

We are now ready to introduce a novel performance model for monitors.

10 M.-C. Jakobs, H. Mantel

Definition 16. The overhead caused by a monitor mon = (MS ,ms0,Γo ,Γc , δ)
under a performance vector µ = (µo, µc, µp, µt, µ∅) for e ∈ E and tr ∈ E∗ is

µmon(e, tr) =

µ∅(e, tr) , if e∈(E\(Γo∪Γc))
µo(e, tr) , if e∈Γo

µo(e, tr) + µc(e, tr) + µp(e, tr) , if e∈Γc and δ(mstr , e)↓
µo(e, tr) + µc(e, tr) + µt(e, tr) , if e∈Γc and δ(mstr , e)↑

where mstr = δ∗(ms0, tr |Γo∪Γc
). The overhead of mon for a trace is defined

recursively by µ∗mon(〈〉) = 0 and µ∗mon(tr .e) = µ∗mon(tr) + µmon(e, tr).

In Section 5, we use this model to characterize the performance gain by selected
optimizations, while using the terms in Definition 16 purely symbolically.

Remark 2. The definition of an analogous performance model for watch-dogs
is straightforward based on our semantic framework. When instantiating the
resulting performance models, however, be aware that differences between mon-
itors and watch-dogs should be taken into account when defining performance
vectors. In particular, supervising events in Γc might have higher performance
costs for watch-dogs than for monitors: While a watch-dog needs to compute
the resulting watch-dog state and check that it is not final before allowing the
target to continue, a monitor only needs to check whether a transition for the
event exists and may update its state in parallel to the target’s execution.

5 Towards a more Formal Treatment of Optimizations

Optimizations are crucial for lowering the performance overhead of run-time
monitoring and enforcement. However, such optimizations need to be applied
with care, because optimizing a monitor could endanger its effectiveness.

In our study of prior work on optimizing run-time monitoring and enforce-
ment, we observed that the arguments for the preservation of properties mostly
remain at an informal level. Given the growing importance of optimizations
and their increasing level of sophistication, we think the time is ready for more
scrutiny. After all, what is the value of formal verifications of run-time monitors,
if afterward optimizations are applied that have only been informally analyzed?

The advantages of a more formal treatment of optimizations are twofold:
– precise, formal definitions of preconditions clarify better what one needs to

check for before applying a given optimization and
– formally verified preservation results provide reliable guarantees for the preser-

vation of properties under an optimization if the preconditions are met.
One possibility for decreasing performance overhead, is to limit the events tracked
in run-time monitoring and enforcement. This optimization technique is popu-
lar, and it also appeared as an integral part of more complex optimizations (see
Section 6). This is the optimization on which we focus in this section.

Based on our semantic framework, we clarify which preconditions guaran-
tee the preservation of which properties under this optimization. Formally, the
optimization corresponds to removing events from the alphabet of the automa-
ton underlying a monitor or watch-dog while restricting the transition function
accordingly. However, our framework provides a more fine-grained distinction,

A Unifying Framework for Dynamic Monitoring and a Taxonomy . . . 11

namely between events under the control of a monitor/watch-dog (i.e., Γc) and
events whose occurrences the monitor/watch-dog can observe but not control
(i.e., Γo). This allows us to split the optimization into two more primitive ones:
– removal of events from the control while keeping track of them and
– removal of events from the set of events that are tracked.

In our formal model, reduction of control (brief: ROC) corresponds to moving
events from Γc to Γo , and reduction of tracking (brief: ROT) corresponds to
removing events from Γo . Each of these transformations reduces the performance
overhead already if applied in isolation. If applied in combination, ROC and
ROT result in the removal of events from the supervision (brief: ROS). Our
split is increasing the application spectrum of such optimizations as there are
cases, where ROC may be applied, while applying ROS would be problematic.

Like in the previous section, we limit our technical exposition to monitors.
For the rest of this section, let mon =(MS ,ms0,Γo ,Γc , δ) be a monitor.

5.1 Formal Definitions of Optimizations and Performance Gain

We define reduction of control, reduction of tracking, and reduction of super-
vision as operators that transform monitors. Each of these operators takes an
event as second argument. This is the event whose supervision is altered.

Definition 17. Let γc∈Γc, γo ∈Γo, and γ∈Γo ∪ Γc.
ROC(mon, γc) = (MS ,ms0, (Γo∪{γc}), (Γc\{γc}), δ �{γc})

ROT(mon, γo) = (MS ,ms0, (Γo\{γo}),Γc , δ|(Γo∪Γc)\{γo})

ROS(mon, γ) = ROT(ROC(mon, γ), γ)

Note that, if mon = (MS ,ms0,Γo ,Γc , δ) is a monitor then δ �{γc} is total in
(Γo ∪ {γc}) and δ|(Γo∪Γc)\{γo} is total in (Γo \ {γo}). Therefore, if mon is a
monitor then ROC(mon, γc) and ROT(mon, γo), indeed, are monitors.

In the definition of ROC, δ

�{γc} is a transition function that is total in {γc}.
The addition of stuttering steps to δ by this completion makes a monitor more
affirmative. The removal of Γo from the alphabet of a monitor in the definition
of ROT also makes monitoring more affirmative (cf. Definition 10).

We characterize the effects of the transformations on the monitoring over-
head based on our performance model. For simplicity, we assume the monitoring
overhead for any given action of the target to depend only on this action.

Theorem 5. Let µ = (µo, µc, µp, µt, µ∅) be a context-independent performance
vector, and let E be a set of events. The following conditions hold for all tr ∈E∗,
γc∈Γc, roc = ROC(mon, γc), γo ∈Γo, and rot = ROT(mon, γo):

µo(γc) ≤ µc(γc) =⇒ µ∗roc(tr) ≤ µ∗mon(tr)

µ∅(γo) ≤ µo(γo) =⇒ µ∗rot(tr) ≤ µ∗mon(tr)

On the implementation level, moving γc from Γc to Γo corresponds to reducing
the monitor code that runs at each program point where γc might occur. The
monitor still needs to be informed about such occurrences, but no run-time check
is needed, as it is clear a priori that the decision will be positive. Applying ROT
corresponds to reducing the number of program points at which monitor code
runs. That is, µo(γc) ≤ µc(γc) and µ∅(γo) ≤ µo(γo) should hold for most monitor
implementations, and, hence, ROC and ROT, indeed, are optimizations.

12 M.-C. Jakobs, H. Mantel

5.2 Application Scenarios for the Optimizations

We point out and informally discuss multiple possibilities for applying the opti-
mizations ROC, ROT, and ROS. The informal presentation in this subsection,
will be substantiated by formalizations of conditions and theorems in Section 5.3.

Assume a policy pol = (A,Tr) that specifies the requirements to be enforced,
and a monitor constructed by firstly, determining a sublanguage of Tr that is
regular and prefix-closed, then synthesizing fa = (MS , {ms0},MS ,Γ , δ) that ac-
cepts this sublanguage, and defining the monitor to be mon = (MS ,ms0, ∅,Γ , δ).
According to Theorem 3, the monitor mon soundly enforces the property induced
by pol (i.e., propEpol) for every labeled transition system lts = (S, S0, E,∆).

At the level of program code, one could check whether the policy’s alphabet
contains events that cannot be generated by the target program. This check can
be realized, e.g., by a syntactic search in the program code for patterns that
correspond to these events, or, more sophisticated, by a reachability analysis.

At the level of labeled transition systems, the syntactic check corresponds
to checking whether the set A\E is non-empty, and the reachability analysis
corresponds to checking, based on ∆, whether any events in A are never enabled.
Intuitively, monitoring such events is unnecessary. Hence, one could exempt them
from the monitor’s supervision by applying ROS for all such events. [A]

A reachability analysis using the monitor’s transition function could be used
to detect events that are always permitted. For such events the monitor’s check
is unnecessary, and, hence, one can optimize the monitor by ROC.3 [B1]

A more sophisticated variant is to detect events the monitor permits in all
states that the monitor reaches by observing possible traces of the target. [B2]

Note that optimizations might make other optimizations applicable. For in-
stance, removing an event from a monitor’s control by ROS [A] might make, for
some other event, all monitor states unreachable in which this event is prevented
by the monitor and, hence, ROC could become applicable due to [B1] or [B2].

5.3 Preservation Theorems

The following theorem justifies our uses of ROC in Section 5.2. The three pre-
conditions in the theorem, respectively, correspond to [A], [B1], and [B2].

Theorem 6. Let γc∈Γc, Γ =Γo ∪ Γc, and roc =ROC(mon, γc). The equation

Traces(lts) ∩ Lang(fa↑Eroc) = Traces(lts) ∩ Lang(fa↑Emon)

holds if at least one of the following conditions is satisfied:
1. ∆ ∩ (S×{γc}×S) = ∅ ,
2. ∀w∈Γ ∗. (δ∗(ms0, w))↓ =⇒ (δ∗(ms0, w.γc))↓ , or
3. ∀(tr .γc)∈Traces(lts). (δ∗(ms0, tr |Γ))↓ =⇒ (δ∗(ms0, (tr |Γ).γc))↓ .

The following theorem justifies our uses of ROT in Section 5.2. The precondition
in the theorem corresponds to [A].

3 In such a situation, one might be tempted to instead apply the more powerful opti-
mization ROS, but this, in general, does not guarantee the preservation of propE

pol .

A Unifying Framework for Dynamic Monitoring and a Taxonomy . . . 13

Theorem 7. Let γo ∈Γo, Γ =Γo ∪ Γc, and rot =ROT(mon, γo). The equation

Traces(lts) ∩ Lang(fa↑Erot) = Traces(lts) ∩ Lang(fa↑Emon)

holds if ∆ ∩ (S×{γo}×S) = ∅.
If the respective preconditions are fulfilled, Theorems 6 and 7 guarantee that
ROC and ROT do not alter the intersection of the sets of traces of the non-
monitored target with the language of the lifted automaton. In combination
with Theorem 2, this guarantees the set of traces of a monitored target to remain
unchanged. Thus, all properties are preserved if the preconditions are met.

Remark 3. The application spectrum of optimizations could be broadened by
taking the policy into account to relax the preconditions of optimizations. Here,
we see substantial room for improving optimizations, as it suffices to preserve
one property, namely propEpol . This could be a valuable direction for future work.

6 Optimizations for Run-Time Monitoring

We focus on optimizations [11, 10, 34, 30, 18, 5, 35, 22, 3] that aim at sound enforce-
ment. For such optimizations, we develop a taxonomy for RTM optimizations
and then classify the existing approaches in our taxonomy.

Most publications on optimizations for run-time monitoring use a more tech-
nical and a less formal description than Sections 3 and 5. Although we encoun-
tered ambiguities in descriptions of optimizations or monitors and the different
representations made it difficult to identify similarities, we follow the optimizing
approaches and describe our taxonomy on an informal level, too.

Optimization approaches for RTM get as input a program and a specification.
We use the general term specification for the technical input(s) that describe
the objective of RTM, e.g., which execution traces are allowed and how to deal
with forbidden traces. The shape of the specification differs among the RTM
approaches. For example, one can use a finite state automaton to describe the
forbidden execution traces and specify that forbidden traces are truncated.

The first step of all optimization approaches for RTM is to gather information
about the program with respect to the specification. This information is then
used for optimization, which tackles the program’s structure, its instrumentation,
or the specification. Although the general workflow is the same, approaches for
optimizing RTM differ a lot, as we have seen for ROC and ROT.

6.1 A Taxonomy of Optimizations for RTM

Figure 2 shows the taxonomy we propose to classify optimizations for RTM.
Elements shown in blue do not occur in any of the reviewed optimizations, but
we think they are natural extensions. Our taxonomy uses three main dimensions
to characterize optimizations: the specification, information gathering, and op-
timizing transformations. The latter two specify the two steps in the workflow.
A specification in run-time monitoring defines which enforcement is applied to
which execution trace. Next, we discuss the dimensions in more detail.

14 M.-C. Jakobs, H. Mantel

Information
Gathering

S
ta

ti
c

a
n
a
ly

si
s

M
o
d
e
l
ch

e
ck

in
g

D
e
d

u
ct

iv
e
 v

e
ri
fi
ca

ti
o
n

..
.

Optimizing
Transformations

Specification

..
.

N
o
n
e
 (

o
n
ly

 r
e
p
o
rt

in
g
)

E
n
fo
rc
e
m
e
n
t

M
e
ch
a
n
is
m

A
ffi

rm
a
ti

v
e

P
re

v
e
n
ti

v
e

R
e
q
u
ir
e
m
e
n
t

Ty
p
e

R
e
q
u
ir
e
m
e
n
t

Fo
rm

a
lis
m

O
p
e
ra
ti
o
n
a
l

A
u
to

m
a
ta

P
ro

ce
ss

 A
lg

e
b
ra

..
.

D
e
cl
a
ra
ti
ve

..
.

Te
m

p
o
ra

l
Lo

g
ic

Po
lic

y
 L

a
n
g
u
a
g
e
s

Fo
rm

a
l
La

n
g
u

a
g
e
s

P
ro
g
ra
m

..
.

U
n
fo

ld
in

g

Id
e
n
ti

ty

R
e
q
u
ir
e
m
e
n
t

..
.

Id
e
n
ti

ty

R
e
d
u
ct

io
n

E
x
te

n
si

o
n

In
st
ru
m
e
n
ta
ti
o
n

..
.

O
p
ti

m
iz

in
g
 i
n
st

ru
m

e
n

ta
ti

o
n
 c

o
d
e

Id
e
n
ti

ty

R
e
m

o
v
in

g
 i
n
st

ru
m

e
n
ta

ti
o
n
 p

o
in

ts

D
e
la

y
in

g
 i
n
st

ru
m

e
n
ta

ti
o
n

Tr
u
n

ca
ti

o
n

S
u
p
p
re

ss
io

n

In
se

rt
io

n

R
o
llb

a
ck

R
e
co

v
e
ry

Fig. 2. A taxonomy for optimizing run-time monitoring

Specification The requirement type and formalism describe the requirement. The
requirement type determines whether the requirement specifies the allowed be-
havior (affirmative) or the forbidden behavior (preventive). This corresponds to
the two approaches distinguished in Section 3. The formalism fixes the require-
ment language. We distinguish between declarative and operational formalisms.
Commonly, RTM uses both [33, 29]: a declarative requirement to describe the
intended behavior and an operational requirement to implement the monitoring.
Optimizations rarely consider both, but focus on operational requirements.

Formal languages [7], temporal logic [28] or dedicated policy languages like
policy and anti-policy are possible declarative formalisms for requirements. Pro-
cess algebras [37] and automata [33] are options for operational formalisms. All
optimizations we know optimize RTM approaches that (1) are preventive and
(2) express requirements in automata formalisms, which range from simple finite
state automaton to more advanced automata in DATE [13] and ppDATE [3].
This motivated us to include watch-dogs into our semantic framework. The third
element of a specification is the enforcement mechanism. Some optimizations [35,
22] specify that they optimize an RTM approach that uses truncation4. How-
ever, for most of the approaches it remains unclear what enforcement mecha-
nism is used by the underling RTM approach. Countermeasures suggested by
StaRVOOS [3] and Clara [11] are for example error reporting and error recovery.
Further enforcement mechanisms [7] used in RTM are rollback and suppression
or insertion of events. Since the information gathering phase of all reviewed op-
timizations does not consider enforcement, it is likely that enforcement beyond
truncation is not fully compatible with those optimizations.

Information Gathering All approaches we reviewed statically inspect the pro-
gram to gather information. StaRVOOS [3] uses deductive verification. Often,
reachability analyses like model checking [35, 22] or more efficient dataflow ana-
lyses [10] are applied. Also, syntactic, flow-insensitive analyses are run [11].
4 Recall that we also focused on truncation in Sections 3-5.

A Unifying Framework for Dynamic Monitoring and a Taxonomy . . . 15

program

requirement

information
gathering

instrumentation
instrumented

program

requirement’

required instrumen-

tation points

Fig. 3. Workflow of removal of instrumentation points

Optimizing Transformations Reviewing approaches that optimize RTM, we iden-
tified three basic concepts for optimizations: transformations of the operational
requirement description, the program, or the instrumentation of the program.
Since some optimizing approaches apply more than one concept, we describe an
optimizing transformation by a triple of the three concepts and use the iden-
tity transformation for concepts that are not applied. Thus, unoptimized RTM
is identical to only using identity transformations. The three transformations
presented in Section 5.1 reduce the operational requirement, i.e., they (re)move
events. Requirement reduction can remove transitions and conditions, too. In
addition, operational requirements can be extended, e.g., by adding transitions
and events. Both, reduction and extension, occur stand-alone [11, 3, 5] like in
Section 5 or in combination with the removal of instrumentation points [6], a
transformation of the instrumentation code. The program transformation un-
folding is typically combined with the removal of instrumentation points [35,
30]. However, the removal of instrumentation points can also be used stand-
alone [10, 22]. In contrast, delayed instrumentation [18] is currently only used in
combination with requirement extension because it replaces sets of instrumen-
tation points by a later instrumentation that aggregates their effect. We are not
aware of any approach that optimizes the instrumentation code, e.g., specializes
the instrumentation code at instrumentation points using partial evaluation [24],
which we think is an interesting direction.

Our taxonomy excludes optimizations for multiple policies [31], online optimiza-
tions [17, 36], and unsound optimizations [12, 21, 16] that may miss violations.

6.2 Classifying Optimizations into Optimizing Transformations

In the following, we present six classes for the taxonomy dimension optimizing
transformation. All classes occur in the literature and are future candidates for
formalizing and proving optimizations for RTM. We start with three classes that
only take one of the optimization concepts into account. Thereafter, we discuss
three classes that combine different optimizing transformations.

Stand-alone Removal of Instrumentation Points This class of optimizations
keeps the requirement and program as they are and decreases the number of
instrumentation points. The left-hand side of Fig 3 shows the workflow. It first
determines the required instrumentation points. The instrumentation includes
the optimization and leaves out instrumentation points that are not required.

16 M.-C. Jakobs, H. Mantel

program

requirement

information
gathering

requirement
reduction

instrumentation

instrumented

program

requirement
reduction

instrumentation

requirement’

program’s

events

requirement’

Fig. 4. Workflow of stand-alone requirement reduction

Nop-shadow analysis [10] and its optimization [34] employ forward and back-
ward, flow-sensitive analyses to detect the instrumentation points (called shad-
ows) that are irrelevant. JAM [22] uses model checking and counterexample-
guided abstraction refinement with a limited number of refinement steps. The
model checker outputs all traces that violate the requirement and are either real
or could not be ruled out. The instrumentation step adds monitoring code for
the reported traces and stops the program just before a violation would occur.

Stand-alone Requirement Reduction Stand-alone requirement reduction describes
optimizations that neither change the program nor the instrumentation proce-
dure, which is unaware of the optimization and uses the reduced requirement.
Based on the gathered information, these optimizations (re)move elements from
automata (the operational requirement formalism).

The most inexpensive reduction (see right-hand side of Fig. 4) in the lit-
erature applies the ROS transformation in scenario A (Section 5.2). It is used
in Clara’s QuickCheck [11] to reduce finite state automata and in absent event
pruning [5] to reduce requirements written in DATE. Additionally, QuickCheck
removes transitions that cannot reach one of the automaton’s final states.

Clara’s orphan-shadow analysis [11] and object-specific absent event prun-
ing [5] extend this reduction idea with object sensitivity. Since type state require-
ments track the automaton state per object of interest, used events are detected
per object and a requirement reduction (an ROS transformation) is performed
for each object. Afterward, the reduced requirements are combined again.

Unusable transition pruning [5] integrates flow-sensitive information to the
reduction. It takes the control-flow into account and removes automaton transi-
tions that are not activated by any (syntactic) trace of the program.

In its first optimization step, StarVOORS [2] deletes all pre- and postcondi-
tion pairs from its ppDATE requirement that are proven by the verifier KeY [1].

Stand-alone Requirement Extension Stand-alone requirement extension is simi-
lar to stand-alone requirement reduction. The only difference is that the gathered
information is used to adapt the automaton (operational requirement) by gen-
eralizing existing or adding new elements. The only approach in this class we
are aware of is the second step of the StaRVOORS [3, 2] approach. To reduce
the overhead caused by checking the pre- and postconditions in the ppDATE re-
quirement, StaRVOORS tries to discharge the pre- and postcondition pairs with
the deductive verifier KeY [1]. While complete proofs are used for reduction,
open proof goals are used to split the precondition into a proven and non-proven

A Unifying Framework for Dynamic Monitoring and a Taxonomy . . . 17

program

specification

model
checking

program transformation
and truncation

instrumented program

with inlined

specification

abstract

reachability

graph
program

requirement

static
analysis

loop splitting
and instrumentation

instrumented

program
requirement

stutter

distances

Fig. 5. Zero overhead RTM (lhs) and stutter-equivalent loop optimization (rhs)

program

requirement

static
analysis

requirement
extension

instrumentation

instrumented

program
requirement’

safe regions

requirement’

Fig. 6. Workflow of safe regions approach

part and the pre-/postcondition pair is replaced by a refined pair consisting of
the non-proven precondition and the unmodified postcondition.

Combining Unfolding with Removal of Instrumentation Points Optimizations in
this class do not modify the requirement, but unfold the program to enable the
removal of instrumentation points.

Zero overhead run-time monitoring [35], shown on the left-hand side of Fig. 5,
starts to model check the program with respect to the requirement. The model
checking algorithm parallely executes the requirement and a predicate abstrac-
tion (with a limited number of refinements). The result of model checking is an
abstract reachability graph (ARG) that represents the explored abstract state
space. Due to the combination of the requirement and predicate abstraction,
the ARG unfolds the program such that all paths leading to a final state of the
requirement automaton are syntactic error traces. For optimization, the ARG
is translated back into a program and statements leading to a final state in the
ARG, i.e., causing a requirement violation, are replaced by HALT statements.
The result is a transformed program with inlined enforcement, in which all in-
strumentation code except for the enforcement itself is delete.

Stutter-equivalent loop optimization [30], shown on the right-hand side of
Fig. 5, splits loops into two loops. The first loop runs as long as RTM may
change the requirement state. The second loop is not instrumented and executes
the remaining loop iterations, for which the requirement state remains stable. A
static analysis is used to determine for each loop the maximal number of loop
iterations, the stutter distance, required to reach a stable requirement state. The
stutter distance is used to restrict the execution of the first loop.

Delayed Instrumentation with Requirement Extension In this class, optimiza-
tions do not transform the program, but extend the operational requirement
and replace groups of instrumentation points by a summary instrumentation
point. The only approach in this category we are aware of is the safe regions
approach [18]. Its workflow is shown in Fig. 6. The safe regions approach starts
with a static analysis to detect safe regions, i.e., code blocks that cannot reach a

18 M.-C. Jakobs, H. Mantel

requirement violation and all paths through the code block that start in the same
requirement state end in the same requirement state. Instrumentation does not
insert instrumentation code into safe regions, but adds instrumentation code
after a safe region, which triggers a special region event. The requirement is
extended with transitions for the region events, which summarize the regions’
behavior with respect to the requirement.

Combining Requirement Reduction with the Removal of Instrumentation Points
Optimization approaches in this class reduce the operational requirement and
remove unnecessary instrumentation points, but do not change the program.
Clara [11], which combines QuickCheck, the orphan and nop-shadows analysis,
and CLARVA [6], which combines the DATE requirement reductions [5] with
the removal of instrumentation points, fall into this category.

On Correctness of Optimizations Full correctness of an optimization is rarely
shown. Exceptions are zero overhead RTM [35] and the DATE reductions [5].
For Clara’s nop shadow [10, 11], the stutter-equivalent loop optimization [30],
and the safe regions approach [18] only the underlying idea for the optimization
is proven. The correctness of Clara’s QuickCheck and orphan-shadow analy-
sis [11] is discussed rather informally. The StarVOORS approach [2] provides
the foundations and proves the soundness of the ppDate translation, but lacks
to prove the correctness of the ppDate optimization. At worst, for the JAM ap-
proach [22] and the improvement of the nop shadow approach [34] correctness
of the optimization is hardly discussed at all.

7 Conclusion

We presented a semantic framework for formalizing different approaches to RTM
in a uniform fashion and a novel performance model. Their intended application
domain is the analysis of optimizations of RTM. We showed at selected opti-
mizations that both are suitable for this purpose. In fact, the formalization of
optimizations alone already inspired ideas for broadening the application spec-
trum of known optimizations and for the development of novel optimizations.

Our taxonomy and classification provide a broader conceptual clarification
about previously proposed optimizations. Since the taxonomy also covers possi-
bilities not yet explored, it could serve as a road map for future directions.

Naturally, this article can only be one step towards making a more rigorous
treatment of optimizations common practice in the field of RTM. Broadening
the application spectrum of optimizations, improving their effects, and clarifying
which optimizations can be safely applied under which conditions is an exciting
research area that deserves and will require substantial future research.

Acknowledgments. We thank Barbara Sprick for helpful discussions. This work
was funded by the Hessian LOEWE initiative within the Software-Factory 4.0
project and by the German Federal Ministry of Education and Research and
the Hessen State Ministry for Higher Education, Research and the Arts within
their joint support of the National Research Center for Applied Cybersecurity
ATHENE.

A Unifying Framework for Dynamic Monitoring and a Taxonomy . . . 19

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice.
LNCS 10001 (2016)

2. Ahrendt, W., Chimento, J.M., Pace, G.J., Schneider, G.: Verifying Data- and
Control-Oriented Properties Combining Static and Runtime Verification: Theory
and Tools. Formal Methods in System Design 51(1), 200–265 (2017)

3. Ahrendt, W., Pace, G.J., Schneider, G.: A Unified Approach for Static and Runtime
Verification: Framework and Applications. In: Leveraging Applications of Formal
Methods, Verification and Validation. pp. 312–326. LNCS 7609 (2012)

4. Alpern, B., Schneider, F.B.: Defining Liveness. Information Processing Letters 21,
181–185 (1985), North-Holland

5. Azzopardi, S., Colombo, C., Pace, G.J.: Control-Flow Residual Analysis for Sym-
bolic Automata. In: Pre- and Post-Deployment Verification Techniques. EPTCS,
vol. 254, pp. 29–43 (2017)

6. Azzopardi, S., Colombo, C., Pace, G.J.: CLARVA: Model-based Residual Verifica-
tion of Java Programs. In: Model-Driven Engineering and Software Development.
pp. 352–359 (2020)

7. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification - Introductory
and Advanced Topics. LNCS 10457, Springer (2018)

8. Basin, D.A., Jugé, V., Klaedtke, F., Zalinescu, E.: Enforceable Security Policies
Revisited. Transactions on Information and System Security 16(1), 3:1–3:26 (2013)

9. Blackburn, S.M., Garner, R., Hoffmann, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.L.,
Jump, M., Lee, H.B., Moss, J.E.B., Phansalkar, A., Stefanovic, D., VanDrunen,
T., von Dincklage, D., Wiedermann, B.: The DaCapo Benchmarks: Java Bench-
marking Development and Analysis. In: Object-Oriented Programming, Systems,
Languages, and Applications. pp. 169–190 (2006)

10. Bodden, E.: Efficient Hybrid Typestate Analysis by Determining Continuation-
Equivalent states. In: International Conference on Software Engineering. pp. 5–14
(2010)

11. Bodden, E., Hendren, L.J.: The Clara Framework for Hybrid Typestate Analysis.
Journal on Software Tools for Technology Transfer 14(3), 307–326 (2012)

12. Bodden, E., Hendren, L.J., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative
Runtime Verification with Tracematches. In: Runtime Verification. pp. 22–37.
LNCS 4839 (2007)

13. Colombo, C., Pace, G.J., Schneider, G.: Dynamic Event-Based Runtime Monitor-
ing of Real-Time and Contextual Properties. In: Formal Methods for Industrial
Critical Systems. pp. 135–149. LNCS 5596 (2008)

14. Delgado, N., Gates, A.Q., Roach, S.: A Taxonomy and Catalog of Runtime
Software-Fault Monitoring Tools. Transactions on Software Engineering 30(12),
859–872 (2004)

15. Drábik, P., Martinelli, F., Morisset, C.: Cost-Aware Runtime Enforcement of Se-
curity Policies. In: Security and Trust Management. pp. 1–16. LNCS 7783 (2012)

16. Dwyer, M.B., Diep, M., Elbaum, S.G.: Reducing the Cost of Path Property Mon-
itoring Through Sampling. In: Automated Software Engineering. pp. 228–237
(2008)

17. Dwyer, M.B., Kinneer, A., Elbaum, S.G.: Adaptive Online Program Analysis. In:
International Conference on Software Engineering. pp. 220–229 (2007)

20 M.-C. Jakobs, H. Mantel

18. Dwyer, M.B., Purandare, R.: Residual Dynamic Typestate Analysis Exploiting
Static Analysis: Results to Reformulate and Reduce the Cost of Dynamic Analysis.
In: Automated Software Engineering. pp. 124–133 (2007)

19. Erlingsson, U., Schneider, F.B.: SASI Enforcement of Security Policies: A Retro-
spective. In: New Security Paradigms. pp. 87–95 (1999)

20. Falcone, Y., Krstic, S., Reger, G., Traytel, D.: A Taxonomy for Classifying Runtime
Verification Tools. In: Runtime Verification. pp. 241–262. LNCS 11237 (2018)

21. Fei, L., Midkiff, S.P.: Artemis: Practical Runtime Monitoring of Applications for
Execution Anomalies. In: Programming Language Design and Implementation. pp.
84–95 (2006)

22. Fredrikson, M., Joiner, R., Jha, S., Reps, T.W., Porras, P.A., Säıdi, H., Yeg-
neswaran, V.: Efficient Runtime Policy Enforcement Using Counterexample-
Guided Abstraction Refinement. In: Computer Aided Verification. pp. 548–563.
LNCS 7358 (2012)

23. Gay, R., Hu, J., Mantel, H.: CliSeAu: Securing Distributed Java Programs by
Cooperative Dynamic Enforcement. In: Information Systems Security. pp. 378–
398. LNCS 8880 (2014)

24. Jones, N.D.: An Introduction to Partial Evaluation. ACM Computing Surveys
28(3), 480–503 (1996)

25. Kao, J., Rampersad, N., Shallit, J.O.: On NFAs Where All States are Final, Initial,
or Both. Theoretical Computer Science 410(47–49), 5010–5021 (2009)

26. Kleene, S.C.: Representation of Events in Nerve Nets and Finite Automata. In:
Automata Studies, pp. 3–41 (1956)

27. Leucker, M.: Teaching Runtime Verification. In: Runtime Verification. pp. 34–48.
LNCS 7186 (2011)

28. Leucker, M., Schallhart, C.: A Brief Account of Runtime Verification. Journal of
Logic and Algebraic Programming 78(5), 293–303 (2009)

29. Ligatti, J., Bauer, L., Walker, D.: Edit Automata: Enforcement Mechanisms for
Run-Time Security Policies. Journal of Information Security 4(1-2), 2–16 (2005)

30. Purandare, R., Dwyer, M.B., Elbaum, S.G.: Monitor Optimization via Stutter-
Equivalent Loop Transformation. In: Object-Oriented Programming, Systems,
Languages, and Applications. pp. 270–285 (2010)

31. Purandare, R., Dwyer, M.B., Elbaum, S.G.: Optimizing Monitoring of Finite State
Properties through Monitor Compaction. In: Software Testing and Analysis. pp.
280–290 (2013)

32. Rabiser, R., Guinea, S., Vierhauser, M., Baresi, L., Grünbacher, P.: A Comparison
Framework for Runtime Monitoring Approaches. Journal of Systems and Software
125, 309–321 (2017)

33. Schneider, F.B.: Enforceable Security Policies. Transactions on Information and
System Security 3(1), 30–50 (2000)

34. Wang, C., Chen, Z., Mao, X.: Optimizing Nop-shadows Typestate Analysis by
Filtering Interferential Configurations. In: Runtime Verification. pp. 269–284.
LNCS 8174 (2013)

35. Wonisch, D., Schremmer, A., Wehrheim, H.: Zero Overhead Runtime Monitoring.
In: Software Engineering and Formal Methods. pp. 244–258. LNCS+8137 (2013)

36. Wu, C.W.W., Kumar, D., Bonakdarpour, B., Fischmeister, S.: Reducing Monitor-
ing Overhead by Integrating Event- and Time-Triggered Techniques. In: Runtime
Verification. pp. 304–321. LNCS 8174 (2013)

37. Yamagata, Y., Artho, C., Hagiya, M., Inoue, J., Ma, L., Tanabe, Y., Yamamoto,
M.: Runtime Monitoring for Concurrent Systems. In: Runtime Verification. pp.
386–403. LNCS 10012 (2016)

